
A Tool Evaluation Framework based on
Fitness to Process and Practice

A usability driven approach

Diego Fontdevila
Departamento de Ingeniería

Universidad Nacional de La Matanza
San Justo, Buenos Aires, Argentina

dfontdevila@ing.unlam.edu.ar

Departamento de Ingeniería
Universidad Nacional de Tres de Febrero

Caseros, Buenos Aires, Argentina
dfontdevila@untref.edu.ar

Abstract — Most current and traditional research on software
development tool evaluation focuses on tool capabilities and
features following the traditional approach for generic
software evaluation. Existing evaluation frameworks and
methods address functional and non-functional requirements,
constraints, technology, knowledge domain, costs and other
acquisition aspects, but such approaches do not account for the
context in which work is done. We propose a usability-based
framework for tool evaluation in terms of fitness to the
development process and practice of their users. Our
contribution is a framework for relating ways of working to
tool evaluation, and a concrete checklist for performing that
evaluation. We present this paper as proof-of-concept of our
framework and validate its applicability (but not the
evaluation results) by using it to evaluate tools with which we
have hands-on experience.

Keywords-tool evaluation; usability-based framework;
process and practice.

I. INTRODUCTION
Most current and traditional research on software

development tool evaluation focuses on tool capabilities and
features [1][2][3][4][5][6][7][8] following the traditional
approach for generic software evaluation [9][10]. Existing
evaluation frameworks and methods address functional and
non-functional requirements, constraints, technology,
knowledge domain, costs and other acquisition aspects, but
such approaches do not account for the context in which
work is done [11]. For example, tools with the required
features might rate well in a feature-based evaluation, but
support users poorly by implementing the workflows in a
way that does not match the users’. Jadhav and Sonar [12]
state that none of the primary studies reviewed address the
final step of the selection process: “Purchasing and
implementing most appropriate software package”. The
authors also state “good evaluation practice suggests that
some action should be taken to ensure that the selected
package performs as well as expected after implementation”.
The problem with such after-the-fact check of successful
evaluation and selection is that mistakes can be very costly;
that is why we propose an earlier focus on evaluating the

final effectiveness of the implementation beyond traditional
tool requirements.

Although research has been conducted on evaluation of
technology fitness to context, including software
development tools [11], the proposed method is limited to
technical issues and maintains a requirements-based
approach (the case study is for web services technology).
Storey et al. [13] propose collaborative demonstration based
tool evaluations, focusing on interoperability and tool
integration, not on end user support (the target users are
themselves researchers).

We propose a usability-based framework for the
evaluation of tools in terms of fitness to the development
process and practice of their users. Our contribution lies in
providing a framework for relating ways of working to tool
evaluation. We present this paper as a proof-of-concept of
our framework and validate its applicability by using it to
evaluate tools with which we have hands-on experience (this
is considered good practice in tool evaluation [6][11]).

The capability of a tool to support the software
development process and practices of its users might very
well be described in terms of usability, based on the idea that
any significant divergence between the tool's model of the
work and the actual way the work is performed would make
the tool difficult to use. A common scenario for
inappropriate process implementation might be having a tool
that forces a process so heavy on its users that they abandon
it partially or completely. Same with practice, a practice
might not fit the process, or a tool might not support the
practice appropriately. For example, inconsistencies in code
review practice between different teams might turn up in
system testing. We consider fitness for use, a key quality
notion in any product o process, and extend it to fitness to
context, where context is defined in terms of software
development process and practice. This work’s key
contribution is a checklist of specific criteria for evaluating
fitness to process and practice, inspired by usability
terminology.

First, we present the framework and then apply it to the
evaluation of two different tools, one related to
Configuration Management practices (Jenkins Continuous
Integration Server [23]) and the other to Requirements and
Project Management (Pivotal Tracker [24]). These tools have

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

been chosen by theoretical sampling to provide very different
process and practice coverage. Jenkins is a tool that supports
a single practice, while Pivotal Tracker covers multiple
processes and practices. Our evaluation method assumes the
evaluators are familiar with the tool’s capabilities and can
focus on evaluating their fitness to process and practice.
Other methods might be used as a first approach for tool
evaluation, to validate basic conformance, followed by
applying our approach to the top ranking alternatives.

In Section II, we define several usability principles and
propose applications of those principles in the context of
software development process and practice. In Section III,
we use those relationships to establish tool evaluation criteria
based on how well the tool supports process and practice
according to those principles. Finally, in Section IV, we
apply those principles and criteria to the evaluation of the
two tools, and in Section V, we present our conclusions and
perspectives.

II. APPLYING USABILITY PRINCIPLES TO PROCESS AND
PRACTICE

At this point, we need to state our working definitions of
practice and process (see [14], chapter 4, for a description of
the interconnection between process and practice):

Process: It is the flow of work, products and information
across the organization that produces value and coordinates
the activities of groups with different practices.

Practice: The term practice describes the everyday
activities and experience of work. Practices comprise a
process, but they can exist without a defined process. If a
practice is imposed that is not viable for the people doing the
work, that same people will usually redefine the practice.

The reason we choose to focus on practice and process is
that process focused perspectives often ignore how the work
is actually performed by teams and individuals, and thus
loose information that is critical to any improvement effort.
In our case, choosing the right tool for the job cannot ignore
“the way we do things here to succeed” (to paraphrase the
title of [15]).

Usability principles are guidelines for the design of
things that are meant to be appropriate for use. They provide
guidance for creating usable designs and for evaluating those
designs.

Processes and practices are tools that humans use to
define, coordinate and execute their activities, and provide a
harness for sustainable high quality work (in [16], Alistair
Cockburn presents a view of practices as one kind of tool of
agile teams). As tools, their success is sensitive to the
capacity of people to make use of them. This leads to the
following definition:

Process/Practice Usability: A measure of how easy it is to
follow a process or practice, including the effort needed to
learn, the probability of making mistakes, the cost of such
mistakes and the overall satisfaction and motivation
promoted by following the practice or process.

In Section III, we present a detailed criteria checklist
organized by usability principles to evaluate how well a tool
suits the process and practice of its users. The main
contribution of this work is the criteria checklist we have

created inspired by those usability principles. This checklist
is not a usability checklist, for it does not evaluate tool
usability, it extends usability terminology to define criteria
for fitness to process and practice.

In Section II.A, we offer our own working definition of
several usability principles (or heuristics, as they are referred
to in [17]), an example of their application to everyday
things (the standard view of usability) and a description of
how each principle can be applied to processes and practices.

A. Usability Principles
We define usability principles for process and practices.

We then apply them to the evaluation of tool fitness to
process and practice. In this section, we extend these
principles described in [18] (Chapter 1) and [17] (Chapter 5)
Heuristics” to define a framework for the software
development domain. Here, we define the following
principles:

1. Feedback
2. Affordance/natural mapping
3. Matching conceptual models
4. Tolerate mistakes
5. Force function

We have chosen these principles because of the way they

resonate with software development process and practice
concepts. The initial inspiration for this work came to us
with the realization of the importance of the term feedback in
the context of both usability and software process
improvement. As we explored this idea, we found that other
usability principles appeared in both contexts, for example,
creating safe work environments by tolerating mistakes is a
key agile tenet.

An example of usability heuristic that we have not
applied here, because no specific criteria related to it seem
applicable to process and practice, is avoid modes [17].

1) Feedback
When we act upon the world, there is a reaction from the

world that we can perceive (based on [18], page 27).
In everyday life: When we press a floor button in an

elevator, we expect it to light up to confirm that the elevator
has been programmed to go to that floor, otherwise we press
the button again and again.

In Practice/Process: This principle is key to Shewhart's
continuous improvement cycle Plan-Do-Check-Act. The
process must be such that it offers continuous feedback so
that we can appreciate (and check) the effect of the
improvement efforts. Idem for Practice, we need to see the
effect of a practice to motivate us to maintain it.

2) Affordance/Natural Mapping
Things should by their outward nature expose what they

are for, what their purpose is (based on [18], page 9, in this
context affordance means “to be for” something).

In everyday things: A small red iron hammer hung in a
red container next to a glass window hardly requires an
“Emergency” sign to express that it is there to help us break
the window (see [18], page 9, there actually is a psychology

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

of materials such that glass by itself affords the idea of
shattering).

In Practice/Process: Process activities should have
obvious effect in the production of quality work by the
people involved. In other words, the purpose of all activities
should be so clear as to not require explanation beyond the
initial adoption phase. As a corollary, process activities
should then match exactly the Practice of the people doing
the work (i.e., should not make them work in a way they do
not believe in).

3) Matching Conceptual Models
Every artifact has an implicit mental model that should

match that of the people doing the work (based loosely on
[18], page 12).

In Everyday things: People tend to believe that if a coin
is bigger, it should be worth more, but that is not always the
case.

In Practice/Process: A process should match the view
that people participating in it have of their work. A
particularly important aspect of this is the coordination of
teams with very different practices, like software
development and marketing. Each team must have an
enabling out-model that allows them to integrate their work
(an out-model is our model of something we are mostly
ignorant about; in this case, the other team and how they
work [15]).

4) Tolerate mistakes
Since mistakes are typical of humans, things should

allow us to make mistakes without incurring much rework or
frustration.

In everyday things: Pushing one wrong button should not
wipe out hours worth of a document we are working in.
Systems should recover from mistakes easily and gracefully.
When recovery is not possible, or too costly, a force function
(the next principle in this Section) might be used to prevent
people from making that mistake.

In Practice/Process: Activities should be designed in
such a way that we do not have to do them all over again if
we make a mistake. Iterative and incremental processes are
good examples of this. Practices such as Collective Product
Ownership, Collaborative Design, Self-Organized Teams
and fluid communication channels around the people
working on the product provide excellent means of reducing
the impact of mistakes. A culture that fosters exploration and
innovation must also “applaud” mistakes as the acceptable
cost of trying out new things.

5) Force Function
Things should not allow us to make use of them if there

is danger of grave consequences of that use.
In everyday things: Door finger protection for babies are

examples of force functions put in place to avoid painful
finger injuries.

In Practice/Process: Processes and practices should
establish hard boundaries on activities that run the risk of
breaking up the team or seriously compromising product
quality. For example, the practice of working long hours can
drive a developer to burnout, and is typical of processes

driven by unrealistic scheduling. The force function might
then the opposite practice, disciplined 40hs a week work; it
is called Energetic Work and included as one of the core
Extreme Programming practices by Kent Beck [19]. Another
example is when a person is empowered to break a tie in an
argument.

III. A FRAMEWORK FOR TOOL EVALUATION
Software development tools are meant to help to work

more efficiently, or to reduce the probability of mistakes, or
to record information. The way the tool supports the process
and practice of its users (the ones doing the work), its
alignment with that process and practice, can determine the
appropriateness of the tool and its overall usefulness.

In this Section, we outline a simple framework for tool
evaluation based on the usability principles described. First,
we describe how tool fitness to process and practice can be
evaluated through the usability principles presented. We
offer a set of criteria for tool evaluation for each principle,
and present an example for each criterion. Finally, we
present the concrete steps to be performed for tool
evaluation.

A. Tool Evaluation Criteria Checklist by Usability
Principle

1) Feedback
A tool should be evaluated according to its capacity to

provide feedback on its successful use to support a given
practice or process. Possible criteria are:

a) Calculation and display of metrics that reflect the
performance of practices or process activities.

b) Validates activity results (e.g., automated test
execution, static analysis, and model checkers).

c) Supports collaboration and interaction between
individuals that provide the actual feedback. For
example, centralized code versioning tools use two
styles for coordinating modifications, copy-merge-
commit (as in CVS, Concurrent Versioning System,
and SVN, Subversion) and lock-modify-commit (as
in Microsoft's old Source Safe). The copy-merge-
commit style favors parallel modification and fast
code integration; thus, providing timely feedback,
whereas lock-modify-commit code versioning tools
tend to delay integration and thus.

2) Affordance/Natural Mapping
A tool should be evaluated according to how its external

appearance suggests its purpose and meaning. Possible
criteria are:

a) Uses the user's language to describe practices and
process activities.

b) Workflow steps in the tool match the practices and
process activities (tools developed in-house tend to
work much better in this respect). As an example,
Defect Lifecycle Tracking tools need to have a
defect lifecycle that matches the one in use by the
organization.

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

c) Is accessible to the people doing the job and they
have the appropriate privileges. As a
counterexample, only a manager might be allowed to
create tasks on which developers must book hours.

d) Supports recording rationale and contextual
information to further under-standing between
teams, especially in activities that coordinate work
between different teams. For example, an
Architecture Modeling Tool should record design
decision rationale (see a practical application to
documentation in [20], “Seven Rules for Sound
Documentation”, page 24).

3) Matching Conceptual Models
A tool should be evaluated according to the match (or

lack thereof) between the tool's model of the work and the
actual way the work is performed. Possible criteria are:

a) Supports specific practices and activities that are
necessary for the process, practice or methodology:
For example, a Scrum planning tool over a general
purpose issue tracker, requirements management
tool over a document editing requirements plugin,
as opposed to end-to-end, generic software
engineering tools.

b) Specificity: Tools built for a specific practice tend
to match that practice very well and avoid cluttering
the interface with low value features (like Jenkins
for Continuous integration, described in Example 1
in Section IV.A, or most versioning systems, or
UML modeling tools). In practice, such specificity
needs to be balanced with good integration with
tools that support related practices.

c) Cohesion: The tool supports multiple activities but
they are deeply interwoven (e.g., versioning
systems and requirements tracking systems, when a
developer commits a change to implement a
requirement or bug fix, the tool records the
relationship between the two, providing
traceability).

d) Flexible customization usually allows users to bend
the tool to better align it with their own process and
practices.

4) Tolerate Mistakes
A tool should be evaluated according to how well it

reacts to problems and how helpful it its in guiding or
supporting recovery of users towards more effective
behavior. Possible criteria are:

a) Does not make judgmental assertions about the
meaning of a practice or process activity. For
example, in the case of metrics (that provide
feedback), a tool should not establish fixed criteria
for determining success. In the words of Tobias
Mayer “metrics should be used to measure truth —
not to measure success or failure. Only measures of
truth can be trusted not to incite quick-fix behavior
in a team” [21]. This might mean tools driving
teams to react to the judgment of the tool by
“pushing the dirt under the rug”. As a concrete
example, a while ago we helped one team to handle

a problem in their automated tests. It only took a
little time to isolate, but it had driven them weeks
ago to disable all tests because they were failing –
They had reacted inappropriately to the feedback of
their tool and abandoned the good practice of
automated testing.

b) Provides means to establish flexible thresholds for
status, alarms and notifications, so that teams can
configure them according to their context. As an
example, tools that generate many e-mails a day
with false positive results for a check (e.g., server
monitor reporting incorrectly that a server is down)
tend to drive teams to ignore any of those e-mails.

5) Force Function
A tool should be evaluated according to the force

functions it provides to avoid potentially grave consequences
of inappropriate use. Possible criteria are:

a) Supports rules for automatic recognition of
inconsistencies. For example, does not allow
improper use of a modeling language construct (In
the case of UML, a semi-formal language, this can
easily become a nuisance).

b) Warns or sets hard restrictions when practices reach
unhealthy limits. For example, for a project
management tool, a force function might be
forbidding team overload.

c) Does not support poor practices because they tend
to establish the inappropriate behavior into the team
or organization and make it harder to fix in the
future. As an example, consider tools that create an
economy of compensation (points, money, etc.) for
specific activities (e.g., bug fixing). Such practices
tend to promote the unthinking pursuit of the
compensated activities without regard to the value
they provide [22]. Putting a tool in place for that
will only make the practice harder to change.

IV. TOOL EVALUATION
In this section, we propose a method for applying the

usability principles and criteria to tool evaluation. Evaluation
is done for all practices and process activities at the same
time to avoid multiple iterations that might make the
framework cumbersome.

To evaluate each tool:
1. Identify practices and process activities supported by

the tool.
2. For each usability principle

a. Qualitatively evaluate the tool on each
criteria related to the principle.

b. Rate the tool on Process and Practice
support.

The rating provides a simple transformation from the
qualitative evaluation of the criteria above into a
quantitative rating describing how well the tool follows
the principle for the selected practices and process
activities. Ratings can be assigned according to the
following guidelines:

Low: if the tool fulfills none of the criteria.

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Medium: if the tool fulfills one of the criteria.
High: if the tool fulfills two or more of the criteria.

In the following checklists, the evaluation notation is:
√ Complies with criteria (comments for specific

practices or activities)
~ Partial compliance or biased interpretation

(explanation)
X No compliance or particularly negative design

regarding the principle.

A. Example 1: Jenkins Continuous Integration Server
Name: Jenkins
Type: Free Software
Workflow/Phase: Configuration Management
Area of focus: Practice
Main Practices/Activities: Continuous Integration
Description: “Jenkins monitors executions of repeated

jobs, such as building a soft-ware project or jobs run by cron.
Among those things, current Jenkins focuses on the
following two jobs:

• Building/testing software projects continuously [...]
• Monitoring executions of externally-run jobs” [23]

Jenkins Evaluation Checklist

1) Feedback
a) Calculates and displays metrics.√ (product build

and test status)
b) Automatically validates activity results. √

(automated build and tests)
c) Supports collaboration and interactions that provide

feedback.√ (sends e-mails to the whole team when
a build fails)

2) Affordance/Natural Mapping
a) Uses the user's language to describe practices and

process activities.√ (Main entities are builds,
dependencies, jobs).

b) Its workflow steps match the practices and process
activities.~ (is centered on one practice, has few
process issues).

c) Is accessible to the people doing the job and they
have the appropriate privileges. √ (simple
authorization scheme, usually developers install and
manage it).

d) Provides support to record rationale and other
contextual information.~ (allows users to comment
almost all entities, but has no focus in rationale).

3) Matching Conceptual Models
a) Supports only practices and activities that are

necessary for the process, practice or methodology.
√ (Supports only the Continuous Integration
practice).

b) Is designed for one specific practice.√ (See
previous)

c) Supports cohesively multiple activities when they
are deeply interwoven.√ (See previous)

d) Provides flexible customization for better alignment
to process and practices.√ (Provides extensive
customization and extensions through third-party
plugins of which it has a built in market with an
many options, besides its own API and being Free
Software)

4) Tolerate Mistakes
a) Does not make judgmental assertions about the

meaning of a practice or process activity. ~ (a
broken build is considered negatively by the tool,
but that is defined at the core of the practice, not the
tool)

b) Provides means to establish flexible thresholds for
status, alarms and notifications.√ (Allows to set
custom thresholds on test code coverage, failed
build mails can be sent to the author of the change
or to the whole team).

5) Force Function
a) Supports rules for automatic recognition of

inconsistencies. √ (Checks input values by
attempting to use them proactively and offers clear
error messages to advice on correcting errors).

b) Warns or sets hard restrictions when practices reach
unhealthy limits. X (It does not limit too long
builds).

c) Does not promote poor practice.√ (It is a lean tool
focused in a single practice without unnecessary or
counterproductive features).

TABLE I. JENKINS EVALUATION MATRIX

Process
Activity/
Practice

Feedbac
k

Afforda
nce/

Natural
Mappin

g

Matchin
g

Concept
ual

Models

Tolerate
Mistake

s
Force

Functio
n

Continuo
us
Integratio
n

High High High Mediu
m High

The results in Table I show overall high scores for

Jenkins Continuous Integration server. This fits the fact that
it is a tool targeted to a single practice. In other words, if the
users follow the practice of Continuous Integration, it is
reasonable to expect Jenkins to evaluate as a good candidate
for successful implementation.

B. Example 2: Pivotal Tracker Project Management
Name: Pivotal Tracker
Type: Application as a Service
Workflow/Phase: Requirements Management/ Project
Management (Scrum)
Area of focus: Process
Main Practices/Activities: Requirements Management/
Project Planning/Project Tracking
Description: “Simple, collaborative project
management.” [24].

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Pivotal Tracker Evaluation Checklist

1) Feedback
a) Calculates and displays metrics.√ (e.g., release

burn-down, expected velocity)
b) Automatically validates activity results. √ (if

expected velocity does not match actual velocity, it
modifies the plan expected end date accordingly;
orders requirements by priority automatically)

c) Supports collaboration and interactions that provide
feedback.√ (integrates tracking information on
completed items from the whole team)

2) Affordance/Natural Mapping
a) Uses the user's language to describe practices and

process activities.√ (assuming users are familiar
with Scrum)

b) Its workflow steps match the practices and process
activities.√ (Planning and Tracking are supported
naturally, if a Release plan is in place for the
Release Burn-down to work)

c) Is accessible to the people doing the job and they
have the appropriate privileges. √ (simple
authorization scheme, owner, member, viewer
roles).

d) Provides support to record rationale and other
contextual information. X (Very little in the way or
rationale or contextual information beyond a
general description of each user story)

3) Matching Conceptual Models
a) Supports only practices and activities that are

necessary for the process, practice or methodology.
√ (Supports counting story points for bugs, but
strongly discourages it).

b) Is designed for one specific practice. √ (Generally
well aligned with Scrum)

c) Supports cohesively multiple activities when they
are deeply interwoven.√ (Planning and Tracking)

d) Provides flexible customization for better alignment
to process and practices.~ (Very limited, charts in
particular)

4) Tolerate Mistakes
a) Does not make judgmental assertions about the

meaning of a practice or process activity.~
(Velocity changes in recent iterations affect heavily
and automatically the planned outcome of the
project, but this is usually good practice after the
first few iterations)

b) Provides means to establish flexible thresholds for
status, alarms and notifications. X (None)

5) Force Function
a) Supports rules for automatic recognition of

inconsistencies.√ (Plans and predicts schedule
automatically based on simple velocity metric)

b) Warns or even sets hard restrictions when practices
reach unhealthy limits. X

c) Does not promote poor practice. X (Charts and
reports are unwieldy)

TABLE II. PIVOTAL TRACKER EVALUATION MATRIX

Process
Activity/
Practice

Feedbac
k

Afforda
nce/

Natural
Mappin

g

Matchin
g

Concept
ual

Models

Tolerate
Mistake

s
Force

Functio
n

Requirem
ents
Manage
ment

High Mediu
m High Mediu

m Low

Project
Planning High High High Mediu

m Low

Project
Tracking

HIgh High Mediu
m

Mediu
m

Mediu
m

The results in Table II show overall medium-high scores

for Pivotal Tracker. This fits the fact that it is a tool targeted
to several processes. In other words, fitting multiple user´s
processes is more challenging for the tool since it spans a
wider range of activities and practices. It still evaluates as a
good candidate for successful implementation, but the
insights provided by the checklist should be taken into
account to reduce risks during tool implementation.

V. CONCLUSION AND FUTURE WORK
The purpose of this paper was to validate the

applicability of our usability-based framework for analyzing
tool fitness to the user's process and practice (not to validate
its results). The principles selected and the criteria proposed
to evaluate their concrete application allowed us to conduct
the evaluations without obstacle, and the framework did not
turn up any inconsistencies during the process. Nonetheless,
there is significant overlap between some of them. For
example, a tool that has a Matching Conceptual Model will
usually have Natural Mapping, and both Feedback and
Tolerate Mistakes are related to metrics, although with
different perspectives. Overall, the criteria and usability
terminology have been effective in supporting the discussion
and description of tool fitness to process and practice. One
valuable output of the evaluation that complements other
evaluation methods based on tool requirements is the
qualitative comments produced for each checklist item,
which might help implementors to assess areas of risk during
the implementation process (e.g., for Pivotal Tracker, item
2.b highlights the need to define release items in the tool if
we need to use the release burn-down chart).

Future work includes formal experimentation with tools
to validate evaluation results, refinement of principles and
criteria, peer feedback and expert validation of the
framework, refinement of the evaluation template structure,
an in-depth study of the conceptual issues explored in this
paper, and the application of the framework to the evaluation
of fitness between organizations and practices and processes.

We have learned that the framework is coherent and a
viable subject of research, and that the resonance in
terminology between usability and process and practice that

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

inspired this work holds in the practical application to the
real tools evaluated.

ACKNOWLEDGMENT
Universidad Nacional de La Matanza and Universidad

Nacional de Tres de Febrero fund this research.

REFERENCES
[1] A. Guha Biswas, R. Tandon, and A. Vaish, “A case tool

evaluation and selection methodology,” International Journal
of Strategic Information Technology and Applications
(IJSITA), 4(2), 2013, pp. 48-60,
doi:10.4018/jsita.2013040104.

[2] E. Miranda, M. Berón, G. Montejano, M. J. Pereira, and P.
Henriques, “NESSy: a new evaluator for software
development tools,” In 2nd Symposium on Languages,
Applications and Technologies (SLATe'13), Faculdade de
Ciências da Universidade do Porto, 2013, pp. 21-38, ISBN
978-3-939897-52-1

[3] E. Anjos and M. Zenha-Rela, “A framework for classifying
and comparing software architecture tools for quality
evaluation.” In: B. Murgante, O. Gervasi, A. Iglesias, D.
Taniar, B.O. Apduhan, Eds. ICCSA 2011, Part V. LNCS, vol.
6786, pp. 270–282, Springer, Heidelberg, 2011.

[4] I. Dalmasso, S.K. Datta, C. Bonnet, and N. Nikaein, "Survey,
comparison and evaluation of cross platform mobile
application development tools," Wireless Communications
and Mobile Computing Conference (IWCMC), 2013 9th
International, 1-5 July 2013, pp. 323-328, doi:
10.1109/IWCMC.2013.6583580.

[5] Center for Assured Software, National Security Agency, US,
“CAS Static Analysis Tool Study – Methodology”, December
2012 [Online]. Available from: http://samate.nist.gov/
2014.05.11.

[6] J. F. Cochran and H.N. Chen, “Fuzzy multi-criteria selection
of object-oriented simulation software for production system
analysis,” Computers & Operations Research, vol. 32, issue 1,
January 2005, pp. 153-168, ISSN 0305-0548,
doi:10.1016/S0305-0548(03)00209-0.

[7] X. Franch and J.P. Carvallo, “Using quality models in
software package selection,” IEEE Software, January-
February 2003, pp. 34–41.

[8] R. Firth, V. Mosley, R. Pethia, L. Roberts Gold, and W.
Wood. “A Guide to the Classification and Assessment of
Software Engineering Tools” (CMU/SEI-87-TR-010).
Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1987. [Online]. Available from:
http://resources.sei.cmu.edu/ 2014.05.11.

[9] S. Comella-Dorda, J.C. Dean, E. Morris, and P. Oberndorf,
“A Process for COTS Software Product Evaluation,”
Springer-Verlag, ICCBSS 2002, LNCS 2255, pp. 86–96.

[10] M. Morisio and A. Tsoukias, “IusWare: a methodology for
the evaluation and selection of software products,” IEEE
Proceedings Software Engineering, 144 (3), 1997, pp. 162-
174.

[11] G.A. Lewis and L. Wrage, "A process for context-based
technology evaluation: examples for the evaluation of Web
services technology," Commercial-off-the-Shelf (COTS)-
Based Software Systems, 2006. Fifth International
Conference on, Feb. 2006, pp. 13-16, doi:
10.1109/ICCBSS.2006.2.

[12] A.S. Jadhav and R.M. Sonar, “Evaluating and selecting
software packages: A review,” Information and Software
Technology, vol 51.3, March 2009, pp. 555-563, ISSN 0950-
5849, doi:10.1016/j.infsof.2008.09.003.

[13] M.A.D. Storey, S. E. Sim, and K. Wong, “A collaborative
demonstration of reverse engineering tools,” ACM SIGAPP
Applied Computing Review, vol. 10 issue 1, Spring 2002, pp.
18-25.

[14] J.S. Brown and P. Duguid, The Social Life of Information,
Harvard Business School Press, 2000.

[15] I. Gat, “How we do things around here in order to succeed”,
Workshop, Agile 2010 Conference, Orlando, August 2010.

[16] A. Cockburn, “What the Agile Toolbox Contains”, Crosstalk
Magazine, November 2004.

[17] J. Nielsen, Usability Engineering, Morgan Kauffman Press,
1993.

[18] D. Norman, The Design of Everyday Things, Basic Books,
1988.

[19] K. Beck, Extreme Programming Explained, Embrace Change,
Addison-Wesley Professional, 1999.

[20] P. Clements et al, Documenting Software Architecture, Views
and Beyond, SEI Series in Software Engineering, Addison-
Wesley Professional, 2003 (second edition 2010).

[21] T. Mayer, “Simple Scrum”, Agile Anarchy Blog, [Online].
Available from:
http://agileanarchy.wordpress.com/2009/09/20/simple-scrum/,
2014.05.11.

[22] M. Poppendieck, “Team Compensation”, Better Software,
July/August 2004, [Online]. Available from:
http://www.poppendieck.com/pdfs/Compensation.pdf
2014.05.11.

[23] K. Kawaguchi, et al, “Meet Jenkins”, Jenkins Web Site,
[Online]. Available from: https://wiki.jenkins-
ci.org/display/JENKINS/Meet+Jenkins, 2014.05.11.

[24] Pivotal Labs, “Pivotal Tracker Features”, Pivotal Tracker
Web Site, [Online]. Available from:
http://www.pivotaltracker.com, 2014.05.11.

21Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

