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Abstract—Distributed transaction processing systems can be 

unnecessarily complex when crosscutting concerns, e.g., logging, 

concurrency controls, transaction management, and access 

controls, are scattered throughout the transaction processing 

logic or tangled into otherwise cohesive modules. Aspect 

orientation has the potential of reducing this kind of complexity; 

however, currently, aspect-oriented programming languages 

and frameworks only allow weaving of advice into contexts 

derived from traditional executable structures. This paper lays 

a foundation for weaving advice into distributed transactions, 

which are high-level runtime abstractions. To establish this 

foundation, we capture key transaction events and context 

information in a conceptual model, called Unified Model for 

Joinpoints Distributed Transactions (UMJDT). This model 

defines interesting joinpoints relative to transaction execution 

and context data for woven advice. A brief discussion of advice 

weaving and the potential for reducing complexity with 

transaction-specific aspects is provided, but the details of the 

actual weaving are left for another paper.  Also, this paper 

suggest further research for studying the modularity and reuse 

achieved through the ability to weave crosscutting concern into 

transaction directly. 

Keywords-complexity; modularity; distributed transaction; 

joinpoint; operation; context; advice; aspect; crosscutting 

concerns. 

I. INTRODUCTION 

 Frederick Brooks characterizes software complexity as 

either essential or accidental, where essential complexity 

stems from the very nature of the problem being solved by 

the software and accidental complexity comes from the way 

that the problem is being solved [1]. A Distributed 

Transaction Processing System (DTPS) may have essential 

complexity in the nature of the data, operations on the data, 

or the volume of data. However, issues such as logging, 

persistence, resource location, and even distribution itself are 

more likely to be sources of accidental complexity, because 

they are not usually inherent parts of the problem. When these 

issues are secondary to the primary purposes of a DTPS, it is 

common to find logic for them scattered throughout the 

software and tangled into core application logic. For 

example, concurrency-control operations, like locking and 

unlocking, may be spread throughout the system and be 

implemented with similar snippets of code. 

 Aspect Orientation (AO), an extension to Object 

Orientation (OO), can help manage both essential and 

accidental complexity by localizing and encapsulating 

crosscutting concerns in first-class software components, 

called aspects [2]. An aspect is very much like a class in OO 

and an aspect instance is like an object, except that an aspect 

defines special methods, called advices, which are 

automatically woven into the core application according to 

specifications, called pointcuts. However, existing AO 

Programming Languages (AOPLs) and frameworks only 

allow the weaving of advice into the execution of code-based 

contexts, such as methods, constructors, and exceptions. 

They do not directly allow behaviors to be woven into more 

abstract contexts, such as transactions. 

 One could argue that a good programmer can do the same 

thing in OO by defining classes for the crosscutting concerns 

and hard coding calls to methods of those classes in all the 

right places. However, the issue is not whether it can be done; 

rather, it is the difference in abstractions. AO offers better 

abstractions for separating crosscutting concerns from core 

functionality that do require core functionality to dependent 

on crosscutting concerns in any way. An AO developer 

should be able to add/remove aspects to/from a project 

without changes to any other code. Some authors refer to this 

as a principle, called obliviousness [3].  

 A transaction is a set of operations on shared resources, 

such that its execution results in either the successful 

completion of all operations or the completion of no 

operation. Besides this all-or-nothing property, called 

atomicity, transactions are consistent, isolated, and durable, 

meaning that persistent data will only change from one valid 

state to another, other concurrent transactions cannot see the 

effects of a transaction until it completes, and that effects of 

a transaction become persistent after completion even if there 

is system failure. Together, atomicity, consistency, isolation, 

and durability are often referred to as the ACID 

properties [3][5]. 

 Distributed transactions are transactions, but their 

operations are executed on multiple host machines, ideally 

with improved throughput. From a logical perspective, a 

distributed transaction can be a flat sequence of operations or 

a hierarchy of sub-transactions, also known as nested 

transactions. In the latter case, nested transactions may 

execute concurrently and still observe the ACID properties.  

 Regardless of whether a distributed transaction is a flat 

sequence of operations or comprised of nested transactions, 

it is an ephemeral concept that spans multiple execution 

threads and operations using distributed resources. Therefore, 

from an execution perspective, it may seem non-contiguous 

and unevenly spread over time and space. A transaction’s 

context is not tied to code constructs, like constructors and 
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methods, in a single thread of execution; rather, it consists of 

loosely-coupled abstractions like dynamically generated 

identifiers, timestamps, and tentative value sets for 

distributed resources. This makes its very difficult for AO 

developers to localize and encapsulate crosscutting concerns 

that apply to transactions as execution units. 

 This paper takes a preliminary step in enabling AO 

developers to treat transactions as first-class concepts into 

which compilers or frameworks can weave crossing 

concerns. Specifically, it unifies DTPS concepts related to a) 

transactions in general, b) the kinds of information that 

comprise their context, and c) events that represent 

interesting time points/places for when/where the 

crosscutting concerns might augment an application’s core 

functional or the underlying transaction processing system.  

 Section II provides more detail about aspect-oriented 

programming concepts and background about common 

transaction concepts. Section III proposes possible joinpoints 

in the execution of distributed transactions and relevant the 

context information for each. Section IV presents a sample of 

transaction-related crosscutting concerns. Section V presents 

the UMJDT model and discusses two key areas, namely a 

transaction context and joinpoints. Although the technical 

details of advice weaving are beyond the scope of this paper, 

Section VI provides an outline of the process and highlights 

some of the key issues. Section VII summarizes the 

contributions on this paper and discusses next steps. 

II. BACKGROUND 

A. Overview of Aspect Orientation 

 As mentioned above, AO is an extension to OO that allows 

developers to extract and untangle secondary concerns from 

the primary features of an application. It is difficult to define 

what constitutes a secondary concern in general because it 

depends on the purpose of the software being built. However, 

secondary concerns often show up in less-than-expertly-

designed OO software as similar snippets of code scattered 

across multiple modules or tangled into methods that 

primarily serve other purposes. A common example is tracing 

or logging in a data processing application, where the 

developers want a chronology of the execution for either 

system verification, audit-trail, or performance-monitoring 

measurement reasons. To do this, they might insert logic 

throughout the code that writes various messages or statistics 

to a file. Eventually, these log-writing code snippets become 

scattered across the software and tangled in otherwise 

cohesive methods. 

 An AOPL, like AspectJ [6], would allow a developer to 

remove all of the log-writing code from the main application 

and place that logic in an aspect, which is a class-like abstract 

data type. An aspect can include data members, methods, 

nested types and everything else a class can include. 

However, they can also include advices and pointcuts. An 

advice is like a method because it implements some specific 

behavior; however, it is not invoked like a method. Instead, 

the AOPL’s compiler or runtime environment weaves the 

advice into the system so it is executed at specific places and 

time defined by pointcuts. A pointcut is a pattern that 

identifies a set of joinpoints, which are best characterized as 

intervals within program’s execution flow. Examples of 

joinpoints in typical AOPL’s include the execution of a 

method or the setting of a property. Consequently, their start 

and end points map to specific elements of the code, called 

shadows, which correspond to places where those intervals 

may start or end. The weaving of advice into the shadows is 

an automated process, and understanding it in depth is not 

necessary to appreciate the contributions of this paper. We 

refer readers interested in learning more about weaving of 

advice to the overview of AspectJ by Kiczales, et al. [6].  

 When advice executes, it can access context information 

about the joinpoint at which it was invoked. This context 

includes the location of the joinpoint (i.e., the shadow) and 

runtime information about the objects involved. Some on the 

context information is static and therefore can be computed 

during weaving; other context is dynamic and depends on the 

objects involved in the joinpoint. 

B. Transaction Concepts  

 As mentioned, the objective of this paper is to lay the 

foundation for weaving crosscutting concerns into 

transactions in DTPS’s. This requires identifying the logical 

places, i.e., joinpoints, in transaction execution where a 

developer might want to weave advice, as well as the kinds 

of information that should be available in joinpoint context. 

 There are many different DTPS’s in use today and they 

vary in terms of features and implementations. However, they 

share commonalities in their underlying concepts of 

transaction distribution, management, execution, and 

concurrency control. It is on these basic concepts that we will 

focus our attention and lay a foundation for identifying 

transaction joinpoints and context. 

  As with transactions in centralized systems, a distributed 

transaction is a sequence of operations on shared resources 

that observe the ACID properties [7][8]. The difference is 

that the operations of a distributed transaction execute on 

more than one host machine, which opens up the possibility 

of subsequences of those operations executing concurrently, 

without shared memory to help with concurrency controls. 

 In general, a distributed transaction can be thought of as a 

tree of operations, instead of strict sequence. To visualize 

this, consider a simple example of a transaction-based 

manufacturing system that builds Widgets from Goo and 

Gadgets from Widgets. See Figure 1. The Goo, Widget, and 

Gadgets are all stored in “piles”. The individual objects and 

the piles of objects are all shared resources. This system also 

includes processing components, i.e., shared resources, that 

handle the manufacturing. Specifically, there are Builders 

that create Raw Widgets from Goo, Bakers that turn Raw 

Widgets into Rough Widgets and Polishers that refine Rough 

Widgets into Polished Widgets. Finally, there are Assemblers 

that create Gadgets from Widgets and Labelers that tag the 
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Gadgets with serial numbers. Figure 2 lists two simple 

transactions that represent a) the construction of a Polished 

Widget and b) the construction of a Gadget from two Widgets.  

 Now assume that piles of Goo, Widgets, and Gadgets are 

distributed across many locations (hosts) and that Builders 

are at the same location as Goo Piles; Bakers and Polishers 

are at the same location as Widget Piles; and Assemblers and 

Labelers are close to Gadget Piles, but not necessarily at the 

same location. With this distribution of resources, transaction 

T2 could execute in a distributed manner by having Op2.1 

execute in a sub-transaction, ST2.1, Op2.2 execute in another 

sub-transaction, ST2.2, both on the same host as the desired 

Widget Pile, and Op2.3-Op2.5 in a sub-transaction, ST2.3, on 

the same host as the desired Gadget Pile. Figure 3 represents 

this distributed transaction as a simple tree with T2 as the root 

and the operations as the leaves.  

 T1 and T2 are just two concrete transactions, but this 

system could have hundreds of similar transactions running 

at the same time. As in all DTPS, each transaction receives a 

unique identity, i.e., Transaction Identifier (TID), when it 

starts. All references to a transaction will be via this 

identifier. Typically, in a DTPS, a Transaction Manager 

(TM), is responsible for assigning TID’s and keeping track of 

parent/sub-transactions relationships. 

 Beside TID assignment, TM’s are also typically 

responsible for starting transactions (and sub-transactions), 

and ending transactions by either committing or aborting the 

results. A TM may also oversee the execution of transaction 

operations on resources and any necessary concurrency 

controls, such as locking, for those resources. Some DTPS 

delegate these responsibilities to separate components such 

as Resource Managers and Lock Managers, but such 

architectural differences are not important here. For the 

purpose of exploring possible transaction-related joinpoints 

and context information, it is important to just recognize that 

operation execution and concurrency control take place with 

respect to individual resources. 

 Finally, a TM can also track information about its 

execution environment, including information about threads 

of execution, processes, host machines, secondary storage, 

and even network connections. It may do this for a variety of 

reasons, including performance management, audit trails, and 

recovery in case of failure.  

 A transaction is typically broken up into two basic phases: 

an execution phase and a commit phase [8]. The execution 

phase is considered tentative, because the changes are not 

made permanent until the commit phase. During the 

execution phase, the TM performs the operations in the body 

within its own context. Logically, the operations may result 

in the tentative changes to shared resources. In a commit 

phase, the TM will either finalize all of the tentative changes 

or abort the transaction. 

 Three common approaches to concurrency controls are 

optimistic, timestamp-based, and pessimistic. Optimistic 

approaches to concurrency control allow conflicts to occur 

during the tentative phases of concurrent transactions, then 

leave it up to the TM to detect conflicts and abort one or more 

transactions when they occur, using either forward or 

backward validation [9][10]. Timestamp-based approaches 

guarantee serial equivalence [11] by imposing an ordering on 

the execution of the operations in the tentative phase. 

Pessimistic approaches use locks to prevent conflicts from 

occurring in the tentative phase of execution. They do this by 

delaying operation execution or by trigging an abort (in the 

case of deadlock [12]). Locking schemes vary, but are all 

based on premise that a transaction must hold a particular 

kind of lock before performing an operation. 

 A common and simple locking scheme consists of two 

types of locks: one for read operations and one write for 

operations [12]. The pseudo-code in Figure 4 includes 

requests for the appropriate read and writes locks, following 

this simple scheme. 

 

Figure 1 - Resources in a Widget and Gadget Manufacturing System. 

 

a) Transaction T1 

Op1.1: Get Goo from Goo Pile 

Op1.2: Give Goo to a Builder and get back a Raw Widget 
Op1.3: Give Raw Widget to a Baker and get a Rough Widget 

Op1.4: Give Rough Widget to a Polisher and get a Polished 

Widget 

Op1.5: Put Polish Widget in a Widget Pile 

 

b) Transaction T2 

Op2.1: Get Widget (W1) from Widget Pile 1 

Op2.2: Get Widget (W2) from Widget Pile 2 

Op2.3: Give W1 and W2 to Assembler and get a Gadget, G 
Op2.4: Put Gadget G in a Gadget Pile 

Op2.5: Have Labeler put a tag on G 

 
Figure 2 - Two Sample Transactions for Constructing Widgets and 

Gadgets. 

 

 

Figure 3 - Possible Distribution of Transaction T2. 

 

 

 

T2

ST2.1 ST2.3

Op2.1 Op2.2 Op2.3 Op2.4 Op2.5

Runs on host 

with Widget  

Pile #1

Runs on 

host with 

Gadget PileST2.2

Runs on host 

with Widget  

Pile #2

Concurrently
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 A transaction’s context information includes those pieces 

of data and metadata that the transaction needs to be self-

contained, guarantee the ACID properties, and support 

correct execution of both the tentative and commit phases of 

execution. Supporting correct execution of the commit phase 

means that the context needs to include sufficient information 

for the TM to decide whether the transaction conflicts with 

other concurrent transactions. However, the details of this 

context data depend heavily on the implementation of the 

DTPS, the types of concurrency control in use, and the 

commit algorithm. The only data that are common to virtually 

all DTPS are the TID and a reference (direct or indirect) to 

the responsible TM. Beyond these two items, a transaction’s 

context may include many different kinds of implementation 

specific data, e.g., sets of tentative values, rollback logs, 

snapshots, lock information, timestamps, and other kinds of 

metadata. Therefore, any system that aims to support aspects 

for transaction must allow for context information to contain 

data that specific to a DTPS’s implementation. 

III.  POTENTIAL JOINPOINTS AND THE SCOPE OF THE 

CONTEXT 

 From an advise-weaving perspective, joinpoints map to 

places where weaving takes place – hence the user of “point” 

in the name.  However, from an execution perspective, a 

joinpoint represents a logical interval of time in a flow of 

execution. It has a beginning and an end, and advice can be 

woven into the flow of execution before, after, or around it. 

This section presents Figure 4 as a pseudo-code for an 

implementation of T2 annotations that illustrate five new 

types of joinpoints for DTPS’s: outer transaction, inner 

transaction, resource locked, locking, and operation. Each 

type of joinpoint is in a different color. This section also 

discusses interesting metadata that advice might want to use, 

and therefore should be part of joinpoint contexts. 

 An Outer Transaction Joinpoint represents an interval that 

spans the complete execution of a transaction, starting just 

before the tentative phase and ending after the completion on 

the commit phase. This kind of joinpoint would allow a 

programmer to introduce advice before, after or around an 

entire transaction. However, because it starts before the 

beginning of the tentative phase, any “before” advice would 

not have access to the target transaction’s context 

information. However, it would have access to a parent 

transaction’s context, which would be particularly important 

for advice before or around sub-transactions. 

 An Inner Transaction Joinpoint is similar to an Outer 

Transaction Joinpoint, except that it starts just after the 

tentative phase begins and ends just before the commit phase 

ends. Advice woven before this kind of joinpoint would have 

access to the target transaction’s context.  

 Resource Locked Joinpoint represents an interval that 

spans the time when a lock is held, starting after acquiring of 

the lock and ending just before its release. Advice woven 

before, after or around this type of joinpoint would have 

 

Figure 4 - Pseudo Code for Distributed Version of T2 and the Potential Transaction Joinpoints within the Scope of the T2’s Context. 
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access to metadata about the lock, the associated resources 

and, of course, the transaction. 

 Locking Joinpoint represents an interval that spans a lock 

request. In other words, it begins as a request is made and 

ends when the request is granted or denied. Advice woven 

before, after, or around a Locking Joinpoint can access 

metadata about the type of lock being requested or the 

resource.  

 Operation Joinpoint is an interval that spans one operation 

in the execution of the tentative phase of a transaction. Such 

advice would have to access to metadata about the operation 

and the affected resources, as well as the transaction as large.  

IV. SAMPLE CROSSCUTTING CONCERNS 

 The number and variety of crosscutting concerns in a 

DTPS are perhaps infinite. However, for illustrative 

purposes, we will consider just one here. Imagine that we 

would like to optimize the Gadget manufacturing system 

such that Widgets were created just in time, by making sure 

there are always some Widgets in a pile, but never an excess. 

 Such flow-control or timing issues could be considered a 

secondary crosscutting concern to the basic Gadget assembly 

problem. By talking with the domain experts, we would 

probably discover a couple of basic rules that govern when 

the Widget product needs to be speed up or slowed down. An 

OO programmer could embedded the logic for these rules 

into the implement of the Builder, Baker, Polisher, or some 

other set of components. With some skill, it is possible that 

the OO programmer might even be able to do this in a 

modular and reusable way. 

 With transaction aspects, an AOP programmer, however, 

would have a much similar option. Basically, the programmer 

would encapsulate the logic for speeding up or slowing down 

widget production into an aspect, maybe called something 

like WidgetProductionSpeedControl. This aspect would 

include advice that could be woven before (or around) any 

operation that accesses a widget pile. The advice’s logic 

would speed up Widget product if the pile was getting too 

small or slow it down if the pile was getting too large. The 

aspect would also include a simple pointcut that defined a 

pattern for all relevant joinpoints. The original application 

code would not need to be aware of the new production-speed 

control logic. In fact, because of this obliviousness, it could 

be tested with or without the speed control functionality 

without any reprogramming of the system. 

V. THE UNIFIED MODEL FOR JOINPOINTS IN 

DISTRIBUTED TRANSACTIONS 

 Figure 5 shows part of the UML model, called the Unified 

Model for Joinpoints in Distributed Transactions (UMJDT), 

which captures the key ideas for the new transaction 

joinpoints and related context information. The class labeled 

TransJP is a generalization of the joinpoints discussed in 

Section III. By definition, each is associated with a 

StartEvent, but may not have an EndEvent if the interval is 

still in process. Every TransJP can also reference a context 

that holds all the relevant statics and runtime information for 

the joinpoint. Aspect advice will use this context to access a 

wide variety of information such as operations in progress, 

resources, and current execution environments. 

 However, there are three special kinds of contexts, and the 

actually kind of context that a TransJP directly accesses 

depends on the TransJP specialization. For example, a 

LockingJP directly accesses a LockContext. 

 Contexts can be composited into a hierarchy of objects, as 

indicated by the recursive aggregation relationship connected 

to the Context class. Although Figure 5 does not show all the 

possibilities and constraints, a LockContext can be part of a 

TransactionContext, which could in turn be part of another 

TransactionContext (i.e., for a parent transaction.) 

 Contexts may also be extensible or customizable objects. 

In other words, the base system that makes transaction aspect 

possible, will provide classes for Context and its three 

immediate specializations. It also projects hooks for 

extending those classes, either through specialization, plugs-

in, or even other kinds of aspects, so programmers can use 

context details that are specific to a particular DTPS or 

DTPS-based applications. 

VI. ADVICE WEAVING 

Kizcales, et al. introduced the idea of weaving logic for 

crosscutting concerns into core applications over 15 years 

ago [2].  Their work stems from even earlier research with 

inheritance, aggregation, and mix-ins [13]. Like all great 

ideas, the heart of the weaving solution is relatively straight 

forward – modularize concerns into first-class constructs, 

find the right place(s) to introduce appropriate logic from 

those constructs, and the either insert code that executes the 

new logic unconditional (because it can be determined to 

always be needed) or insert code that makes a final decision 

about executing the new code at runtime. 

The challenge for transaction-related aspects is not so 

much the basic weaving process as it is pulling together all of 

the relevant data that needs to make up a transaction’s 

Figure 5 – Part of the Unified Model for Joinpoints in Distributed 

Transactions 
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context. Remember, that in a DTPS, the execution of a single 

transaction is an abstraction that might span many different 

hosts and be interleaved with the execution of many other 

concurrent transactions. 

So to solve this problem, we propose to build a runtime 

extension to AspectJ that tracks the start and end events of 

the TransJP’s using low-level distributed aspects. We believe 

this to be feasible because it is similar to the technique used 

by CommJ to add communication-related aspects to 

AspectJ [14]. 

Although our approach will re-use many of the ideas first 

prototyped and refined in CommJ, our implementation for the 

weaving of transaction aspects will have to solve some 

additional problems not addressed by CommJ. Some of these 

problems include data-sharing optimizations, like the sharing 

of context information sharing across hosts only when 

necessary. Our future work will include research into both 

static and dynamic analysis techniques for solving these 

problems. 

For the moment, solving the basic weaving and context 

management problems are sufficiently interesting and 

potentially beneficial to dominate our immediate attention. 

VII. SUMMARY AND FUTURE WORK 

 This paper presented a foundation for extending AspectJ to 

support transaction aspects, using joinpoints and context 

information that is both interesting and relevant to DTPS’s. 

In doing so, it paves the way for the weaving of crossing 

cutting concerns into high-level program abstractions that 

span multiple threads of execution and may be interleaved 

with concurrent execution of similar abstraction. 

 The main contribution of this paper is simply to identify 

the set of joinpoints and context information that make the 

most sense for DTPS’s. We have captured this knowledge in 

a formal model called, Unified Model for Joinpoints in 

Distributed Transactions (UMJDT), as presented its essential 

parts here. 

 Our next steps are to a) complete the implementation of the 

an extension to AspectJ that performs the expected weaving 

and tracking of context information, and b) perform an 

preliminary experiment that we hope will provide evidence 

of improvement in modularization and reuse. To measure the 

modularity and reuse, we will define an extension to an 

existing quality model with following new factors: 

correctness, separation of concerns, understandability, 

obliviousness, throughput, transaction volume, transaction 

velocity, and transaction size. Each factor can be measured 

using metrics, such as diffusion of application, concern 

diffusion over operations, the number of inter-type 

declarations, the number of committed transactions, the 

number of aborted transactions, a rate of data flow during 

transaction executions, and the length of a transaction design 

and code, such as the lines of code, the number of operations, 

the number of components, i.e., classes and aspects, into the 

transaction, and the weighted operations per component. We 

also hope to create a toolkit consisting of reusable transaction 

aspects for common concerns, like performance measuring, 

logging, exception handling, audit trails, and tracing. 
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