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Abstract— Open Source Software (OSS) has become a huge 
part of today’s software market and a good source for 
investments. The establishment of the “National Program for 
Free & Open Source Software Technology” by the top 
research center (KACST) in Saudi Arabia to encourage the use 
of OSS within the community is a major motivation to our 
work. OSS comes with numerous challenges, one of which is 
constant change.  Being able to identify and measure the 
change proneness in open source software will ensure saving 
resources like time and effort. In this paper, we measure the 
capability of classes of machine learning algorithms to predict 
change proneness in OSS by using object-oriented metrics. 
Four classes of machine learning algorithms were considered: 
Probability-based, Function-based, Instance-based and Tree-
based. One complete version of the OSS was used as a training 
set and tested on the subsequent version to predict the change. 
The machine learning algorithms were compared based on 
accuracy, specificity, sensitivity and root mean squared error. 
We found that nearest neighbor algorithm performed better 
than the other algorithms in terms of sensitivity and specificity. 
In the future, we plan to test with different parameters to find 
a better prediction model for software change proneness. 

Keywords-open source software; object-oriented; change 
proneness; maintainability; prediction. 

I.  INTRODUCTION 
The concept of change is well-known in Software 

Engineering and the series of changes made to a software 
system is termed as Software Evolution [1]. The need for 
evolving software comes because of incorporating new 
functionality, modifying existing functionality or adapting to 
new environment conditions etc. However, the impact of this 
change on the whole system is based on the manner in which 
the project was developed. According to Güneş Koru and 
Liu [2], software development can either be closed source or 
open source. On one hand, closed source projects are well 
planned and executed. Hence, changes to such systems are 
localized and can be dealt with in a less haphazard manner. 
On the other hand, open source projects are developed in an 
evolutionary manner [3] as a result of which the changes are 
not restricted and scattered consistently throughout the 
classes in the project. 

OSS has come a long way since the start of its movement 
in the 1970s. The vision of OSS has changed technology and 
its market forever. It was the cause of a huge number of 

breakthroughs. It gave us Google Android, Mozilla Firefox, 
Linux, Apache, and many more. As OSS changed the world, 
Saudi Arabia was not an exception.  Although the OSS 
ecosystem in Saudi Arabia is young and developing, it is 
growing at a fast pace. One aspect of its growth is the huge 
efforts done by King Abdul-Aziz City for Science and 
Technology (KACST) actively working to promote the use 
of OSS in Saudi Arabia. It is running a number of 
international workshops on the uses of OSS and they are 
helping in developing standards, awarding innovations, and 
support academic research on the subject [4].  

As OSS development grows in the kingdom and all 
around the world, we need to consider the characteristics of a 
good OSS [5]. Extensive research has been conducted over 
the years to study the relationship between software metrics 
and various software quality attributes like fault proneness 
and maintainability [2], [6]-[20]. Around 40-70% of entire 
cost of a software project is spent on maintenance [17]. The 
probability that part of software might change is usually 
referred to as change-proneness. Determining change-prone 
classes helps in software maintenance, ensuring corrective 
actions are initiated beforehand. Identifying these classes and 
the factors that cause these changes is major issue faced 
during software development. The factors that cause these 
changes as characterized by Arisholm and Briand [21] as: 

 
1. Structural characteristics of classes (e.g., their 

coupling). 
2. Coding quality of classes.  
3. Factors that are captured by the defect history of 

the classes in the previous release. 
4. Change Management team skill and expertise. 

 
In order to identify the causes of change-proneness, we 

need to identify a rich set of metrics that cover the above-
mentioned factors, and hence, help in identifying the exact 
factors that influence change. In this paper, we are going to 
look into measures that link the structural characteristics of 
the classes with their change proneness capability during 
development. In order to obtain empirical evidence, we 
analyzed a set of structural metrics and change data that 
belonged to an open-source project, Heretrix [22]. The 
change data was extracted comparing classes between 
consecutive releases of the object-oriented project and the 
object-oriented metrics from these releases. Metrics were 
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collected using tools such as ckjm (Chidamber and Kemerer 
Java Metrics Suite) [23], Dependency Finder [24] and the 
metric 1.3.6 plug-in in Eclipse [25]. Structural properties of 
classes, as measured by these metrics, are then associated 
with change-proneness. In this paper, we are going to treat 
the aspect of predicting change proneness. Our aim is to 
measure the capability of certain machine learning 
algorithms, to predict change proneness in open source 
software using object-oriented metrics. By being able to 
predict these classes, we will ensure saving resources like 
time, money and effort. 

  
The rest of this paper is organized as follows. Section 2 

comprises of a detailed literature survey of the various 
studies done in the past that relate structural properties of 
classes to their problem source such as change and defect 
proneness. Section 3 provides the pre-requisite used for the 
experiment including information on the open source project 
and the various object-oriented metrics and machine learning 
algorithms used. The Experimental Setup, Hypotheses and 
Results are provided in Section 4 and 5, respectively. Results 
from the experiment are then analyzed with respect to the 
stated hypotheses in Section 6. Threats that may have 
affected the validity of the results are highlighted in Section 
7. Section 8 concludes the paper and emphasizes on scope 
for future work based on our findings.   

II. RELATED WORK 
Gyimothy et al. [6] used open-source software and 

object-oriented metrics to predict software faults comparing 
linear and logistic regression models against machine 
learning algorithms such as decision trees and neural 
networks. Van koten and Gray [7] used Bayesian Networks 
as the model to predict maintainability, which is quantified in 
their approach as the number of lines of changed during a 3-
year period. They concluded that by using Bayesian 
Networks, the model could predict maintainability more 
accurately than regression-based models. Koru and Liu [2] 
constructed a tree-based model to predict change-proneness 
in two large open source projects. They suggested that 
practitioners should start collecting static metrics and change 
data to aid their maintenance effort. Zhou and Leung [8] 
used Multivariate Adaptive Regression Spline (MARS) to 
predict maintainability. 

Eski and Buzluca [9] also used OO metrics to predict 
change-proneness and its effect on testing effort. Unlike our 
approach, they used data values from a single version of the 
software and concluded that change-proneness can be 
estimated correctly by selecting some optimal set of metrics. 
Khomh et al. [10] and Romano et al. [11] also proposed a 
change and fault prediction model but with assessing the 
impact of anti-patterns rather than OO metrics. Anti-patterns 
are code patterns with poor design choices.   

Lu et al. [12] used statistical meta-analysis techniques to 
investigate the relationships between OO metrics and 
change-proneness. Elish and Khiaty [13] also used metrics to 
predict change-prone classes. In their work, multiple 
multivariate logistic regression models were built using 
different sets of dependent and independent variables. They 

concluded that prediction of change proneness is accurate 
when product metrics are combined with evolutionary 
metrics.  

Peer and Malhotra [14] used Adaptive Neuro-fuzzy 
Inference System (ANFIS) to predict change-proneness and 
compared it against other approaches such as Bagging, 
Random Forest and Logistic Regression. Malviya and Yadav 
[15] used k-means clustering and used Chi-Test to decide the 
cluster with goodness of fit among other clusters.  

Research works that compared other machine learning 
algorithms for their prediction capability like our work 
recently gained a lot of momentum. Zhu et al. [16] also used 
OO metrics to predict change-proneness using multiple 
classification algorithms such as Naive Bayes, C4.5, k -NN, 
SVM, and an associative classification method. Malhotra and 
Khanna [17] investigated the effectiveness of logistic 
regression models against other machine learning algorithms 
such as Bagging, Random Forest and Multi-layer Perceptron.    

Sun et al. [18] go a step forward by assessing a change 
proposal and the ripple effects caused by it. They used 
formal concept analysis to assess this effect of change and 
then proposed a new metric to indicate systems ability to 
absorb the change. Similarly, Giger et al. [19] went ahead in 
predicting the type of code change rather than just locating 
the change-prone parts of a system.  While most researchers 
used software code for change-prediction, Han et al. [20] 
used design models and defined measures to predict 
changeability at an earlier stage of software development. 

It can be seen from literature that the use of object-
oriented metrics to predict change-proneness in open source 
software is a very active area of research. In this paper, we 
plan to measure the capability of certain machine learning 
algorithms, to predict change proneness in open source 
software using object-oriented metrics. Nevertheless, our 
research work is different from others in many dimensions: 

 
1. We used a complete version as the training set and 

then used it over the subsequent version as the 
testing set to predict the accuracy of the considered 
algorithms whereas others simply use a single 
version to build the prediction model [13]-[17]. 

2. We used classes of machine learning algorithms 
rather than using a random set of algorithms for 
comparison.  

3. We used baseline prediction models (ZeroR and 
OneR) to benchmark the evaluation criteria when 
comparing multiple algorithms. 

 

III. EXPERIMENT SETUP 

A. Experiment Subject - Heretrix 
We are focusing our research efforts on one particular 

open-source project, the Heritrix Project [22]. Heritrix is an 
open-source WebCrawler project started by the Internet 
Archive in 2003. The software is open source to encourage 
collaboration and joint development across institutions with 
similar needs. The Heritrix project almost matches the 
description of open-source projects: it includes a complete 
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history of code base, public mailing lists for open discussion, 
a web site with documentation, and provides release notes 
for bug tracking. Table 1 provides information regarding the 
number of releases of the project, the total number of classes 
and the percentage of classes that changed when compared to 
its consecutive release. We limited the releases considered in 
this work until version 2. 

TABLE I.  CHANGE DISTRIBUTION IN THE RELEASES OF HERITRIX 

Version Number Total No. of Classes % 
changed 

0.2.0 120 60.83% 
0.4.0 164 58.54% 

0.6.0 201 35.82% 
0.8.0 223 60.54% 

0.10.0 246 30.49% 
1.0.0 263 45.25% 
1.2.0 301 56.81% 

1.4.0 369 59.62% 
1.6.0 411 17.52% 

1.8.0 417 29.50% 

B. Object-Oriented Metrics 
In this subsection, we present the seventeen metrics that 

we used to construct the prediction model. Chidamber and 
Kemerer [26] proposed six of these metrics. We also 
included some well-known size metrics and number of 
dependency metrics available from [2]. The definitions of 
these metrics are shown in Table 2, Table 3, Table 4, Table 5 
and Table 6. 

TABLE II.  SIZE METRICS 

Metrics Description 
SLOC Source lines of code – nonempty and non-comment 
NOA Number of attributes for a class 
NOM Number of methods for a class 
NPM Number of public methods for a class 

WMC Weighted methods per class - sum of the complexities 
of class’s methods. 

 

TABLE III.  COHESION METRICS 

Metrics Description 

LCOM 
Lack of Cohesion in Methods. It counts the sets of 
methods in a class that are not related through the 
sharing of some of the class’s fields 

 
 

TABLE IV.  INHERITANCE METRICS 

Metrics Description 

DIT Depth of Inheritance – inheritance level from the object 
hierarchy top 

NOC Number of children – number of immediate descendants 
of a class 

 
 

TABLE V.  COUPLING METRICS 

Metrics Description 

CBO 
Coupling between Object Classes – number of classes 
coupled to a class – can occur through inheritance, 
function call, return and exceptions. 

RFC 
Response for a Class - number of different methods that 
can be executed when an object of that class receives a 
message 

CA Afferent Coupling - how many other classes use the 
specific class 

 

TABLE VI.  DEPENDENCY METRICS 

Metrics Description 

IIP 
Inbound Intra-Package Dependencies - number of 
classes within the same package that depend on this 
class 

IEP Inbound Extra-Package Dependencies - number of 
classes in other packages that depend on this class 

OIP 
Outbound Intra-Package Dependencies Afferent 
Coupling - number of classes of the same package that 
this class depends on 

OEP Outbound Extra-Package Dependencies - number of 
classes of other packages that this class depends on 

IIPM 
Inbound Intra-Package Method Dependencies - number 
of methods and fields in other classes of the same 
package that depend on this class 

IEPM Inbound Extra-Package Method Dependencies - number 
of methods in other packages that depend on this class 

 

C. Machine Learning Algorithms 
In this subsection, we present the six machine learning 

algorithms that we used to determine the change proneness 
in the open source software. Of the machine learning 
algorithms, we used two of them to establish baseline 
accuracy: ZeroR and OneR algorithms. We selected one 
machine learning algorithms from four different classes such 
as Probability-based, Function-based, Instance-based, and 
Tree-based algorithms. 

 
Baseline Algorithms 

• ZeroR algorithm [28] is a simple algorithm useful 
for getting base line performance, in our case 
accuracy. It ignores all predictors and relies on the 
target. We used this algorithm to establish baseline 
accuracy. 

• OneR [28] creates a rule for each predictor in the 
data. It then selects the rule with the smallest total 
error as its one single rule. It constructs a frequency 
table for each predictor against the target to create a 
rule for a predictor. We used this algorithm to 
establish baseline accuracy. 

 
NaiveBayes (Probability-based ML Algorithm) 

NaiveBayes algorithm [29] is a probability-based 
algorithm. It requires only small amount of training set to 
estimate the variables necessary for explanation. It assumes 
that the presence or absence of a certain feature is unrelated 
to the presence or absence of other features. It should be 
stated that NaiveBayes is based on Bayes theorem.  
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Multilayer perceptron (Function-based ML Algorithm) 
Multilayer perceptron [30] is a function-based algorithm. 

It maps input data sets into appropriate output data set. It is 
made up of multiple layer nodes in a directed graph that are 
fully connected to each other. The network allows signals to 
travel from the input to the output setting the weights as they 
propagate through. These weights are tuned for each iteration 
reducing the overall error for the training set.  
 
Nearest Neighbor (Instance-based ML Algorithm) 

Nearest Neighbor (Ibk) [31] is an Instance-based 
algorithm also known as lazy learning algorithm. It does not 
do any actual training or learning at first. It populate a 
sample of the search space with instances whose class is 
known. When an instance whose class is unknown is 
presented for evaluation, the algorithm computes its k closest 
neighbors, and the class is assigned by voting among those 
neighbors. To prevent ties we use an odd number of k.  

 
J48 (Tree-based ML Algorithm) 

J48 is a tree-based algorithm [32] is a class of algorithm 
that generates a pruned or unpruned C4.5 decision tree and 
using a divide and conquers strategy to growing the decision 
tree for each instance. A new unseen instance then traverses 
the tree until a proper classification is reached.  

IV. EXPERIMENT DESIGN 
This section describes the design of the experiment. In 

here, we define the goal of the experiment, the dependent 
variables and the independent variable and how they were 
calculated and the tools used in the experiment. This section 
also gives the procedure of how the experiment was carried 
out.  

A. Goal of the Experiment 
• Object of Study: Identify and Characterize change-

prone classes 
• Purpose: Investigate the correlation between change 

proneness of a class and the set of structural metrics 
used in this experiment 

• Perspective: From the viewpoint of the researcher 
and practitioner 

• Context: The experiment is conducted with open-
source projects and certain measurement tools that 
are used to calculate the metrics 

  

B. Experimental Variables 
The dependent variables in this study are a Boolean 

variable (Changed) that indicates whether a class changed 
from one version to another. Any change made to a class 
during the evolution of a new version from a previous 
version reflects the change-proneness of that class.  

The independent variables are the metrics used to 
measure the structural properties of the classes. These 
metrics are presented in section 3-B of this paper.   

C. Experiment Hypotheses 
Our major objective is to test whether we can predict 

future changes to a class based on a set of structural metrics. 
We want to demonstrate that the machine learning 
algorithms were able to predict change-proneness when 
compared to baseline algorithms. 

We tested the following hypotheses on the case study: 
H1: Probability-based algorithms perform better, in 

terms of Accuracy, Specificity. Sensitivity and Error, than 
baseline algorithms.  

H2: Function-based algorithms perform better, in terms 
of Accuracy, Specificity. Sensitivity and Error, than baseline 
algorithms. 

H3: Instance-based algorithms perform better, in terms 
of Accuracy, Specificity. Sensitivity and Error, than baseline 
algorithms.  

H4: Tree-based algorithms perform better, in terms of 
Accuracy, Specificity. Sensitivity and Error, than baseline 
algorithms.   

We tested the above-mentioned hypotheses by analyzing 
the relationship between structural metrics of a class from an 
early version of the system and whether any change occurred 
to the class during the transition from the early version to a 
later version. 

D. Tools 
In order to collect the change data from the system, we 

used the Beyond Compare 2 [27] tool as a code comparison 
tool. This tool provided us with information as to whether 
the code changed from one version to another. Apart from 
this, we used three measurement tools to obtain the OO 
metrics. These tools are ckjm [23], Dependency Finder [24] 
and the metrics 1.3.6 plug-in available for Eclipse IDE [25].  

We then used Weka [33] for application of the different 
machine learning algorithms. Weka is Java-based tool and 
runs on any platform. The algorithms can either be applied 
directly to a dataset or called from your own Java code. We 
applied the stated algorithms in Section 3-C on the Heritrix 
[22] project metric data collected as the test subject. 

E. Experiment Procedure 
In our study, we used an OSS to get the classes and run 

different algorithms through them to get the number of 
changes in the code compared to different versions of the 
same class. We uploaded each version of the metrics from 
Heritrix to Weka and performed different types of algorithms 
with default settings for each algorithm provided by the tool. 
We took the number of changes most of the classes were 
affected with. The steps performed are as follows: 

1. Step1: All the classes in version n are compared 
with the corresponding classes in version n+1 to 
detect changes. This detection is done using a class 
comparison tool. Based on this information, we 
populate the Class-change matrix with YES’s and 
NO’s depending on whether the class changed from 
the previous release or not.  

2. Step 2: All the classes in a version for all the 
versions are used as an input to a metric calculation 
tool to calculate all the metrics used as independent 
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variable in the project. The results from this are 
then used to populate the Class-metric matrix with 
appropriate values.  

3. Step 3: The input and output is then imported in the 
data-mining tool Weka for application of the chosen 
machine learning algorithms. A complete version is 
used as a training set and the subsequent version as 
the testing set. This process is repeated for all the 
versions. 

4. Step 4: The results of the algorithms in terms of 
accuracy, root-mean squared errors, sensitivity, and 
specificity are recorded and compared as shown in 
the next section. 

V. RESULTS 
In this work, we collected four result values and used 

them for comparing the various machine learning algorithms. 

A. Accuracy  
Accuracy is the percentage of how accurate the algorithm 

is in predicting the change-proneness of a class based on the 
OO metrics input. The accuracy of all the selected algorithms 
across all versions and their average accuracy is shown in 
Table 7. 

TABLE VII.  ACCURACY OF THE MACHINE LEARNING APPROACHES 

           a. Values are percentages 

B. Specificity 
Specificity is the percentage of the values that were 

originally “No” and also predicted as “No” as obtained from 
the confusion matrix. After applying the algorithms, the 
result was that the baseline specificity has a fair specificity 
better than the other algorithms specificity. ZeroR algorithm 
was the best giving perfect specificity for five times, as 
shown in Table 8. 

 
 
 
 
 

TABLE VIII.   SPECIFICITY OF THE MACHINE LEARNING APPROACHES 

                       a. Values are percentages 

C.  Sensitivity 
Sensitivity is the percentage of values, which were “yes” 

and also predicted as “yes” as obtained from the confusion 
matrix. After applying the algorithms, the result was that the 
baseline sensitivity has a fair sensitivity better than the other 
algorithms sensitivity. ZeroR algorithm was the best giving 
perfect sensitivity for five times. Table 9 shows the 
sensitivity result of all the algorithms on the given versions. 

TABLE IX.   SENSITIVITY OF THE MACHINE LEARNING APPROACHES 

a. Values are percentages 

 

D. Root Mean Squared Error (RMSE) 
RMSE is the difference between values predicted by a 

model and the values actually observed. After applying the 
algorithms, the result was that the Multilayer Perceptron 

  ACCURACY 

  ZeroR OneR Naïve 
Bayes MLP IBk j48 

v0.2-
v0.4 58.5 69.5 80.0 71.3 64.6 71.3 

v0.4-
v0.6 35.8 60.7 69.7 72.6 67.2 67.2 

v0.6-
v0.8 39.5 62.3 57.4 59.2 62.3 62.0 

v0.8-
v0.10 30.5 57.0 74.0 63.0 61.0 57.3 

v0.10-
v1.0 54.8 63.5 64.3 66.9 70.3 68.4 

v1.0-
v1.2 43.2 62.1 57.8 58.5 61.8 66.1 

v1.2-
v1.4 59.6 62.0 53.1 62.0 61.8 62.6 

v1.4-
v1.6 17.5 52.6 77.6 59.1 55.5 57.9 

v1.6-
v1.8 70.5 74.0 75.5 74.6 76.0 75.3 

 
45.5 62.6 67.7 65.2 64.5 65.3 

  SPECIFICITY 

  ZeroR OneR Naïve 
Bayes MLP IBk j48 

v0.2-
v0.4 100 54.4 33.8 44.1 39.7 33.8 

v0.4-
v0.6 100 44.2 18.6 24.8 43.4 39.5 

v0.6-
v0.8 0 13.6 4.5 14.8 9.1 14.8 

v0.8-
v0.10 100 56.1 17.5 44.4 45.6 50.9 

v0.10-
v1.0 0 11.8 7.6 7.6 11.8 9.7 

v1.0-
v1.2 0 16.9 10.0 10.8 24.6 20.0 

v1.2-
v1.4 100 47.0 13.4 37.6 36.2 38.9 

v1.4-
v1.6 100 54.9 15.6 43.4 49.6 45.7 

v1.6-
v1.8 0 2.0 5.1 1.7 7.5 3.1 

 
55.6 33.4 14.0 25.5 29.7 28.5 

  SENSITIVITY 

  ZeroR OneR Naïve 
Bayes MLP IBk j48 

v0.2-
v0.4 100 86.5 89.6 82.3 67.7 75.0 

v0.4-
v0.6 100 69.4 48.6 68.1 86.1 79.2 

v0.6-
v0.8 0 46.7 32.6 42.2 43.7 46.7 

v0.8-
v0.10 100 86.7 54.7 80.0 76.0 76.0 

v0.10-
v1.0 0 33.6 30.3 36.1 48.7 42.0 

v1.0-
v1.2 0 46.2 33.3 35.1 51.5 55.6 

v1.2-
v1.4 100 68.2 30.5 61.8 60.5 63.6 

v1.4-
v1.6 100 87.5 45.8 70.8 79.2 75.0 

v1.6-
v1.8 0 16.3 29.3 17.9 36.6 23.6 

 
55.6 60.1 43.8 54.93 61.1 59.6 
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algorithm had the lowest RMSE. Table 10 shows the RMSE 
result of all the algorithms on the given versions. 

TABLE X.  RMSE OF THE MACHINE LEARNING APPROACHES 

VI. DISCUSSION 
 In this section, we will discuss our four comparison 

criteria used. First, we have accuracy. After applying the 
algorithms, the result was that all of the machines learning 
algorithms have a fair accuracy better than the baseline 
accuracy. Naive Bayes and Nearest Neighbor are better 
considering both have given the comparatively better results 
than the most and Naïve Bayes gave the highest percentage 
with 68% as shown in Table 7. Then, there is specificity. 
After applying the algorithms, the result was that the baseline 
specificity has a fair specificity better than the other 
algorithm’s specificity. ZeroR algorithm was the best giving 
perfect specificity for five times as shown in Table 8. Next is 
Sensitivity. After applying the algorithms, the result was that 
the nearest neighbor algorithm was the only one with a better 
average sensitivity percentage compared to the baseline 
algorithm as shown in Table 9. Finally, we have RMSE. 
After applying the algorithms, the result was that the 
Multilayer Perceptron algorithm had the lowest RMSE, 
which was better than the baseline algorithm as shown in 
Table 10. Based on this analysis, we reject all the hypotheses 
H1, H2, H3 and H4 as no class of machine learning 
algorithm performs better than the baseline algorithms in 
terms of all considered comparison factors: accuracy, 
sensitivity, specificity and error. 

VII. THREATS TO VALIDITY 
This section discusses the threats to validity in this study 

and the way they were treated throughout the experiment.  

A. Construct Validity 
Construct Validity is the degree to which the independent 

variables and dependent variables accurately measure the 
concepts they purport to measure. The dependent variables 
we used in our study were change, which is a Boolean 

variable as to whether the class changed or not. As the way 
they are computed is straightforward, we consider them 
constructively valid. If any, the way the size was calculated 
can pose a slight threat if there is a better way for it.   

 

B. External Validity 
External Validity is the degree to which the results of the 

research can be generalized to the population under study 
and other research settings. A crucial threat lies with the size 
of the case study considered. Only a single project releases 
are considered in this study with 10 releases. This may affect 
the generalization of the identified conclusions. On the same 
lines, another valid threat that cannot be excluded until 
extensive empirical results are collected is that the case study 
will reflect the characteristics from a specific domain. In 
addition, the data collected from the open source project was 
by analyzing the code. Poor documentation can affect the 
results of the analysis significantly.  

C. Internal Validity 
Internal Validity is the degree to which conclusions can 

be drawn about the casual effect of independent variables on 
the dependent variables. Apart from the variables considered, 
our approach might have omitted other important variables 
that can serve as predictors. In addition, the size of the open 
source project can be considered as a potential threat as our 
project was not very big, but significantly large. 

VIII. CONCLUSION AND FUTUREWORK 
This paper reported findings of an empirical study 

conducted to investigate the measures that affect the change-
proneness of classes in an open source project. The goal was 
to use a case study from the open source community in order 
to explore the relationship between the structural 
characteristics of the project and the change proneness of 
classes within that project from one version to the other. The 
study concluded a lot of interesting results that conform to 
previous studies, such as size-related metrics and coupling 
metrics are correlated with change proneness. In conclusion 
to the experiment, we believe that using machine learning 
algorithms to predict change proneness in open source 
software using object-oriented metrics is an excellent field 
for research and needs to be further investigated. In many 
cases, we were able to identify that the baseline accuracy 
performed better than the machine learning algorithms 
considered. This result calls for more research for better 
algorithms that can be used for prediction of change-
proneness. 

It should be noted that we used the default setting of 
Weka for all the machine-learning algorithms used. 
Moreover, as a future step, we plan to change the settings of 
certain parameters in these algorithms to find a better 
prediction model for software change proneness. In addition, 
we plan to make use of correlation and principal component 
analysis to select only those metrics that seem to affect the 
change-proneness. In addition, the study provided some 
useful information regarding dependency relationships and 
their association. Based on our findings, we suggest 

  ROOT MEAN SQUARED ERROR 

  ZeroR OneR Naïve 
Bayes MLP IBk j48 

v0.2-
v0.4 0.49 0.55 0.45 0.47 0.59 0.51 

v0.4-
v0.6 0.53 0.63 0.54 0.48 0.57 0.55 

v0.6-
v0.8 0.55 0.61 0.65 0.59 0.61 0.59 

v0.8-
v0.10 0.55 0.66 0.50 0.56 0.62 0.61 

v0.10-
v1.0 0.52 0.60 0.58 0.48 0.54 0.54 

v1.0-
v1.2 0.51 0.62 0.64 0.51 0.61 0.53 

v1.2-
v1.4 0.49 0.62 0.68 0.48 0.62 0.53 

v1.4-
v1.6 0.57 0.69 0.46 0.55 0.66 0.61 

v1.6-
v1.8 0.47 0.51 0.49 0.44 0.49 0.46 

 
0.52 0.61 0.55 0.51 0.59 0.55 
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practitioners dealing with open source projects to collect 
static metrics and change data as part of their development 
effort. This data can be used to prioritize preventive action 
on the classes that are still under development. 
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