
Maintaining Vaadin Legacy Applications
using DSLs based on Xtext

Marcel Toussaint and Thomas Baar

Hochschule für Technik und Wirtschaft (HTW) Berlin
(University of Applied Sciences)

Treskowallee 8, 10318 Berlin, Germany
Emails: m.toussaint@web.de, thomas.baar@htw-berlin.de

Abstract—Vaadin, as a framework for the development of web
applications, enables programmers to develop web applications
purely in Java. The Vaadin framework has a clean architecture
and enjoys a vibrant community. The popularity of Vaadin is
certainly also due to numerous tutorials and small examples that
illustrate certain aspects of the framework. Vaadin applications,
once they became more complex than the appealing tutorials,
might run - as well as many other software projects - into
maintenance problems. In this paper, we report on a database ap-
plication, whose programmers followed the suggestions from the
tutorials rather strictly. Over time, it became harder and harder
to accommodate changes of the database structure since the Java
code made certain assumptions on the structure of database tables
at many different locations. The classical approach to handle such
a situation would be to refactor the entire Java code, which can
be very costly. An alternative approach is to use a domain-specific
language (DSL) to (a) capture those parts of the application that
might vary in future in form of a language, (b) to create a model
using this language that reflects the current application, and (c)
to change the model due to new requirements and to regenerate
those parts of the application that need to be adapted. The last
step (c) automates the work of a human software maintainer
who would adapt the application code manually due to new
requirements (e.g., a new database structure). In this paper, we
report on our initial experience when implementing the DSL-
based approach using the framework Xtext.

Keywords–Software design; Metamodelling; Data models; Soft-
ware maintenance; Graphical user interfaces; Database systems.

I. INTRODUCTION
Web applications became increasingly popular over the

last decade due to the multitude of different web browsers,
and the convenience for the user of utilizing a web browser
in a working environment. One of the main reasons for
their popularity is the ability to operate and to update web
applications without the need for distributing and installing
the software on every single client target platform.

A. The Open Source Web Application Framework Vaadin
Vaadin [1] is an open source web application framework

for Rich Internet Applications (RIA). Vaadin provides a server
side architecture in contrast to JavaScript libraries and browser
plugin based solutions. This means, that the majority or even
the entire internal program logic is executed on the server.
On the client side Vaadin supports Ajax and is based on
the framework Google Web Toolkit (GWT) [2]. One of the
major advantages of Vaadin is the possibility for the software
developer to write the code completely in Java. The framework

includes event driven programming and offers Java classes for
UI elements such as buttons and lists. In practice, this means
writing Vaadin applications is more similar to the development
of desktop applications than the traditional Web development
with HTML and JavaScript.

Vaadin uses a container-based concept to store and process
data objects from external sources (e.g., tables from a database
or input files). In this context, a container is a simple entity
containing a defined set of items. Each item again possesses a
defined set of properties together with their current values.

Figure 1. Vaadin’s Container Concept [1]

Figure 1 shows Vaadin’s architecture to bind UI elements
(e.g., subclasses of AbstractField) to a Property which
represents the corresponding attribute value of a data object
(e.g., an entry in a database table).

This architecture is very generic and widely applicable,
but has the shortcoming that Property objects do not have
a specific type. The information, which tables exist in the
database and what columns they have has to be stored in
the application code, together with boilerplate-code to access
the attribute values of database entries in a type-safe way.
Once the database table structure changes, specific parts of
the application code have to be changed as well.

B. Domain-Specific Languages & Xtext
Domain-specific languages are specialized computer lan-

guages matching a particular problem domain. They permit
software design solutions to be expressed using the same

518Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

terminology and level of abstraction as the specific problem
domain. Over the last few years there has been increased
interest in domain-specific languages due to their potential of
improving the productivity, quality and especially efficiency of
software engineering.

The open-source Xtext framework [3] provides a solid
toolkit for developing textual domain-specific languages. To
specify a language, a grammar written in Xtext’s grammar
language has to be created. Once this is done, the user can
create models in the specified language. Xtext supports this
concept even by generating grammar specific editors. In many
cases, the user wishes to generate other artifacts (e.g., source
code) from these models. Xtext provides special support for
implementing generators to produce such artifacts.

One of the key features of the Xtext framework is the
possibility of seamlessly integrating it into the Eclipse IDE in
form of a plugin. This plugin provides syntax highlighting for
the DSLs created combined with code-folding and -checking.
This toolset becomes handy in our scenario, because the
Vaadin framework is supported by a corresponding plugin in
the Eclipse IDE as well.

C. Tackling Software Maintenance with DSLs
Vaadin’s architecture for bridging the gap between UI- and

persistence-layer with the very generic classes Container,
Item and Property causes the problem, that the program-
mer has to keep certain information on the database structure
elsewhere in the Java code. Ideally this this information is kept
in a single place. In practice, however, this is often not the case
and the Java code suffers from the smell of Solution Sprawl
[4].

There are refactoring techniques to eliminate the smell
from the code, but refactoring is generally costly [4][5].
Furthermore, it is often not evident that the refactored versions
are really better with respect to performance, readability,
maintenance of the code. Note that many different quality
criteria can be applied to assess the code and some of them
might be complementary, i.e., the implementation code cannot
match all these criteria perfectly.

Once we accept that some legacy systems cannot be made
’perfect’ by refactoring due to the lack of financial and time
resources or the lack of skilled programmers we can look for
alternatives to deal with the current situation. One observation
is, that maintenance requests, e.g., to change the data structure
of the underlying database, requires a multitude of adaptations
in the application code and thus is considered to be costly.
However, these adaptations, that are traditionally done by a
programmer, could be automated, if we succeed in

(a) capturing the possible impact maintenance requests
might have on the application code (e.g., changing the
database structure also implies changing the UI) and
in

(b) generating the necessary code changes automatically.
Note that (a) is done by a suitable domain-specific language
and that (b) substitutes the work of a human programmer and
thus makes a maintenance operation for the legacy code much
less costly.

The rest of the paper is organized as follows: In Section II,
we dig into details of the legacy application we started from.
Throughout the paper, this application will serve as a running
example. In Section III, we present our approach on maintain-
ing legacy applications using Xtext DSLs. In Section V, we

outline future steps and summarize lessons learned so far.

II. A MOTIVATING EXAMPLE
At our university, a Web Application is used for man-

agement, revision and versioning of course programs. The
application has been developed with the Vaadin framework
and the developers strictly followed the recommendations
presented in several Vaadin showcase projects.

Figure 2 shows a simplified excerpt from the architecture
of this application. The database covers a multitude of entities,
which are represented by the application via specific domain
classes (e.g., the database table Users is represented by the
domain class TableUser). The corresponding application
logic and functionality is encoded in associated service classes.
Note that in the given example, only a subset of table columns
is represented by attributes of the domain class (i.e., the
column password is not represented). This is due to the fact
that some technical columns are not relevant in the context
of the applicable service object. The modalities of how and
especially the decision, which data should be presented in the
user interface, is encoded in a view class UserView.

«Application Tier»

«Business Class»
UserService

+getLogin(): String
+isAdmin(): Boolean
...

«Domain Class»
TableUser

- login : String
- isAdmin : Boolean
...

«MySQL Database»

«represents»

«Presentation Tier»

«Table»
Users

column login
column password
column isAdmin
...

«uses»

«Data Tier»

«Vaadin Application»

«View»
UserView

Figure 2. Simplified Excerpt from the Architecture

This implementation leaves us with one major disadvantage
concerning the maintainability: Java classes from each tier are
rendered deprecated artifacts as soon as the database definition
is changed or extended. This produces a large overhead during
the development process due to the fact that significant parts
of the Java code have to be kept in sync with the database
structure.

To illustrate this, consider the following example: if the
Users table in the database is to be extended by an addi-
tional attribute, the Java representation by the domain class
TableUser has to be updated accordingly to reflect such
change. To ensure that the new attribute can be used properly,
new functions to manipulate and to retrieve its value(s) must
be implemented in UserService. Furthermore, the behavior
of the corresponding UI class UserView concerning the new
attribute (i.e., whether the attribute should be displayed or be
editable in case of a list object) has to be defined manually.

519Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

To counter this problem, the usage of object-relational
mapping could provide a proper solution. O/R mapping allows
us to automatically convert data from the database content
to the Java objects and vice versa. By using object-relational
mapping, the concrete domain classes can be adapted automati-
cally, once the database structure has been changed. However,
since the UI classes depend on the domain classes, we still
would have to manually adapt them to conform to the altered
domain classes (and thus to the altered database structure).

III. USING DSLS TO MAINTAIN VAADIN APPLICATIONS
We started to explore an alternative approach to solve the

maintenance problems described above by using a DSL-based
infrastructure. The idea is to generate the domain classes,
which represent certain database tables, as well as the corre-
sponding UI classes by using specific code generators. These
generators have to regenerate all parts of the application, that
need to be adapted due to a maintenance request.

A. Combining multiple DSLs
As maintenance requests often concern several different

parts of the application (data, UI), we find it necessary to
spread the modeling layer across multiple, interrelated DSLs.
Figure 3 illustrates the concept of the ’integration model’.

«Meta Model»
DML

«Vaadin Application»

Domain Class

«MySQL Database»

«DML»
DataModel

Table Definition

«Meta Model»
UIML

UI Class

«UIML»
UIModel

«Xtext»

Figure 3. Overview of the Dependencies between Involved Artifacts

With the help of Xtext’s grammar language, we created the
abstract syntax (i.e., the meta model) for both a UI model
language (UIML) and a data model language (DML) for the
existing application. While the data model describes how the
data objects are composed and how they are stored, the UI
model describes the way these objects are presented to the user.
The (DML) provides a modeling language for the data objects
used in the MySQL context and their representation in the
Vaadin application. The concrete code fragments for both the
MySQL table definitions and the Java domain classes can be
automatically created by using a code generator. Analogously,
the Java classes for the UI are regenerated by code generators
based on the UIML.

B. Designing a DSL for Maintaining Implementation Code
When switching from the traditional approach of main-

taining implementation code to our DSL-based approach, one
of the biggest challenges is to design an appropriate DSL.
This DSL must take into consideration both all information a
maintaining request consists of and the current structure of the
implementation.

«Java Code (Vaadin)»

*

dataSource
0..1

*

MFeature

isMany
name

...

Container
visibleColumns : String []

Item
ValueChangeListener

Property

value

*

MEntity

name

 *

 *

1

visibleFeature *

Table

isSelectable: boolean
isImmediate: boolean

«Data Meta Model»«UI Meta Model»

MTable

Figure 4. Relationship between DSL and Implementation Code (Excerpt)

The upper part of Figure 4 depictures some content of the
meta models for our DSLs UIMLand DML. The lower part
presents relevant parts of the application code in form of a
UML class diagram. Our meta classes in the meta models
always start with a capital ’M’. An instance of MEntity
consists of many features (MFeature) and represents a
database table with its columns. The UIML consists of those
concepts that allow to specify how information is presented in
the application UI. For example, the concept MTable, which
refers to a concrete instance of MEntity, represents how
entities are displayed in the UI by the Vaadin class Table.

The lower part of Figure 4 shows the implementation
classes used for displaying database contents. Whenever the
content of a database table has to be displayed, an instance
of the Vaadin class Table is created and configured. The
configuration is done in terms of setting attributes such
as isSelectable, isImmediate, visibleColumns
or in terms of adding configuration objects, e.g., of type
ValueChangeListener or others. One observation is, that
the configurations of Table objects remain largely the same,
no matter what database entity is to be presented. In our
example, only the values for visibleColumns and the
dataSource (marked in red in Figure 4) differ among the
instances of Table. The visibleColumns is a list of
strings, containing all columnnames to be shown by the table.
The dataSource is a Container which holds a set of
instances of Item, which in turn consists of instances of
Property.

The connection between the upper and lower part of the
figure is marked by green arrows. They represent a concrete
mapping from model concepts to implementation classes. This
mapping encompasses the process of code generation. For
example, whenever our code generator processes an MTable
instance, it produces Java code by which a Table instance is
created and configured appropriately.

IV. RELATED WORK
The idea of substituting parts of an application written in

a conventional programming language such as C, C++ or Java

520Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

by one or multiple DSLs in order to increase productivity
and to reduce maintenance costs is not new [6]. The goal of
Language-oriented programming (LOP) [7][8] is to decompose
software systems into orthogonal parts that can be described
sufficiently detailed by using a DSL. Since the syntax of a
DSL is optimized towards a certain purpose, the hope is that
maintaining a DSL model is less demanding than maintaining
code written in a programming language.

Experience reports on applying LOP for the sake of re-
ducing maintenance costs have been published rarely. Klint
et al. report in [9] on a benchmark for the maintenance of
different DSL implementations. Some implementation (called
vanilla implementations) have been realized using conventional
programming languages (Java, JavaScript, C#) while others uti-
lized various DSL tools (ANTLR, OMeta, Microsoft Modeling
Platform). The results indicate that the usage of DSL tools is
(slightly) advantageous.

Fehrenbach et al. describe in [10] their system SugarJ
[11] and how a user can embed an external DSL in existing
programming code. As an example, they present how the
Java Pet Store application can be partly rewritten using four
DSLs, what makes the code more readable, type-safe and
maintainable. The difference to our work is that we use Xtext
instead of SugarJ and that we do not design our DSLs for
forward engineering the application from scratch. Instead, our
DSLs take the source code from existing legacy applications
heavily into account.

V. CONCLUSION AND FUTURE WORKS
This paper addressed maintaining problems of legacy appli-

cations. As an example, we have chosen a Vaadin application,
that displays database contents mainly in form of tables.
Whenever the structure of the database has changed, the
programmer has to adapt the Java classes implementing the
application’s UI accordingly. Doing this process manually is
tedious and error-prone.

We report on the experiences we made, when rewriting the
existing web application using DSLs. We focused on those
parts of the application, that need to be adapted whenever the
structure of the underlying database has changed. We make
some suggestions on how a DSL can be designed, such that this
DSL exactly covers those parts of the application, that might
be affected when adapting the application to new requirements.

In our opinion, the DSL has to be aligned to the existing
legacy code. To achieve this, we had to inspect the code and to
create corresponding UML class diagrams manually. In future,
this might be done automatically by appropriately tailored
reengineering techniques.

The main advantage of the proposed solution is that it
overcomes potential deficiencies of existing code by replicating
and regenerating the code in form of a comprehensible model
rather than having to refactor the internal structure of an
application. We have chosen the Xtext framework to define
DSLs and code generators. This decision has been made
due to Xtext’s excellent Eclipse integration including syntax
highlighting, code completion and static analysis.

REFERENCES
[1] Vaadin, “Vaadin homepage,” retrieved: October 2014. [Online].

Available: http://www.vaadin.com
[2] Google, “Gwt project homepage,” retrieved: October 2014. [Online].

Available: http://www.gwtproject.org
[3] Itemis, “Xtext homepage,” retrieved: October 2014. [Online]. Available:

http://www.eclipse.org/Xtext
[4] J. Kerievsky, Refactoring to Patterns. Addison-Wesley, 2004.
[5] H. M. Sneed, “Planning the reengineering of legacy systems,” IEEE

Software, vol. 12, no. 1, 1995, pp. 24–34.
[6] P. Hudak, “Modular domain specific languages and tools,” in Proceed-

ings of International Conference on Software Reuse (ICSR). IEEE,
1998, pp. 134–142.

[7] M. P. Ward, “Language oriented programming,” Software - Concepts
and Tools, vol. 15, 1994, pp. 147–161.

[8] M. Fowler, “Language workbenches: The killer-app for domain
specific languages?” 2005, retrieved: July 2014. [Online]. Available:
http://www.martinfowler.com/articles/languageWorkbench.html

[9] P. Klint, T. van der Storm, and J. Vinju, “On the impact of dsl tools on
the maintainability of language implementations,” in Proceedings of the
Tenth Workshop on Language Descriptions, Tools and Applications,
ser. LDTA ’10. New York, NY, USA: ACM, 2010, pp. 10:1–10:9.
[Online]. Available: http://doi.acm.org/10.1145/1868281.1868291

[10] S. Fehrenbach, S. Erdweg, and K. Ostermann, “Software evolution
to domain-specific languages,” in Proceedings of Software Language
Engineering (SLE), ser. LNCS, M. Erwig, R. F. Paige, and E. V. Wyk,
Eds., vol. 8225. Springer, 2013, pp. 96–116.

[11] S. Erdweg, “Sugarj homepage,” retrieved: July 2014. [Online].
Available: http://www.sugarj.org

521Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

