
Easily Evolving Software Using Normalized System Theory
A Case Study

Gilles Oorts, Kamiel Ahmadpour, Herwig Mannaert and Jan Verelst
Normalized Systems Institute (NSI)

University of Antwerp
Antwerp, Belgium

{gilles.oorts,kamiel.ahmadpour,herwig.mannaert,jan.verelst}@uantwerp.be

Arco Oost
Normalized Systems eXpanders factory (NSX)

Antwerp, Belgium
{arco.oost}@nsx.normalizedsystems.org

Abstract—Software agility is characterized by inevitable software
changes and ever-increasing software complexity. Unless change
accommodations are rigorously taken into account, the imple-
mentation of these changes may lead to exorbitant costs. This is
in particular true for long-lived systems. For such systems, there
is a need to explicitly address evolvability concerns during their
design phase. This to carry out software evolution efficiently and
reliably during their lifecycle, and prolong the productive life of
the software systems. Normalized Systems (NS) theory has been
recently proposed as an approach to develop agile and evolvable
software. In this paper we discuss the practical advantages of
the NS approach using a case study regarding the revision of a
budget management application. Furthermore, advantages such
as knowledge transfer through the NS development process are
also discussed in this paper.

Keywords–Normalized Systems theory; Evolvable Software;
Adaptive Software; Agile Software; Case Study

I. INTRODUCTION

In ever-increasing volatile environments, evolvability is
considered as one of the most important characteristics of
information systems. As information systems support the op-
erations and decision-making of organizations, software ap-
plications also need to support the changes on the business-
side of organizations. However, organizations normally find
it difficult to synchronize changing requirements needs with
their software applications. This is because the current software
development paradigms do not fully take into account the
changeability of business needs over the life cycle of software
systems. This problem is also characterized by the Law of
Increasing Complexity as proposed by Lehman, which states
that the structure of software tends to become more and more
complex over time because of changes made to the software
[1]. Furthermore, software applications are traditionally built
to last several years -or even decades- in order to justify (high)
development costs. With regard to changing business require-
ments, this often leads to decisions to either not implement the
changes because they are too expensive, or to eventually (after
several years or decades) totally scrap the application and start
the development of a new “up-to-date” application.

Recently, Normalized Systems (NS) theory has been pro-
posed as a way to deal with ever-changing requirements for
software by building evolvable information systems, based
on the systems theoretic concept of stability [2]. As recent
research shows, these systems are capable of incorporating
changes more easily and with less effort by means of a careful
design of the software architecture [3], [4]. Therefore, changes

can be made immediately and the life cycle of software
applications is greatly extended, up to a point that they can be
used and revised infinitely. In this paper we will discuss how
changing business requirements can be easily implemented
into an application developed according to the NS theory. This
will be illustrated by means of a case regarding the revision
of a budget management application. The initial development
of this budget application is described in [4], which focused
on illustrating the NS development methodology used in
developing the application. In this paper we provide a clear
understanding of the NS advantages in dealing with changes
to this initial application by comparing both versions of the
software, the scope of changes and the amount of time and
effort spend on implementing all the updates in the new
version. As the case description requires an understanding of
the NS theory, a brief review of the NS theory is provided in
Section II. For a more thorough description of the NS theory,
we refer to a wide number of previous works (for example, [2],
[3], [5]). In Section III, we will first provide a short description
of the initial software application, followed by the changed
business requirements. How these changes were implemented
according to the NS theory is discussed in Section IV. In
Section V, we will discuss the advantages of NS development,
some observations, and contributions of the paper. We end the
paper with a brief conclusion regarding this paper in Section
VI.

II. NORMALIZED SYSTEMS THEORY

NS theory is concerned with how information systems
can be deterministically designed and developed based on
the systems theoretic concept of stability. According to NS,
the main obstacle to evolvability is the existence of so-called
combinatorial effects. In this condition, the amount of effort
to make a specific change in the system is not only related
to the change but also to the size of the system. Therefore
the effort to apply a specific change increases as the system
grows [2]. According to the systems theory, stability refers
to a system in which a bounded input function results in
bounded output values, even as t → ∞ (with t representing
time). When applied to information systems, this means that
applying a specific change to the information system should
always require the same effort [3]. According to NS theory,
the avoidance of all combinatorial effects in software leads to
evolvable software, as this means ripple effects of changes do
not increase over time and, as such, with the size of the system.
To eliminate combinatorial effects, NS theory proposes a set
of four theorems and five elements that can be expanded into

322Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

fully functional applications through pattern expansion. This
set of theorems and elements are the foundation of NS theory,
and will be discussed in the next sections.

A. NS Theorems

• Separation of Concerns (SoC), requiring that each change
driver (concern) has to be separated from other concerns.
This theorem allows us to isolate the impact of each
change in its own entity;

• Data Version Transparency (DVT), requiring that data
entities can be modified (e.g., additional data can be sent
between components), without having an impact on other
entities;

• Action Version Transparency (AVT), refers to a condition
in which an action entity can be upgraded without im-
pacting the calling components;

• Separation of States (SoS), implies that actions or steps
in a workflow are separated from each other in time by
keeping a state after every action or step.

These are just brief definitions of the NS theorems, as these
have previously been extensively discussed in other work (e.g.,
[2], [3], [5]). It has to be mentioned that none of these theorems
are completely new, and even relate to heuristic knowledge of
developers [5], [6]. However, formulating this knowledge as
theorems aimed at identifying combinatorial effects will help
to build information systems that contain a minimal number of
combinatorial effects. Only when the design of an application
completely adheres to the NS theorems, one can profit from
the software evolvabilty that the NS theory offers.

B. Normalized Systems Elements

As the systematic application of the NS theorems results
in a very fine-grained modular structure, NS theory proposes
to build information systems based on the aggregation of
instantiations of five higher-level software patterns or elements,
being:

• a data element, representing an encapsulated data con-
struct with its get- and set-methodss to provide access
to its information in a data version transparent way.
Cross-cutting concerns (for instance access control and
persistency) are considered to be a part of the data
element;

• an action element, containing a core action representing
a single change driver or functional task;

• a workflow element, containing the sequence in which a
number of action elements should be executed in order to
fulfill a flow;

• a trigger element, controlling the states (both regular and
error states) and checking whether an action element has
to be triggered accordingly;

• a connector element, ensuring external systems are able
to interact with the NS system without allowing elements
to be called in a stateless way.

The above mentioned NS elements are the essential build-
ing blocks for a NS application and provide the core func-
tionality of an information system. They can then be easily
extended later (cf., description of extensions in Section IV).
A functional analyst will formulate instantiations of the NS

elements that are the foundations of a NS application [4].
At run time, these instances are instantiated once more (i.e.,
constitute a double instantiation) to form specific occurrences
of, for example, a budget [4].

The NS elements have been described more extensively
in [2], [3], [5] and the implementation of a data element
in a Java Enterprise Edition (JEE) has been described in a
previous work [5]. The definition and identification of the NS
elements is based on the implications of the set of NS theorems
[7]. For example, the definition of the workflow element is
based on the Separation of Concerns (SoC) and Separation
of States (SoS) theorems. In a workflow element, we can
invoke action elements in a completely stateful manner and as
mentioned earlier, keeping track of every action’s state, leads
to Separation of States (SoS). Similarly, each of the five NS
elements constitutes one possible solution for implementing all
four NS theorems, thus eliminating all combinatorial effects.

Each of these five elements provides a general reusable
solution to a commonly occurring problem within a given
context. Therefore, they can be considered as a design pattern,
containing a core construct and several cross-cutting concerns
(such as remote access, logging, access control, etc.). This
architecture provides protection from combinatorial effects
while allowing for a set of anticipated changes to be applied
to a system [5]. As such, the five NS elements can be used to
build an evolvable information system that satisfy the four NS
theorems.

C. NS Pattern Expansion

The use of NS elements as design patterns is supported
by the NS pattern expansion mechanism, which enables the
conversion of NS element instances defined by the developer
into fully functional code. Without using such expanders, it
would be near to impossible to achieve the fined-grained
modular structure prescribed by the NS theorems. Therefore
the NS expanders are considered to be an essential part of
designing an application using NS theory.

As such, pattern expansion is one of the four phases in the
NS development process [4]. First a comprehensive functional
analysis is performed to identify the NS element instances.
Coding these instantiations is the next step of this process and
it is done using some special “descriptor files”. A descriptor
file is a text or XML-based file which constitutes the input for
the NS expanders.

For example, in case of a data element instance, one needs
to provide the following parameters in the descriptor file in
order to be able to work with the expanders:

• Basic name of the data element instance: Each data
element instance needs to have a unique name which
needs to be provided in the descriptor file (e.g., Budget).
• Context information: It provides the package and compo-

nent name of the data element instance.
• Data field information: Each data element instance can

contain one or more data fields and all the information
about these data fields (such as their name and data type)
needs to be provided in the descriptor file;
• Relationships with other element instances: It is necessary

to address all the relationships of current data element
instances with other element instances.

323Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

In the next step, through the process of expansion, the
descriptor files get expanded into the code of a functional
application. This show how a minimum of input information
in the descriptor files can be used to transform into a fully
functional application. The NS pattern expansion is done by
software (called NS expanders) developed especially for this
purpose by the NS eXpanders factory (NSX).

The NS expanders expand the descriptor files into skeleton
source code for all the identified NS element instantiations.
Furthermore, the NS expanders also provide all deployment
and configuration files required to construct a working applica-
tion on a supported technology stack. The skeleton source code
facilitates a top-down design approach, where a functional
system with complete high-level structures is designed and
coded, and this system is then progressively expanded to fulfill
the requirements of the project. These expansions are called
NS extensions and will be discussed later in this paper. The
classes of the skeleton code represent the modular structure of
the defined NS element. For the Budget element instance, the
NS expanders will for example generate a set of classes and
data fields such as the bean class BudgetBean and its related
local and remote interfaces (BudgetLocal and BudgetRemote).

Because of the NS expansion mechanism, applying changes
to the application only requires us to provide new descriptor
files and a re-expansion of these updated files will provide a
new version of the application. This process will be shown in
the section discussing the implementation of the changes to
the application presented in the next paragraphs.

III. THE NS BUDGET MANAGEMENT APPLICATION CASE

Over the last years, several applications have been built
based on NS theory and its development methodology. The
most extensive description of this methodology can be found
in [4], in which it is discussed by using the development of a
budget management application for a local Belgian government
as an exemplar. After using this application for only one
year, both regulatory and requirements changes required the
application to be changed. As the initial application was built
according to the NS principles discussed in the previous
section, these changes could be implemented rather easily. In
the next paragraphs, we will first explain the functionality and
design of the initial application, followed by an overview of
the change requests.

A. The Initial Budget Management Application

Budget tracking and management are important aspects
within the administration of the local government. Budgets
need to be awarded, specified, managed and utilized for the
local government to function properly and fulfill its services to
the citizens. To accomplish this, the overall available budget
is divided into very fine-grained sub-budgets. This however
drastically complicates the budget assignment, reservation,
fixations, changes, etc. To cope with this complexity -and si-
multaneously realizing the much-needed integration of budget
management with project management and budget reporting- a
project was started at the end of 2012 to develop a stand-alone
application to capture the budget management functionalities.

The challenges of the budget application development are
discussed in [4]. First, the new application needed to match the

flexibly and user-friendliness of Excel pivot tables (which were
previously used). To cope with this challenge, the development
of the initial application was focused on budget management
functionalities and its user-friendliness. As will be discussed
in this paper, the initial application would, as such, be a sound
basis for further extending the application to include other
requirements such as budget reporting, simulation and project
management, etc.

The context-specific and fine-grained composition of the
budgets was another challenge of the application development.
Budgets need to be defined in a range of different levels of the
specific government. Therefore budgets can be managed on a
scale from general to highly specific. On the most fine-grained
or specific level, budgets are defined by a combination of the
following six parameters: department, activity, article, domain,
product and budget year. However, budgets can also be defined
based on a subset of these parameters, meaning budgets can
be defined on several levels.

After going through a functional analysis and NS soft-
ware development process, the final application architecture
is shown by the set of unchanged, changed and removed data
element instances in Fig. 1. This figure clearly shows how
the application is structured around a central data element
instance, being a “Budget”. A current budget is defined by
the aggregation of “Budget Changes” made to the budget over
time. The parameters that can be used to define a budget -
“Department”, “Activity”, “Article”, “Domain”, “Product” and
“Budget year” instances- are shown on the left side of Fig. 1.
These “Articles” can be grouped into “Economic groups”. In
the initial application, Economic groups make up a “Budget
estimate”. This estimate used to be utilized to draw up a target
budget at the beginning of a budget year. The data elements
instances on the right of the Budget instance in Fig. 1 are used
for managing budgets. “Budget fixations” are used secure a
part of a budget for a specific purpose. These Budget fixations
are assigned to a specific “Supplier” and can be called in
“Budget calls”, so the budgets can be partially spent when
needed. Budget calls are associated with “Invoices” and “Work
orders” to track the spending of “Budget calls”. Other aspects
of the application will be discussed in the next section, as they
are part of the changes made to the initial application.

B. Change Requests for the Application

As mentioned before, the government officials had several
change requests after having used the budget management
applications for some time. Additionally, changes in legislation
required the introduction of a “Purchase file” data instance
to enable long-term (i.e., more than one year) tracking of
purchases of departments. Thereby, this case show how an
application that was in use for only one year already needed
functional changes. This meant that a lot of software features
had to either be added, changed or removed. One developer
even expressed that one could argue the change requests were
so extensive and concerned the foundation of the application
that you could consider it as a new application. NS theory
however allows for far-reaching changes to be made to an ap-
plication, and the renewed application is therefore considered
a second version of the budget application. In the following
paragraphs, we will briefly review some of the changes that

324Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

have been made to the application, for which Fig. 1 can be
used as a reference.

The first significant change was the addition of a project
management functionality to the application. Because the NS
methodology was used, this functionality could be left out in
the initial application to be easily added later on. The project
management functionality that needed to be added involved
project monitoring through observation of the state of work
orders. These work orders get initiated in the system for
specific tasks and are linked to the budget fixation they belong
to. When an invoice is received for a work order, the invoice
lines are linked to specific work order lines. To fully implement
the new project management functionality, new data element
instances for “Consultant” and “Profile” needed to be added
as well.

Another change request was the extension of invoice man-
agement. Invoices were made more detailed by adding a data
element instance “Invoice line” and by linking invoices directly
to the budget fixation they belong to. Previously invoices were
defined on three levels: for fixations, budget calls and work
orders. For simplification and centralization reasons, this was
reduced to only one level in the revised application.

The third major change in the new application is the
inclusion of purchase orders. These orders needed to be added
to the application as the purchasing department needed to be
able to control purchases according to the granted budgets.
Additionally, a element instance for “Purchase File” was added
to hold all the information on specific purchase orders.

Furthermore, it was made possible to further specify an
activity by adding the data element instances “Action plan”,
“Policy domain” and “Management domain”. And as budget
estimates were not used in the application, the corresponding
element instance was removed.

These changes show that only the fundamental functional-
ity of the application stayed unchanged in the new version (i.e.,
the budget, budget change and budget-defining data element
instances). With the exception of four element instances, all
initial element instances needed to be “touched” and several
element instances needed to be added to provide the requested
functionality changes.

IV. IMPLEMENTATION OF THE CHANGES

As the goal of NS theory is to design software in an evolv-
able way, it should be no surprise that the change requests dis-
cussed in the previous section could be implemented quickly
and easily by just a single developer. By taking evolvability
of software into account at design time, NS applications can
effortlessly be extended through the descriptor files and the
expansion mechanism.

In the descriptor files of the NS element instances, one can
for instance easily change the data model of an application
(i.e., the relationships between element instances). For exam-
ple, although the “Work order” and “Invoice” retained the same
name in the second version of the budget application, their def-
inition and position in the data model changed completely (cf.
previous section). The changes could however be applied by
simply re-defining the relationships of these element instances
and the instances they are linked with in their descriptor files.

Similarly, adding or removing NS element instances from
an application can also be done by just writing or removing
descriptor files for these instances. The “Work order Line”,
“Invoice Line” and “Consultant” element instances for exam-
ple could be added to the application by creating new de-
scriptor files containing information such as their description,
relationships, etc. Additionally, relationships to these new in-
stances need to be added in existing element instances that are
coupled with the new element instances. As these changes can
be done rather easily, implementing all the required changes
to the descriptor files of the budget application took less than
1 man-day.

Although the NS expansion process delivers a fully work-
ing application that includes all defined NS element instances,
the functionalities of the application most likely still need to be
extended to provide context-specific functionality. This is done
through manually programming customizations, either within
anchor points in the expanded files (called “injections”) or in
separate files (called “extensions”). The additional function-
ality added to the budget application needed two important
extensions and/or injections.

As the budget application is very data-intensive (i.e., it
exists of only NS data element instances), a lot of data
validations needed to be implemented in the application. For
example, budget calls can not exceed the available budget,
budgets need to be unique, etc. Implementing these validations
took 3 man-days.

The second important type of extensions that needed to be
implemented were graphical extensions. These included col-
ored status boxes, projections and HTML screens to implement
these projections. Projections are views that can be defined on
NS data element instances that show data in a specific way.
These projections need to be defined so information can be
projected to the end user in the most useful way in specific
use cases. For example, when a user is looking up information
on a specific budget, this screen also needs to display overall
information on all budget calls made on this budget. From this
overall information, the user can then select a budget call to
get more information on. It however does not need to show
detailed information on all budget calls in the budget screen,
as this would lead to an information overload on this screen.
Furthermore, different projections can be defined depending
on user roles. For the 25 end users of the budget application,
several roles are defined in the application (e.g., super user,
administrator, manager, employee). As such, managers or
members of a specific department can be shown more detailed
information than regular employees. Implementing the custom
graphical elements for the second version of the application
took 5 man-days in total, of which the projections took 3 days
to implement.

V. DISCUSSION

From the description of the case in the previous section,
one can make several observations.

First off all, the benefit of reduced effort of changing
NS applications seems to come at an extra cost or effort at
design time of the application. However, the additional effort
to design in an evolvable way is negligible. Previous research
has shown that the NS expansion process is very efficient

325Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Article

Economic group Budget estimate

Budget fixation

Budget call

Domain

Product

Budget

Activity

Work order

Invoice

Department

Budget year

Budget change

Supplier

InvoiceLine

Action plan Management domainPolicy domain

Work order Line Project Management

Consultant Profile

Budget fixation Detail

Purchase order

Purchase File

Key:

Unchanged data element instance

Changed data element instance

Added data element instance

Removed data element instance

Figure 1. Entity Relationship Diagram Showing the Architecture and Changes to the Budget Application

and fast and even provides a way of developing software
faster than traditional development methodologies [4]. This
is because the developer does not need to concern himself
with the software architecture or boilerplate code once the
NS element instances are defined in descriptor files. The only
prerequisite is that additional knowledge on the NS theorems,
elements and expanders is required for developers to be able
to develop software that is fully according to NS theory.

Once an application has been built according to NS princi-
ples, the case description also shows it can be easily changed.
The total development time of the thorough changes to the
budget application was only about 9 man-days. According to
the developer, the entire job was very clear to him. And he
reckoned the amount of effort he had to spent on re-developing
the application was much less than something they normally
do when an application is not designed based on NS theory.

A third observation is that because the rapid development
of the new versions of an application, issues that are other-
wise proportionally irrelevant, can become even more time-
consuming than the development itself. For the revision of the
budget application, there was a lot of effort needed to convert
and input the old Excel-data in the new application. This is
because of missing data, inconsistencies, wrong data formats,
etc. Overall this even took more effort than developing the new
version of the application.

A. Knowledge transfer

NS development also incorporates knowledge management
processes that support capturing, storing, transferring and
applying development knowledge. How this works is discussed
in [7], based on the widely used theoretical framework of
[8]. Basically, knowledge is captured and transferred through

326Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

the use of NS expansion, as this process provides a way to
incorporate new insights obtained from practical application of
the theory into the NS knowledge base (i.e., the NS expanders).
Captured knowledge can be newly normalized features in the
NS elements that can be re-used in future applications, new
general reflections on building Normalized software, etc. This
way, newly normalized features can simply be provided to new
applications through NS expansion and they do not need to be
manually added after expansion. As such, any new version
of the NS expanders can as well be used to re-expand older
applications to provide additional functionality, graphical and
more user-friendly enhancements, etc.

During the development of the revised budget application,
several insights gained from previous NS projects could be
used, including the initial development of the budget manage-
ment application. One example of functionality that could be
added more easily in the application revision are composite
screens. These advanced screens provide an overview of data
on different levels. They show for example the budget of
a department, and by selecting an activity, domain, article,
etc., one can drill down to a specific budget on the same
screen. Before the start of the initial budget application,
implementing such screen would take about 600 lines of code
in manually programmed extensions. By incorporating some
of the functionality of composite screens in the NS expanders,
this was reduced to about 60 lines of manual code during the
development of the initial budget application. In this revision
of the application the effort needed was even further reduced
to about 5 to 10 lines of code for each layer in a composite
screen. The development of the revised budget application also
lead to the addition of new knowledge to the NS expanders.
The idea of projections (cf., previous section) that only show
relevant information on a NS data element instance (e.g., when
in a list of departments, one is only interested in total budget
of the departments) is very useful in a large array of contexts
and applications. Therefore they were added to the expanders
after completion of the project.

B. Contributions and future research

This paper has several contributions. First, it shows the
advantages of building software according to the NS design
theory. These advantages can normally only be observed over
long periods of time, when systems are required to evolve or
be adapted. The case description in this paper however already
shows for the first time how fundamental changes can be made
to an application without excessive implementation effort (e.g.,
implemented by only one developer over a very limited amount
of development days). Furthermore, the absence of combina-
torial effects in NS applications will also make sure that the
effort of implementing changes does not increase over time,
as the application becomes larger and more complex. Second,
the case description shows how the NS development process

(discussed in detail in [4]) also supports the implementation
of changes to an application by using the descriptor files and
NS expanders.

Possibilities for future research include additional case
studies to provide more information on how the NS theory
realizes profound progress with regard to the evolvabilty of
software.

VI. CONCLUSION

In this paper, we discussed how software can be easily re-
vised and adapted when it is built according to NS theory. This
was shown by means of describing the revision of a budget
management application built for a local Belgian government,
of which the NS development is previously discussed [4]. This
case shows how, even after only being used for a single year,
changes needed to be made to the software design because
of regulatory and requirement changes. As such, the paper
shows how these fundamental changes can be made easily and
without much effort. Because the case application was built
according to NS principles, one will also be able to implement
future changes with the same ease and the application will
thereby become evolvable.

REFERENCES

[1] M. Lehman and J. Ramil, “Rules and tools for software evolution
planning and management,” Annals of Software Engineering, vol. 11,
no. 1, pp. 15–44, 2001.

[2] H. Mannaert and J. Verelst, Normalized Systems: Re-creating Information
Technology Based on Laws for Software Evolvability. Koppa, 2009.

[3] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability based
on systems theoretic stability,” Science of Computer Programming,
vol. 76, no. 12, pp. 1210 – 1222, 2011, special Issue on
Software Evolution, Adaptability and Variability. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016764231000208X

[4] G. Oorts, P. Huysmans, P. D. Bruyn, H. Mannaert, J. Verelst, and A. Oost,
“Building evolvable software using normalized systems theory: A case
study,” 2014 47th Hawaii International Conference on System Sciences,
vol. 0, pp. 4760–4769, 2014.

[5] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software
architectures based on systems theoretic stability,” Software: Practice
and Experience, vol. 42, no. 1, pp. 89–116, 2012. [Online]. Available:
http://dx.doi.org/10.1002/spe.1051

[6] P. D. Bruyn, G. Dierckx, and H. Mannaert, “Aligning the normalized sys-
tems theorems with existing heuristic software engineering knowledge,”
in Proceedings of The Seventh International Conference of Software
Engineering Advances (ICSEA), ser. ICSEA ’12, Lisbon, Portugal, 2012,
pp. 84–89.

[7] P. D. Bruyn, P. Huysmans, G. Oorts, D. V. Nuffel, H. Mannaert, J. Verelst,
and A. Oost, “Incorporating design knowledge into software develop-
ment using normalized systems,” International Journal On Advances in
Software, vol. 6, no. 1&2, pp. 181 – 195, 2013.

[8] M. Alavi and D. E. Leidner, “Review: Knowledge management and
knowledge management systems: Conceptual foundations and research
issues,” MIS Quarterly, vol. 25, no. 1, pp. pp. 107–136, 2001. [Online].

Available: http://www.jstor.org/stable/3250961

327Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

