ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

A Prototyping Discipline in OpenUP to Satisfy
Wireless Sensor Networks Requirements

Gian Ricardo Berkenbrock

Carla Diacui Medeiros

Celso Massaki Hirata

Berkenbrock

Software/Hardware Integration Lab.
Federal University of Santa Catarina
(UFSC)

Joinville, SC, Brazil
Email: gian.rb@ufsc.br

Santa Catarina State University
(UDESC)
Department of Computer Science
Joinville, SC, Brazil

Department of Computer Science
Aeronautics Institute of Technology
(ITA)

S.J.Campos - SP, Brazil
Email: hirata@ita.br

Email: carla.berkenbrock @udesc.br

Abstract—Wireless Sensor Networks (WSNs) are used to collect
data from different sources and they can be applied in mon-
itoring and instrumentation areas. WSN are highly dependent
on application requirements, then one application is hardly
equal to another. There is not a specific process to address the
development of WSN applications. Open Unified Process is an
iterative software development process that is intended to be
minimal, complete, and extensible, and because of these features it
is a good candidate for WSN application development. However,
OpenUP does not support the challenges and requirements of
WSN systems, because it does not have specific tasks that consider
such requirements. Then, in order to address this lack of support,
this paper proposes a prototype discipline that can be integrated
into software development process for WSN applications.

Keywords—Software Engineering; Prototype Discipline; Discrete
Simulation.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are used in envi-
ronmental monitoring, surveillance of installations or areas,
such as, home, border, or building, object tracking, precision
agriculture, bridge monitoring, hospital monitoring, and herd
monitoring. WSNs are composed of nodes that have capability
to sense and communicate over-the-air to each other. The nodes
have also processing capability and local storage. In order
to deliver the collected data to a base station in a multi-hop
scenario, nodes transmit data using ad hoc communication. The
nodes have the capability to create the wireless interconnection
network, which is needed to delivery the data.

The number of nodes of WSNs can change from a few
nodes to hundreds of thousand nodes. And they can be
static or mobile. In order to aggregate all the aforementioned
characteristics, the node platform has some drawbacks, e.g.,
short communication range, low bandwidth, small memory,
and limited battery. These drawbacks are restrictions that are
inherent to any WSN application.

The feasibility of WSN is highly dependent on application
requirements mainly due to the restrictions aforementioned.
Even when the application has similar requirements to other

Thanks to CAPES process nr. 6804-14-4.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

previously deployed application, a complete application ver-
ification and validation must be performed again in the new
environment. The main cause is that the behavior of a WSN
can differ from the other previously known application, and
the target environment can be different.

The development of WSN applications is challenging and
demands a peculiar effort. The difficulties include requirements
satisfaction, gap between model and implementation, specific
hardware platform, system validation, verification, testing [1]
[2]. Then, during the WSN application development the team
members inform the project management about some con-
cerns related to prototyping. For example, hardware test and
approval, application test, and third-party system integration
evaluation are related to prototyping. So, we argue that one
should consider the use of specific software development pro-
cess to improve the development organization, deal with such
concerns, and to enable a better project management. When the
organization uses a process for software development, it can
have the opportunity to reproduce the process in the following
projects and to enhance it with the feedback of the previous
team. Software development process [3] is a set of activities
whose goal is the development or evolution of software. An
example of software development process is Open Unified
Process (OpenUP) [4].

OpenUP is an open iterative software development process
that is intended to be minimal, complete, and extensible [5].
It can be used to develop software of different purposes, from
small and embedded to desktop enterprise application. For ex-
ample, some WSNs projects are Aquila Tower Monitoring [6],
and Aqua WSN [7]. Nevertheless, OpenUP does not address
the specific requirements for development of WSN systems.
Thus, it is difficult to achieve a predictable system behavior
that complies with the WSN application requirements.

There are some studies reporting the extension and in-
tegration of OpenUP, such as [5] for specifying capacity
requirements, and [8] for security. Yet complex products,
such as WSN, need special handling of requirements as
well. However, there is a lack of definition in the existing
software development process to address the development of a
WSN application project. The main reason why development

316

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

processes do not fit to WSN development is the inability to
meet important requirements of WSN satisfactorily and they
do not provide a way to manage activities that are needed
through the development, such as, simulation and prototyping
activities.

In addition, other characteristics that need to be addressed
during the development process of the WSN applications are
the data integration with third party systems, employment
of verification techniques, and different viewpoints used for
analysis. Yet, due to the development characteristics of WSN
systems, it is important to aid the development team with a
disciplined way to perform their tasks, including prototyping
activities.

This paper is organized as follows. Section II investigates
some related works. Section III introduces the Prototype
Disciplines that can be integrated into software development
process for WSN applications. Section IV presents details of
work products integration from the Prototype discipline to the
OpenUP development process. Section V illustrates the use of
proposed discipline. Finally, Section VII concludes this paper.

II. RELATED WORK

There are several studies reporting processes for software
development in constrained environments [9] [10] [11] [12].
However, there is not a specific process to address the devel-
opment of WSN applications. Developers should be aware of
restrictions such as limited storage, battery consumption, low
accuracy sensor, and short transmission range. WSN are highly
dependent on application requirements, then one application is
hardly equal to another.

Carvalho et al. [9] conducted a comparative investigation
between applications of two software development processes:
Scrum[13] and Rational Unified Process [14]. The authors
concluded that it is necessary high effort in the traditional
method compared to the agile software development.

According to Marincic et al. [10], when the next generation
of a system is designed, the new system will have common
elements with its previous version. Then, the authors propose a
framework for identifying the non-formal elements of knowl-
edge which can support modelling of the next system gener-
ation. The authors presented the application their framework
modelling mechanical parts of a paper-inserting machine on
an action research case.

The development process proposed by Nosseir et al. [11],
called Mobile Development Process Spiral, is a usability driven
model designed to integrate usability into existing application
development processes. It also recommends usability tech-
niques for assessing mobile applications. The proposed method
aims identifying a set of usability techniques and incorporating
these techniques into each iteration to assess the mobile
applications.

According to Berrani [12] WSN specification is a complex
task due to their embedded and distributed nature as well as the
strong interaction between their hardware and software parts.
In order to improve the verification of the WSN properties the
authors propose an approach called Model Driven Architecture
(MDA). This approach aims to promote the reusability and
improve the development process. The authors mentioned that

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

their approach promoted the reusability of modeled compo-
nents and it also facilited the modeling task decreasing relative
costs.

III. PROTOTYPING DISCIPLINE

The use of prototypes during project development helps to
improve the knowledge about the system, the network, and the
nodes. In this research a prototype has at least one real node
and the working code is deployable to the node’s hardware.
The scope of discipline is restricted to software prototypes.
Then the prototype discipline can be used at any process phase
of the OpenUP.

The prototyping discipline considers specific tasks to build
a prototype during the software development process for WSN
application. The workflow is depicted in Figure 1. The work-
flow begins by defining the objective for the prototype study,
it drives all the further decisions. After that, a specification
regarding the prototype requirements is elaborated. Afterwards,
the prototype design based on information from previous
activities performed can be started. Then, in parallel, the devel-
opment and the calibration activities are performed, followed
by the test activity, which verifies if the code complies with the
objectives. So, the code is compiled and deployed in the nodes
to perform the experiments which can begin. After running the
experiments, the results are evaluated and depending on them
it might be needed a code review and new experiments or it
proceeds to document the generated results. In the remainder
of this section details of each activity of this discipline are
given.

[code complies with the objecth E;)J r_iﬂ
Deploy Code Run Experiments
Define Objectives Test Prototype ’T_jj [.iﬂ’
5— [,
Code Review Assess Results
o=
e Sy
ES ES

Define Requirements

Development 17
R
'=*_>J

Calibrate the Sensors [The objectives are satisfied]

&Y

Design Prototype

B g

Documentation

v

Figure 1. Workflow for prototype discipline

A. Define Objectives

This activity defines which is the objective for the proto-
type discipline. The prototyping model used to perform this
discipline relies directly on the chosen objective. For example,
one can create a prototype only to test the sensors and after the
study has finished, the prototype is not needed any longer. This
activity is performed by Prototype Analyst and the main output
work product is the Prototyping Objectives. This activity has
two tasks: Define Objectives, and Plan Prototyping. The first
task aims to define the overall prototyping objective and
the second one aims to plan the prototyping activities. The
Prototyping Plan is used as an input work product of the design
task performed later.

317

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

B. Define Requirements

After the objectives are defined, the definition of the
prototype requirements is produced. The requirements drive
the prototype development. It is performed by the Prototype
Analyst. This activity produces the Prototype Requirements
Specification work product.

C. Design Prototype

This activity consists of describing the blueprints that guide
the development. Some information in this activity describes,
for example, the detailed communication model, topology to
be followed, which programming approach to be used and
a detailed software architecture, and even the base station
behavior if it is applied for the study. This activity is performed
by the Prototype Analyst role and he can be assisted by
the Prototype Developer role. The Software Specification,
Protocols Definition, and Base Station Behavior Description
are the main output work products of this activity.

D. Develop Prototype

In this activity, the code is implemented. This activity is
performed by the Prototype Developer role and it produces
the Code that is compiled and deployed to the real nodes.
In addition, the Prototype Developer needs to deal with the
WSN restrictions during the coding tasks. He/She also needs to
deal with the specified middleware, OS, and hardware platform
details. The role has to manage the code size, because of the
memory size available in the hardware platform. It is expected
that this activity demands a considerable effort. Finally, in
order to assist the coding, one can use the simulation model
for, if it is applied, developing the WSN application.

E. Calibrate Sensors

This activity is performed by the Phenomenon Specialist
and he can be assisted by the Prototype Developer. It consists
of verifying the values of the prototype and then calibrates it
closer to the real values as possible. So, during the experiments
the values obtained from the prototype are more reliable. This
activity has the Sensor Calibrated as an outcome.

FE. Test Prototype

Tests are performed in order to verify if the code complies
with the prototyping objectives of the current iteration and if
there is no error in the code. This activity is performed by
the Prototype Tester and it is expected as results the Test Log
work product. The Zest Log contains the results of performed
tests and if some test fails the process resumes back in the
Development activity otherwise it proceeds to Deploy the Code
activity.

G. Review Code

The Review Code activity is only performed if the ex-
periment results do not fulfill the prototype objectives and
requirements. It consists of performing a review of the code
deployed after running the experiments and assess its results.
The Prototype Developer does the solicited changes in Code
Review task and then the Prototype Tester performs again the
tests in the code reviewed. The process resumes in the Deploy
Code activity only when the complete review is finished.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

H. Deploy Code

Deploy the code in the nodes is an activity performed
by the Prototype Developer. 1t is performed using the tools
available from the chosen OS. In some cases, it can be made
via over-the-air communication, but commonly the node is
plugged to the development station and then the binary code
is deployed to the connected node through the cable. The
outcome from this activity is Prototype Nodes with Code
loaded. The task Deploy is performed with the nodes that are
considered for the experiment.

1. Run Experiments

This activity is executed by the Prototype Developer with
the aid of the Prototype Analyst. Run Experiments activity aims
to obtain the experiments results that are used in the Assess
the Results activity in order to evaluate the current study. The
main output work product is the Experiment Results.

J. Assess Results

After the experiments results are available, further analysis
are performed. The Prototype Analyst role is responsible for
performing the analysis and he can have assistance from the
Phenomenon Specialist role. The analysis can be made using
statistics techniques and tools. In addition, the activity provides
information, via its main output work product Experiment
Results Evaluated, to make a decision if the experiments results
satisfy the prototype’s objective. If the results do not fulfill the
objective then the process resumes in the Code Review activity.
Otherwise, the next activity is the Documentation activity.

K. Document Prototype

This activity consists of evaluating the results provided by
the Assess Results activity. The Prototype Report is generated.
In this report some information is available, such as solicitation
for requirements, parameter, and sensors review, or it can
provide information how close the prototype is to reach the
quality of the final system. The report can have also decisions
resulting from the experiments evaluated regarding the pro-
totyping objectives. The Prototype Analyst role performs the
Documentation task.

IV. INTEGRATION WITH OPENUP

During the development process, the team members inform
the project management some concerns that include: further
requirement analysis, debugging results, communication analy-
sis, system performance analysis, design evaluation, scalability
validation, hardware test and approval, application test, third-
party system integration evaluation, requirements refinement,
and training results. Some concerns of hardware test and
approval, application test, third-party system integration eval-
uation, requirements refinement are related to prototyping.
The concerns are reported to project management and then
a decision regarding of which approach is used in sequence is
taken.

The project team performs an assessment of the raised
concerns and then the related information is updated to the
following work products: Iteration Plan, Project Plan, System
Wide Requirements. These work products are the main inputs

318

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

to start the prototyping iteration. After the selected iteration is
executed, it provides a report with the answers and recommen-
dations to the project. The prototyping discipline provides the
Prototype Report. It is important to mention that this report is
not the only work product outputs, the iteration also generates
other work products of interest, for example, a validated model,
experiments results assessed, and application code evaluated.

Table I presents details of work products integration from
the Prototype discipline to the OpenUP development process.
Table I also describes how the work product is used by the
proposed disciplines: as input or as output. It indicates which
tasks use the work product as input and which tasks produce
the work product.

TABLE I. Work products interaction of Prototyping Discipline

Work Product Type Task that produces Task that uses
(WP) the WP the WP
Iteration Plan Input Plan Iteration/ Define Objectives
Manage Iteration
Project Plan Input Plan Project Define Objectives/
Plan Prototyping
Vision Input Develop Technical Requirements
Vision Specification/
Define Objectives
Input Identify and
System-Wide Outline Requirements/ Requirements
Requirements Detail System-Wide Specification
Requirements
Middleware Output Design Prototype Implement
Definition Solution
Protocols Output Design Prototype Implement
Definition Solution
Message Output Design Prototype Implement
Behavior Solution
Description
Software Output Design Prototype Implement
Specification Solution
Base Station Output Design Prototype Implement
Behavior Solution
Description
Code Output Prototype Building Implement
Solution
Test Case Input Create Test Cases Test
Prototype Report Output Documentation Assess Results/

Detail System
Requirements

The following comments are related to the tasks that use
the work products of the Table 1. The Define Objectives,
Plan Prototyping, and Requirements Specification tasks use
the Vision, Iteration Plan, Project Plan, and System-wide
Requirements work products that provide essential information
to perform the tasks. The Implement Solution task is performed
after the Inception phase is executed. It uses the following
work products: Middleware Definition, Protocols Definition,
Message Behavior Description, Software Specification, Base
Station Behavior Description, and Code. The next work prod-
uct, Test Case, is used in Test task. The input work product
is the Test Case - it has the specification of a set of test
inputs, execution conditions, and expected results related to
some scenario. The work product Prototype Report is the
most useful to the development process because it provides
a feedback of the prototype iteration to the Assess Results task
and the Detail System-Wide Requirements task. For example,

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

the Prototype Report contents are details about the network
protocol performance, and if the employed network protocol
complies with the application requirements.

Therefore, if the integration requirements are satisfied,
e.g., the process analyst can map all input and output work
products, then our proposed extension could be integrated to
other software development process. Thus, it can be used for
development of WSN applications as needed.

A. Publishing

In this paper, Prototyping Discipline is described using the
Eclipse Process Framework (EPF) — version 1.5.1. EPF enables
the process manager/analyst to update all components of the
process in use and also enables to publish the desired process.
The process can be available directly inside the tool or it can
be published for web access. The availability inside the EPF
helps the process analyst to preview the web site structure
before publishing it. For authoring, the EPF has available a
perspective which provides the necessary set of solutions for
method composing.

If the organization needs to provide access via web, then
the process analyst just needs to generate the web pages, and
then they can be published, for example, in the intranet of the
organization or in the public web site. So, the published web
pages are available via the web browser. For example, Figures
2 and 3 depict our proposed extensions available using the web
browser.

<~ & | € [fleshomelgian/epF/publish/Ext-OpenUP/index htm 7

@ Expand All Sections = Collapse Al Sections

(6@ Development
3 Modeling and Simulatior

« Document Prototype
« Design Prototype

 Back to top

Figure 2. Consulting the extension via web browser

V. CASE STUDY

This section aims to illustrate the use of prototype disci-
pline for the software development process for WSN applica-
tion. The case study is about monitoring a cellar used to age
Brazilian sugar cane spirits. A description of the application,
some requirements, and the achieved results are given.

A. Description

The sugar cane spirits (Cachaga) is a genuine Brazilian
drink, known worldwide. Its production began in the sixteenth
century. According to Brazilian laws, which standardize and
rank drinks, cachaga is defined as a typical beverage produced

319

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

A pracess to perform a Software prototype for SN applications.
S Extends

XTI WorkBreakdawn Structure

mmmmmmmmmm

Figure 3. Consulting the prototyping workflow via web browser

in Brazil, with an alcoholic strength of 38 % vol (thirty-
eight percent by volume) to 48 % vol (forty-eight percent by
volume) at a temperature of 20° C (twenty degrees Celsius).
It is obtained by distilling the fermented juice of sugar cane
with peculiar sensory features.

The production cycle of sugar cane spirits starts with the
milling of sugar cane, through the preparation of the wort,
fermentation, distillation, filtration and dilution. After filtering
and resting, the sugar cane spirits can be bottled or stored in
wooden barrels for aging.

The longer the aging of the sugar cane spirits, the higher is
the value of the drink. In the aging process, the characteristics
of the sugar cane spirits change, improving their qualities with
new flavors, new tastes and new coloring.

B. User Environment

The main environment place is a cellar for aging drinks.
The tasks related with the application in the environment
are: deployment task, monitoring task, maintenance task. The
considered platform is TelosB. TelosB is a WSN platform
with a TI-MSP430 micro controller, 128 kbytes of memory,
supported by TinyOS and ContikiOS, and it has a light,
temperature, and humidity sensor. The maintenance task occurs
only once a year. The monitoring task must inform the control
station when the cellar is out of its environmental specification.
So, in order to keep the cellar with the appropriate condition, a
notification must be delivered. The previous notification occurs
when the cellar environment reaches a critical temperature
or humidity, close to the upper or lower bounds. Another
notification must be sent if the cellar is out of its upper or
lower bound for any given environment condition. The control
station must store all the received events.

C. Functional Requirements

The sugar cane spirits age in a cellar with dimension of
8 meters wide per 80 meters long and 5 meters high. The
cellar can store 800 barrels with capacity of 250 liters each
or 200,000 liters in total. The barrel dimensions are 95 cm of
height, 72 cm of diameter at middle, and 58 cm of diameter at
top/bottom. During the aging time (from 1 year up to 5 years)
the temperature must be within the range of 15° C (fifteen

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

degrees Celsius) to 20° C (twenty degrees Celsius) and the air
relative humidity must be from 70% to 90%. Figure 4 shows
the arrangement of barrels in the cellar and the circles represent
the nodes’ positions.

Figure 4. Cellar illustration with the barrels and the position of the nodes

In WSN application, the nodes must be able to set upper
and lower bounds for the environmental variables (temperature
and humidity). If the sensed value gets closer to the bounds,
the node must send a message to the control station. It only
stops sending the message when the control station notifies
that the message was received. The node sends the message
again at a 5 time intervals. Nodes should be able to connect to
the network and it must be able to perform the following activ-
ities: sensing, routing, disseminating, aggregating. A threshold
should be in two levels, either for upper and lower bounds,
one soft threshold 10% lower than the hard threshold. All the
parameters must be changeable and be retrievable through the
control station. At least, once a day, the node must inform its
sensing values to the sink node. All information received in
the sink node is retransmitted it to the control station. When
all nodes send the alarm message to the control station, they
indicate their battery levels. The nodes are deployed one meter
above the barrels and two meters from each other in the same
row.

The Control Station communicates to the network via the
node sink, i.e., it is directly connected to the sink node. It
must also indicate the battery level of all nodes that perform
any communication with it. Additionally, it must indicate the
upper and lower threshold used by each node. The Control
Station must be able to set a parameter of a single node or the
whole network, and it must indicate all alarms received and
notify back to the source node.

VI. RESULTS

The case study was performed by only one person. He
performed all the roles. During the execution of one simulation
study, the time needed to execute each activity was measured.
The whole simulation discipline was completed in fourteen
days, including weekends and the prototype discipline was
performed in 21 days.

Figure 5 depictes the relative time spent for each activity.
The activities with zero time were not executed. And before,
after, and between the execution of the proposed discipline,
an Inception iteration from OpenUP is executed. Then, the
iteration executions are Inception, Simulation, Inception, Pro-
totyping, and Inception.

320

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Frototyping Discipline
Case Study (21d)

Review Code
Document Prototype [I NNEEG
Assess Results [N
Run Experiments [NN
Deploy Code [l
Test Prototype [N

Calibrate Sensors
Develop Prototype (I
Design Protorype |G
Define Requirements [l
Define Objectives [l

0 5 10 15 20 % 30

W Time (%)

Figure 5. Relative time to perform each activity

After the entire process execution, the results are compiled
and they show as expected. In each experiment, we changed
different MAC protocol parameters, such as, duty cycle, lis-
tening interval, and transmission power.

Furthermore, the activities that demanded more effort to
complete in the prototype discipline was the Development
followed by Design Prototype and then by Assess Results. The
longest activity is Run Experiments that took more than eight
days to complete.

Using this discipline to perform the prototyping aided the
developer to organize the work and to be more objective in
each step of the process.

VII. CONCLUSION

This paper presented an extension for OpenUP. The pur-
pose of this paper is to introduce the discipline Prototyping
for developing WSN applications. The prototyping discipline
was created in order to improve the knowledge about the
system as well as to refine information about the system.
This paper detailed the discipline and described the discipline
activities. In addition, there is a description about how this
discipline integrate with OpenUP and we argue that if the
process analyst maps all input and output work products in a
new software development process then the discipline can be
used in that software development process. The EPF publishes
the discipline by making available via web.

REFERENCES

[1] A. Hasler, 1. Talzi, J. Beutel, C. Tschudin, and S. Gruber, “Wireless
sensor networks in permafrost research: Concept, requirements,
implementation, and challenges,” in Proceedings... International
Conference on Permafrost (NICOP), 2008, pp. 669-674.

[2] A. Lédeczi, P. Volgyesi, M. Mar6ti, G. Simon, G. Balogh, A. Nadas,
B. Kusy, S. Déra, and G. Pap, “Multiple simultaneous acoustic source
localization in urban terrain,” in Proceedings..., International
Symposium on Information Processing in Sensor Networks.
Piscataway, NJ, USA: IEEE Press, 2005, p. 69.

[3] I Sommerville, Software Engineering, 7th ed. Addison-Wesley,
2004.

[4] IBM, “Openup,” 2009.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

A. Borg, K. Sandahl, and M. Patel, “Extending the openup/basic
requirements discipline to specify capacity requirements,” in
Proceedings..., IEEE International Conference on Requirements
Engineering. Los Alamitos, CA, USA: IEEE Computer Society,
2007, pp. 328-333.

M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna,

M. Corra, M. Pozzi, D. Zonta, and P. Zanon, “Monitoring heritage
buildings with wireless sensor networks: The torre aquila
deployment,” in Proceedings..., International Conference on
Information Processing in Sensor Networks. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 277-288.

H. Ntareme, M. Zarifi, A. Ergawy, S. Rathore, K. Wang, and
A. Strikos, “Aqua wireless sensor networks,” January 2008. [Online].
Available: http://www.online.kth.se/csd/projects/0726/

S. Ardi and N. Shahmehri, “Integrating a security plug-in with the
openup/basic development process,” in Proceedings..., International
Conference on Availability, Reliability and Security. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 284-291. [Online].
Available: http://portal.acm.org/citation.cfm?id=1371602.1371921

S. Carvalho, F. Motta Cardoso, A. Da Cunha, and L. Zanetti, “A
comparative research between scrum and rup using real time
embedded software development,” in Information Technology: New
Generations (ITNG), 2013 Tenth International Conference on, April
2013, pp. 734-735.

J. Marincic, A. Mader, R. Wieringa, and Y. Lucas, “Reusing
knowledge in embedded systems modelling,” Expert Systems, vol. 30,
no. 3, 2013, pp. 185-199. [Online]. Available:
http://dx.doi.org/10.1111/j.1468-0394.2012.00631.x

A. Nosseir, D. Flood, R. Harrison, and O. Ibrahim, “Mobile
development process spiral,” in Computer Engineering Systems
(ICCES), 2012 Seventh International Conference on, Nov 2012, pp.
281-286.

S. Berrani, A. Hammad, and H. Mountassir, “Mapping sysml to
modelica to validate wireless sensor networks non-functional
requirements,” in Programming and Systems (ISPS), 2013 11th
International Symposium on, April 2013, pp. 177-186.

K. Beck and C. Andres, Extreme programming explained. Embrace
change. Addison—Wesley Boston, 2005, vol. 2.

P. Kruchten, The Rational Unified Process: An Introduction, 3rd ed.
Addison Wesley, 2003.

321

