
Enabling Functional Integration Testing of Software-Intensive Technical Systems
by Heterogeneous Models

Thomas Bauer, Frank Elberzhager
Fraunhofer Institute for Experimental Software Engineering IESE

Kaiserslautern, Germany
{thomas.bauer | frank.elberzhager}@iese.fraunhofer.de

Abstract— In complex software-intensive systems, the analytical
quality assurance activities on different levels have become crucial
for achieving high product quality. Higher complexity and
distributed product development require systematic integration
testing to assure interoperability between components and the
fulfilment of complex distributed system operations. This work
presents the novel automated model-based testing approach ER!S
for software-intensive technical systems, which uses a heterogeneous
modeling concept for describing the test- and system-specific
information. Recommendations from the relevant process
standards have been considered to assure and support industrial
applicability. The generic approach has been instantiated for
functional integration testing on the software design level. It focuses
on the functional requirements that are related to distributed system
operations implemented by the component interplay. The test model
contains the information needed for deriving the test cases for
concrete stimulation sequences together with the corresponding
expected behavior. The approach supports stepwise system
assembly according to an operation-oriented integration strategy.
The approach has been initially evaluated in a feasibility study,
which was conducted in a research project together with tool
vendors and industrial partners from different technical system
domains. The first evaluation results are presented. A higher degree
of test coverage regarding the relevant functional requirements was
achieved.

Keywords— model-based testing; software integration testing;
standard-compliant quality assurance; ISO 26262.

I. INTRODUCTION

The increasing use of software in technical devices like
automotive and aerospace systems has enabled the efficient
development of new functionality. Software-intensive systems
are the main innovation drivers for many embedded system
domains nowadays. Most of the innovations are achieved by
embedded software [3]. The increasing complexity of software-
intensive technical systems regarding their functionality,
requirements, system structure, and amount of program code
requires more constructive and analytical measures to fulfill the
high quality needs within the given economic limits [4].

One consequence of the ever greater complexity of systems
and their software parts is the increasing impact of software
defects on the overall system quality [2]. A significant number
of defects are caused by the faulty interplay of software-
controlled components that perform complex functions, the so-
called distributed system operations. Therefore, integration and
interoperability testing of distributed systems are essential
quality assurance activities to check complex sub-system
requirements, distributed system operations, and component
interaction patterns.

In the research project MBAT, which stands for combined
model-based analysis and testing [1], we investigate and develop
quality assurance (QA) techniques for safety-related systems
from the automotive, avionics, and rail domains.

Development and QA of these systems is guided and driven
by different process standards depending on the application
domain, e.g., ISO 26262 [6] for passenger cars and DO-178C
[7] for airborne systems. Compliance of processes with such
standards is an important factor that has to be considered when
new technologies are introduced that tackle the challenges of
increasing product complexity and economic restrictions.

Software

Model
Component

Test

Model
Integration

Test

Acceptance
Testing

System
Architecture

Analysis

Requirements
Analysis

HW-SW Integrat. T.

Software
Architecture

Analysis

Component
Design

Analysis

Software
Component

Testing

SW Integration
& System
Testing

ECU Integration T.

Subsystem TestingSystem

Code Analysis &
Developer Testing

Figure 1. Simplified QA process for software-intensive technical systems

 Figure 1 shows a simplified QA process for software-
intensive technical systems. Test objects are executable
software, software integrated with hardware, and networks of
control units driven by software, which leads to various stages
of integration testing. Software testing is split into several
abstraction levels such as software component, integration, and
system testing, where individual components, interacting
subsystems, and fully integrated parts are checked against their
specifications. If executable models are available from the
design stages, dedicated model testing activities on the
component and subsystem levels are conducted in addition. This
leads to a new branch in the QA process, which is marked in
black in the figure.

This article presents the new test approach ER!S for
integration testing on the software and model levels of technical
software-based systems. It is structured as follows: Section II
presents the results from a state-of-the-practice study, which
comprises a detailed analysis of the relevant process standards.
Section III gives an overview and assessment of the state-of-the-

266Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

art approaches in model-based integration testing and motivates
why the available solutions are not sufficient. The new model-
based testing approach ER!S is presented in Section IV
(modeling notation) and Section V (test case generation
approach). The article concludes with a short presentation of the
evaluation results in Section VI and a summary in Section VII.

II. ANALYSIS OF PROCESS STANDARDS

Since technical software-intensive systems perform safety-
related functions, standards and guidelines have been developed
that are mandatory for product development and QA. Standards
provide a high-level overview of the accepted and determined
state of the practice at a defined time. They require compliance
of the development processes regarding the activities performed
and the documents produced depending on criticality degrees.
The relevant standards for software development and
verification in the transportation domains are IEC 61508
(generic recommendations for safety-related software-intensive
systems, [5]), ISO 26262 (for passenger cars, [6]), DO-178C (for
avionics systems, [7]), and EN 50128 (for the railway domain,
[8]). In our analysis, we focused on ISO 26262 and DO-178C.
ISO 26262 re-uses many recommendations and guidelines from
the generic standard IEC 61508, which will not be considered
separately in this section. The same applies to EN50218, which
does not provide additional information for the state-of-the-
practice analysis.

Software integration testing is explicitly considered and
demanded in ISO 26262 and DO-178C as a mandatory QA
activity. ISO 26262 states a set of objectives, coverage criteria,
and test case derivation methods. DO-178C and its supplements
for model-based development and verification (DO-331) and
formal methods (DO-333) define a list of generic objectives to
be satisfied during the development and QA of the different
artifacts.

Figure 8 in the appendix section shows the relevant
recommendations from the two major standards analyzed and
the derived and aggregated recommendations focusing on
functional software integration testing. The left part of the figure
describes the DO-178C recommendations and the right part
covers the recommendations from ISO 26262. The generic and
aggregated conclusions are described at the bottom of the figure.
The corresponding parts, sections, and tables in the documents
and the external sources that are referenced in standards are
annotated.

Certain recommendations depend on the safety criticality of
the artifacts being developed and verified. A higher level of
criticality always leads to stricter recommendations and more
intensive QA. Both standards have four criticality levels (A, B,
C, D), but with different orders. The most critical ISO level is D
and the highest DO level is A.

ISO 26262 distinguishes between recommended and
mandatory actions, which are annotated as lower and upper case
letters in the figure. For example, the annotation abCD of the
ISO recommendation function coverage means that this
criterion is recommended for criticality levels A and B and
mandatory for C and D. The term (--BA) for the DO
recommendation of the criterion branch coverage of source
code means that this criterion is recommended for levels A and
B, but not needed for levels C and D. Directed arrows show the
references between different document parts. Dashed lines

represent the relations of the documents and sections of the
standards to the generic and aggregated recommendations at the
bottom of the figure.

The major recommendation of both standards is the intensive
verification and validation of a product’s compliance with its
requirements. DO-178C, in particular, demands very strict
approaches for requirements refinement, traceability, and
coverage in the test cases. Additional aspects cover verification
of compliance with the software architecture design and the
interface definitions, performance properties checks, and
coverage of exceptional situations in the robustness test.

Concrete techniques for test case selection are also proposed.
Both standards mention the generic, industrially proven,
functional testing techniques of equivalence class partitioning,
boundary value analysis, and coverage of specification and
design models if such model models are available. Detailed
criteria and guidelines for the application of these techniques are
not provided. An exception is the recommendation of model
coverage for finite state machines. The definition of concrete
equivalence classes and boundary values and their exploitation
for the selection of test cases are not further defined and remain
up to the test designer.

Furthermore, architectural coverage regarding component
interfaces, interactions, and control and data coupling is
recommended. Concrete entity types of interfaces and
interaction elements are not mentioned. From the perspective of
complex system operations, the coverage of functions, function
calls, and function sequences is demanded. This criterion is
important for the coverage of complex use cases and distributed
system operations.

ISO 26262 and DO-178C explicitly support the use of
formal models, especially behavior models, for development
and QA activities. Different notations are mentioned and
recommended, for example transition-based notations (finite
state machines), pre-/post-based notations (Z), and operational
and concurrent notations (Petri nets). More information on the
modeling notations and their classification is provided in [9].

The conclusions for functional integration testing on the
model and software levels are: Requirements coverage is the
major criterion and the most important goal of testing. Concrete
techniques and criteria for creating requirements-based test
cases are mentioned. The specification of complex and
distributed system operations represents high-level
requirements of the integrated system that have to be checked
intensively. Additionally, the coverage of the software
architecture as well as that of component interfaces and their
interactions has to be considered for test design and test
specification. Based on our experience from the MBAT project,
no industrially proven automated test approach is available that
sufficiently and efficiently covers standard-compliant functional
integration testing on the model and software levels.

III. STATE OF THE ART

Model-based approaches provide a high degree of automation
regarding analysis, transformation, and generation of valid
execution sequences due to their sound mathematical basis.
Different modeling notations have been systematically exploited
for the generation of test cases. The set of corresponding
techniques is called model-based testing (MBT). MBT
approaches address those 40% of testing effort that are usually

267Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

spent on test preparation and test specification in an industrial
project [32]. By automating these activities, the overall testing
effort can be significantly reduced. The standards analyzed in the
previous section also propose the use of models for development
and QA activities. The main focus of the MBT techniques is on
functional testing, i.e., on testing against the functional
specification [9]. Functional testing usually requires the
specification of test cases with the corresponding pre-conditions,
actions, expected results, and post-conditions.

Models that are constructed for the primary use of generating
test cases from them are called test models. They represent the
relevant information from the test and QA perspectives. Test
models can describe intended and unintended functionality,
unexpected and unspecified usage, or misuse to support
robustness testing. Additionally, test models also guide and
facilitate test case generation by providing information on
importance and criticality or on the frequency of certain scenarios.
An overview of test modeling notations and test case generation
approaches is provided by Utting et al. in [9]. For model-based
integration testing, numerous approaches have been developed
with different kinds of test objectives and modeling notations. A
detailed overview and a classification are given by Bauer and
Eschbach in [31]. The approaches have been classified intro three
classes (component-based, scenario-based, and combined
approaches), which are described below. There are additional
approaches that work directly on program code and code-based
integration testing, but they are not considered here due to
restricted code access in most industrial projects and missing
support for testing high-level requirements.

The remaining solutions of the three classes have been
assessed regarding their capabilities for modeling the two
dimensions of integration testing: the low-level interaction-
focused view and the high-level requirements view, which is
related to distributed system operations. Due to the high
complexity of the software systems and their requirements, a
stepwise assembly strategy and the composition of operations
should be supported. Test scenarios require the specification of
their pre- and post-conditions. Therefore, the notation should also
support the modeling of such execution conditions. Finally, the
approach should be able to describe the interaction patterns
regarding the system components and their interfaces as part of
the operational implementation.
 The component-based integration test approaches use
dedicated behavior models, mostly different types of finite state
machines, from the component perspective as the basis for test
case generation. Their origin is the conformance and
interoperability testing of protocols [10]. For integration testing,
different finite state machine notations are used to represent the
system behavior. Most of them focus on the coverage of
synchronized events, e.g., the approaches by Koppol et al. [12]
and Robinson-Mallett et al. [14]. Other approaches use extended
finite state machines with variables and guards and define specific
criteria for additionally covering data coupling and data flow
dependencies on the subsystem level [13][15][16]. Component-
based approaches usually support stepwise system assembly and
integration testing. The main problem is that complex scenarios
and high-level requirements are not sufficiently considered due to
the focus on specific component interactions.

The scenario-based approaches focus on the modeling of
high-level system requirements, system operations, use cases, and

usage scenarios. Most of them use UML behavior diagrams such
as sequence diagrams, collaboration diagrams, interaction or
activity diagrams [18][19]. Each scenario (including rare and
exceptional cases) has to be modeled explicitly. A second group
applies operational modeling notations that consider concurrency
like Petri nets [20] and Communicating Sequential Processes
(CSP) [21]. The operational modeling notations have advantages
in terms of model composition, but weaknesses regarding the
description of operational execution conditions. Due to the high-
level view focusing on usage scenarios, low-level aspects such as
concrete component interfaces and component interactions are not
covered sufficiently by all scenario-based approaches. The strategy
of stepwise assembly is not considered by any of the approaches.

The most advanced solutions consider the heterogeneous
aspects of functional integration testing: the high-level system
features, operations, and requirements on the one hand and the
concrete component interactions on the other hand. The
approaches are classified as combined integration test
approaches. They use different kinds of finite state machines to
model the low-level behavior on the component and subsystem
levels and a high-level model to describe the relevant usage
scenarios and high-level requirements. For modeling the
scenarios, different notations are used, such as finite state
machines in the approach by Wieczorek et al. [24], UML
collaboration diagrams in the solution by Ali et al. [22], or a tree-
like feature interaction model in the publication by Benz [23].
All approaches support at least simple solutions for the
composition, the description of the operational execution
conditions, and the modeling of component interactions as
operational implementations, but no approach exists that
completely covers all aspects to the full extent. However, the
approach by Benz [23] supports different kinds of composition
operators and the one by Wieczorek et al. [24] supports the
detailed modeling of component interactions.

The conclusion of the state-of-the-art analysis is that
heterogeneous integration test approaches provide the most
appropriate solutions for our problem. They are able to cover
high-level system operations as well as low-level component
interactions. None of the state-of-the-art approaches sufficiently
supports all requirements stated. The composition of system
operations, the modeling of complex execution conditions, and
their implementation as component interplay is only partially
solved by the available solutions. Therefore, we have developed
a new model-based test approach that tackles these challenges.

IV. TEST MODELING NOTATION

The efficiency of MBT highly relies on the selection of an
appropriate modeling notation and the availability of efficient
model analysis technologies. The notation influences the quality
and efficiency of model construction, i.e., the formalization of
the requirements, and test case generation, i.e., the derivation of
traces from the model.

The selection of an appropriate modeling notation depends
on the characteristics of the system and its functionality to be
modeled. As described above, the application type is the
software level of embedded systems. In embedded systems, two
types of functions are usually provided: computation and control
functions. Computation functions are mainly used for
connecting the system with its environment via sensors and
actuators and for deriving relevant variables and decision points.

268Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Control functions are connected to the system state and modes.
They are usually used at a higher abstraction level than
computation. Based on the stimulation pattern and the current
system state, the future behavior is controlled.

MBT often focuses on testing the functional behavior and the
control functionality. The functional behavior is expressed by
stimuli, responses, pre- and post-conditions, and state variables.
Especially for technical software systems, inputs and outputs can
be complex due to time dependency and concurrency. Solutions
have been proposed particularly for the Simulink/Stateflow
simulation environment [26]. The following subsections will
describe the generic heterogeneous test modeling approach (in
subsection A), its instantiated modeling notations (in subsections
B and C), and the concept for assuring consistency of the two
notations (in subsection D).

A. Towards a generic test modeling approach

In order to enable fully automated test case generation, test
models have to describe system-specific aspects, such as the
system structure and component interfaces, as well as test-specific
aspects, such as the importance of scenarios, interfaces, and
modes. Most MBT approaches use one modeling notation as a
basis for generating test cases [9]. In order to clearly divide the
responsibilities of the model artifacts, the generic heterogeneous
test modeling approach ER!S has been developed. The approach
distinguishes between a low-level model that represents the test-
relevant system behavior and a high-level model for representing
complex requirements and guiding test case derivation. In the
MBAT project, the approach has been instantiated for functional
software integration testing.

Figure 2. Generic test modeling approach

Figure 2 describes the artifacts involved in the generic test
modeling approach and their relations. The starting point is the
system specification, which is the initial source for describing
the system functionality to be checked. In most cases, the system
specification is a textual requirements document enriched with
architectural descriptions of the components, interfaces, and

communication middleware. The test goals describe the generic
objectives of quality assurance, such as coverage of the
functional requirements, assuring robustness in unspecified
situations, or considering the most critical usage scenarios. Test
goals influence the QA strategy and therefore also test modeling
and test case generation in MBT.

Based on the specification and the test goals, an importance
analysis is conducted, which considers the complexity and defect
data of the product and other criticality factors of the test project.
The importance analysis influences the abstraction level of the test
modeling and the inclusion and exclusion of elements and
requirements. Additionally, the importance analysis may serve as
input for the distribution of the test effort, the selection of the test
coverage criteria, and the guidance regarding test case generation.

In the approach, two types of test models are constructed: the
system behavior model (SBM) and the test guidance model
(TGM). The SBM defines the relevant system behavior for the test
on an appropriate abstraction level. The SBM is constructed from
the system specification and describes the interfaces, valid input-
output trajectories, and the state space of the test object. For this
work, the SBM focuses on component interactions. Therefore, the
SBM for functional integration testing is also called interaction test
model (ITM). Due to the characteristics of the actual test object of
the evaluation, a discrete control system, the modeling notation for
the ITM is a subset of timed automata [29]. This notation enables
the description of a component-based system whose parts are
synchronized by events. Communication protocols and specific
middleware entities such as bus controllers can be modeled as
additional state-based components of the SBM.

The TGM describes patterns and constraints for the
application and exploration of the SBM and the conditions under
which they are to be applied. Constraints are defined to prohibit
or enforce defined situations for the forthcoming test case
generation. The TGM can also represent the operational profile of
the test object, which may differ in different environments. For
this work, the TGM has to deal with composite system operations
and functional scenarios with defined execution conditions.
Therefore, the TGM for functional integration testing is called
operational test model (OPM). A concrete operational
implementation is defined by the interaction patterns of the
system components. Due to the strong focus on the composition
of different operations and the efficient description of their
execution conditions, a heterogeneous notation based on B
machines [27] and CSP [28] has been chosen. The integration
of B machines and CSP for formal verification purposes has
been shown in [30].

 For the test case generation step, the coverage criteria and
the generation technology have to be defined [9]. Considering
the ER!S models, the coverage criteria determine the class of
relevant elements of the test model that shall be covered by the
test cases. Examples are the coverage of component interfaces
or the coverage of conditional execution paths within an
operation. The test cases are represented by sequences of
operations and events, which are refined to executable test
scripts (like C-Unit scripts [38] or signal descriptions in the
Matlab / Simulink environment [37]).

B. The Operational Test Model

The OPM is used to guide the selection of test cases from an
operational point of view. It describes the high-level functional
requirements and system operations with their composite

269Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

implementations and execution conditions, and the system state
space. The implementation of the modeling notation is based on
B machines and CSP. The OPM is defined as: OPM = {Op,
VarOp,SOP, s0, SExit}. It contains a finite set of hierarchical
operations Op. The composition relation is defined by a partial
ordering function, which enables operational composition with
different operators. These operators are based on the
composition operators of CSP [28]: sequencing, alternatives,
conditional branching, and parallel interleaving. They enable the
construction of so-called composite operations. The non-
composite operations are called basic operations. A finite set of
variables VarOP is defined to model the system states and
operational execution conditions. Combinations of variable
values define the system state space. A dedicated start state s0
and an optional set of ending states SEXIT for the execution of test
case are defined. For the OPM, two graphical representations
have been developed to facilitate discussions and model
reviews: the Operational Hierarchy Graph (OHG) and the
Operational Composition Graph (OCG).

1

2
3

4

5

Figure 3. Operational Hierarchy Graph for the sample application

 Figure 3 shows an OHG, which represents the hierarchy of
operations regarding their composition relations. Boxes
represent operations. Basic operations are marked white,
composite operations are marked gray. The arrow points to the
sub-operations of a composite operation. The example shown is
taken from the evaluation case study described in chapter VI.
Additionally, a valid integration order for the system operations
is annotated, which consists of five steps. The integration is
performed from lower-level to higher-level operations, i.e., from
step #1 to step #5.
 The OCG visualizes the operational composition with a
directed graph. An example of an OCG is shown in Figure 4. It
describes the composite operation Warn Priority Blinking of the
example used in the feasibility example. The rectangular boxes
represent the sub-operations referenced and rounded rectangles
represent the execution conditions (here: pre- and post-condition)
with the corresponding Boolean formulas. Composition

operators are shown with specific symbols, such as arrows for
sequencing and diamonds for alternatives. The OCG traversing
starts in the pre-condition node and ends in one of the post-
condition nodes. Every trace through an OCG is a valid
operational execution.

Figure 4. Operational Composition Graph of an operation

 The operation of the example deals with the determination of
the active blink operations when multiple turn and warn blink
operations (manual, emergency brake, and crash) are requested.
The interesting cases in the example are when (1) a previously
activated turn blink operation is overwritten by a subsequent
warn blinking (manual, emergency brake, and crash) and (2) a
previously activated emergency brake and crash warn blinking is
deactivated by subsequent turn blinking.

C. The Interaction Test Model

 The ITM describes concrete interactions between system
components in order to implement an operation. Its notation is a
subset of timed automata [29]. The ITM is defined as the parallel
composition of a set of component models (CM) that may
synchronize on shared events. A CM is defined as ܯܥ ൌ
ሺܮ, ݈଴, ,஼௢௠௣ݎܸܽ ,ݐܿܣ Locations (L) represent the vertices of .ܧ
the component automaton connected by a set of edges (E). Every
CM has a designated initial location (݈଴) and a set of variables
 which is a subset of the operational system variables ,(௖௢௠௣ݎܸܽ)
(Var). Furthermore, a CM has an alphabet of events with inputs
and outputs (Act). Edges (E) connect two locations. They are
annotated with the corresponding input (?) or output (!) event.
The operations are implemented by a set of component
interactions, which are related to concrete component edges.
Therefore, the ITM component edges are annotated with the set
of operations that are connected to them.

Figure 5. Sample interaction test model of a component

Figure 5 shows a sample ITM for the component
WarnBlinkUnit of the feasibility study. The graphical
representation is similar to common finite state machine
notations. The ITM locations are expressed as rounded nodes

270Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

(stable states) or circles (committed states); the transitions are
represented as directed edges. The stable component states are
annotated with an invariant, which is a unique combination of
component state variable values. In the example, only one
variable is used. A state is stable if all of its outward transitions
are only enabled by external stimulation [33].

Transitions are labeled with at most one event, which is
either a sending event (!) or a receiving event (?). The relevance
of transitions for the implementation of certain operations is
annotated by guard conditions. In our example, the model
transitions are used for the warn blink operations, which are
expressed by the Boolean variable OP_WARN. For analysis and
test case generation, the transition guards help to reduce the
complexity of the artifacts and focus on the relevant parts.

The component behavior is defined by a sequence of one
input and a list of outputs, which have stable source and target
states. Since timed automata allow only one event per
transition, the input and the corresponding output(s) are
constructed as an atomic sequence of transitions connected by
committed states. During the exploration of the system state
space, committed states have to be left immediately by taking
an outgoing transition when they are traversed. This assures the
atomicity of the event sequence.

D. Model Construction and Analysis

Complex formal models that are created manually from
potentially incomplete and inconsistent sources require a
systematic construction process and intensive QA. Another
issue is the use of different model types, which may produce
consistency issues. The construction approach provides a
systematic procedure for designing the test model and applies
guidelines and restrictions to reduce the fault-proneness and
complexity of the artifacts. A formal correctness proof of a
complex model is difficult to achieve. Therefore, a stepwise
heuristic procedure is applied, comprising parallel construction
and model analysis activities. The approach is supported by
prototypical tools. For the conduction of the model analysis, the
external tools Uppaal [35] and ProB [36] were used.

Both models, OPM and ITM, were checked independently
regarding certain properties such as deadlocks and reachability
of elements. Further analysis activities assured the consistency
of both models. A catalogue of concrete analysis activities was
defined, which is described in part below.

As shown in Figure 2, the main source for the test modeling
is the system specification, which contains all information
about the static system structure of the test object and its
functionality and operations. The construction approach of
ER!S models was derived from sequence-based specification
(SBS, [34]) which enables the systematic specification of
component test models. The system functionality in ER!S is
specified as a set of operations that are implemented as
interactions between components under defined conditions.

The recommended construction approach from the
operational view is bottom-up. According to the operational
hierarchy, basic operations are specified first with their
execution conditions and interaction patterns. These interaction
patterns describe event flows, sequences of inputs and
corresponding outputs, and conditions under which they are

applicable. The system is supposed to run in a so-called slow
environment [33]. This means that the system is only stimulated
when all of its components are in stable states, i.e., the
components do not perform autonomous interactions. All
component responses are direct reactions to stimulation from
the environment. Operations always start and end in stable
system states, which facilitates the construction of deterministic
test models. This leads to special requirements for the event
sequences and states that are checked in the ITM analysis.
Furthermore, the ITM is checked for interoperability, i.e., the
ability of communicating via its interfaces.

In the next step, the composite operations with their
composition patterns and the execution conditions are
specified. In the subsequent analysis, the OPM is checked for
the validity and executability of the composition patterns. The
OPM analysis checks whether operational traces exist that
completely traverse the operational specification.

The quality of the source documents affects the construction
paradigm of the ER!S models. Faulty, inconsistent, incomplete,
or even changing requirements lead to model design flaws and
model changes. In order to assure compatibility and consistency
between different modeling notations, two concepts are
introduced that focus on the relations between operations and
interaction. The first concept is an injective mapping function
for OPM states and ITM states. Each state of the OPM state
space is mapped to a unique stable system state of the ITM. The
reachability of selected stable states of the ITM is checked.
Specific requirements for stable states regarding variable values
and transition events are defined and checked as well. The
second concept are operational tags, which are annotated to
ITM component transitions. For each operation, the
corresponding sub-model of the ITM is determined. The ITM
analysis assures that the interaction patterns of the operations
are executable and valid regarding the conditions and variable
values.

V. GENERATION OF TEST ARTIFACTS

After the construction of the test model and its verification,
test cases are derived as ER!S model traces. The test case set
comprises valid model traces that cover selected test
requirements. For the generation of test cases, many results of
the ER!S model analysis can be reused since they contain
sample model traces that prove the reachability of defined
model elements.

Figure 6 shows the generation of test artifacts from the test
models. The starting point are the TGM and the SBM, which
are analyzed in order to define the assembly strategy for the
system components and operations. An operation-driven
bottom-up strategy is proposed, i.e., operations of a lower
hierarchy level are integrated earlier, whereas complex
operation of higher levels are integrated later in the test stage
[31]. An example of a valid assembly strategy for a feasibility
study is annotated in Figure 3. Each step covers a disjoint set of
the selected test requirements. Two criteria have been
developed that enable the scalable assembly of components and
operations. The first criterion determines the relevant sub-
systems that perform specific operations. The other criterion
determines the integration strategy for the relevant system

271Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

operations in each integration step. Since each assembly step
focuses only on specific aspects of the system functionality,
only a subset of the test models is required for test case
generation. Therefore, step-specific reduced test models are
created that only contain the required subset of the information.

Figure 6. Workflow for generating test artifacts

System operations have different kinds of test-relevant
information depending on their implementation and
composition. Basic operations focus on the coverage of
interaction patterns under specific conditions. Composite
operations focus on the coverage of their alternative
composition paths under specific conditions. Therefore, our test
approach provides a set of coverage criteria for component
interactions and for operational composition. The interaction
coverage criteria are related to component interfaces, event-
sending and receiving transitions, and synchronizations of
them. The operational coverage criteria consider the different
execution conditions and the characteristics of the composition
operators used in the implementation.

The test case generation procedures use the model checking
capabilities of the tools Uppaal and ProB, which are capable of
verifying properties and deriving sample traces for timed
automata, B machines, and CSP models. The ER!S tool
transforms the coverage criteria and sets of test requirements
into simple model checking queries for the tools mentioned
above. The resulting test cases are valid ER!S model traces.
They consist of sequences of operations implemented by event
traces. More details on the test selection criteria and generation
technologies are provided by Bauer and Eschbach in [31].

VI. EVALUATION

The evaluation was conducted in the MBAT project together
with tool vendors and product manufacturers from the
transportation domains. The goal was to assess the impact of the
new heterogeneous MBT technique on the test process compared
to manual expert-driven requirements-based test case creation and
a simple MBT technique with finite state machines, which had
been already introduced to the companies. The properties to be
evaluated were: (A) compliance with the recommendations of the

process standards, (B) coverage of the test cases regarding the
properties to be checked, and (C) the manual effort spent on the
construction of the test artifacts.

The evaluation was planned to be conducted in two rounds:
(1) a feasibility study to initially assess the new test approach
and (2) a detailed quantitative evaluation study to measure the
impact. In the following subsection, the test object, the results
of the first evaluation round, and the set-up for the second round
are presented.

There were several challenges that complicated an
evaluation in the MBAT project. The first challenge was the
missing independence of system experts and test experts (for
the expert-driven requirements-based test case derivation),
which might have influenced the significance of the results. The
other issue was the confidentiality of the test object in the
project, which restricted the usage and publication of certain
details. Therefore, a new test object with the corresponding
specification documents, design models, and executables was
created. The functionality is close to the features of the actual
test object, but the system structure, component interfaces, and
the concrete implementations were simplified and developed
independently to abstract from any confidential details.

A. The test object
The test object of the evaluation case study was a simplified

version of an executable design model (notation: Simulink /
Stateflow) of an automotive exterior light control system
(ELCS). The ELCS consists of five system components:
steering unit, ignition unit, warn blink unit, door control unit,
and exterior light control unit. Another eight environmental
components were considered for the evaluation of stimulation
and response. The functionality comprises several blinking
functionalities of the external lighting, including turn indication,
warn blinking, and security features such as door locking and
theft alarm.

TABLE I. PRIORITIES OF BLINK OPERATIONS IN THE CASE STUDY

Prio Class Blink operation Duration Side
1 Warning Crash warning Permanent Both
2 Manual warning* Permanent Both
3 Brake warning Permanent Both
4 Turn

indication
Permanent* Permanent Left/right

5 Temporary* Temporary Left/right
6 Security Theft alarm Permanent Both
7 Door locking Temporary Both
8 Door unlocking Temporary Both

Table I shows the different blink functionalities with their

priorities (1 – highest, 8 – lowest) and the properties that were
checked in the test evaluation. Several blink operations can be
requested at the same time, but only one operation can be active.
If multiple blink operations are requested, the operation with the
highest priority is selected and executed. The only priority
exception in the example application is that turn indication
overwrites an active warn blinking in certain situations (marked
with * in the table).

Each functionality has defined pre-conditions for its
activation and deactivation, for example regarding the ignition
status or door locking status. The observable outputs of each
functionality are the flashing side markers outside the car and

272Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

the flashing LEDs on the car’s dashboard at defined frequencies.
The key issue of functional integration testing is to assure the
correct execution of the blinking behavior in the case of multiple
activated blinking functions.

B. Preparation of the evaluation

As the first step of the evaluation, a simplified requirements
specification of the ELCS was developed based on the
knowledge of system and test experts, the original requirements,
and the existing test goals and test cases. The new specification
does not contain confidential information and abstracts from
irrelevant details for functional integration testing. Based on the
simplified specification, the executable test object, i.e., the
application under test, was developed as an executable Matlab /
Simulink model [37], which enables the automated generation
of program code. In the specification and design activities,
experts with system and domain knowledge were involved as
well as test experts.

Figure 7. Evaluation set-up

Figure 7 shows the set-up of the evaluation, which comprises
the development of the actual test object, the construction of the
test artifacts, and the derivation of the test cases for the
following three methods: (1) manual, expert-driven, and
requirements-based test case derivation, (2) MBT with finite
state machines, and (3) MBT with heterogeneous test models
(the ER!S approach).

After the creation of the test object, the test artifacts for the
different approaches were created based on the same simplified
requirements specification. The manual creation of the expert-
driven test cases (T1) was done by system experts according a
standard-compliant, expert-driven, and requirements-based
approach. The construction of the test models for the MBT with
finite state machines (M2) and the MBT with heterogeneous
models (M3) was done by dedicated method experts. For the
construction of the test artifacts (models and test cases), the
same abstraction level regarding system structure, component
interfaces, events, and variables was applied. The test cases for
both MBT approaches were created automatically, which is
displayed as dashed lines in the figure.

C. Results from the feasibility study

In the first evaluation round, we aimed at a short assessment
of the test technology. Therefore, we considered a subset of the
systems’ functionality. Test models and test cases were created

by applying each of the three methods. The assessment
regarding the selected properties is summarized in Table II. The
complexity of the different test artifacts could not be assessed
adequately since the test approaches use different modeling
paradigms (test sequences, finite state machines, and the
heterogeneous notation based on timed automata, B, and CSP).

TABLE II. SUMMARY OF FIRST EVALUATION RESULTS

 Expert/req-
based (T1)

MBT-FSM
(M2, T2)

ER!S
(M3, T3)

Standard Compl. + - +
Operational
Test Coverage 81% 67% 90%

Interaction
Test Coverage 92% 100% 100%

Test Effort 100% 119% 135%

 The first evaluation aspect is standard compliance, which
qualitatively assesses the considerations of the
recommendations from the process standards mentioned in
section II. The ER!S approach was developed with the intent of
being compliant with the industrial standards and guidelines.
The support of certain topics, such as coverage of functional
requirements, interactions, and operational sequences, is
sufficient and comparable to the expert-driven test approach that
has been applied to the test project and the resulting certification
for many years. The MBT approach with finite state machines
does not sufficiently consider the characteristics of more
complex system operations.
 The next aspect is test coverage, which is a quantitative
quality criterion of a set of test cases regarding a set of properties
and test requirements. It can be seen as an indicator of the quality
of the test process. The ER!S approach facilitates the
determination of appropriate criteria regarding the component
interactions and the operational implementation. The initial
evaluation of interaction and operational coverage showed that
ER!S test cases (T3) achieved high coverage of both criteria
(100% regarding the interactions and 90% regarding the
operational aspects). The MBT test cases (T2) achieved full
coverage of the selected interactions, which is explained by the
strong focus on component behavior and communication.
Therefore, the operational coverage of T2 is also much lower
(67%) than with the other approaches. The expert-based test
cases (T1) had reasonably high coverage of both criteria (92%
regarding the interactions and 81% regarding the operational
aspects). An influencing factor for the detailed assessment is the
varying degree of importance of selected test requirements,
which was not considered in the initial evaluation. The
discussion with the industrial partners showed that the
automated test approaches with their test case sets T2 and T3
contained a slightly higher number of less relevant elements. In
the next evaluation round, a more detailed analysis of the test
coverage will be conducted.
 The reduction of effort and costs is an important success
factor when it comes to introducing new technologies. In our
feasibility study, the effort for manually constructing the test
artifacts was assessed (T1, M2, M3). The main part of the effort
for all approaches was spent on determining and defining the
components, interfaces, events, variables, and interaction
patterns in order to ensure the same origin and abstraction level

273Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

of the test cases. Automated steps, such as the test case
generation for T2 and T3, were not considered. The initial effort
for constructing the first set of test models and test cases (+19%
for M2 and +35% for M3) is slightly higher for the model-based
approaches than for the traditional testing approach (T1). This is
caused by the fact that T1 only contains selected scenarios for
the application. Test models and the resulting test case sets are
often more complete regarding the selected properties. A
significant effort reduction for the model-based approaches is
expected when existing test artifacts are incrementally extended
for updated product versions and similar systems.
 The limitations of the feasibility study only enable an initial
and rough assessment of the impact and capabilities of our ER!S
approach. The standard compliance, the higher test coverage,
and the slightly higher test effort in the first round are indications
that ER!S is an efficient and reasonable integration testing
approach. Further evaluations are needed to assess the
capabilities and impact on the overall test processes in detail.

VII. CONCLUSION AND FUTURE WORK

In this article, we presented the novel model-based approach
ER!S for functional integration testing of software-intensive
technical systems. The detailed analysis of the recommendations
and challenges stated in the two relevant process standards (ISO
26262 and DO-178C) resulted in a set of major requirements for
functional software integration testing that can be addressed by
model-based solutions. The state-of-the-art approaches do not
sufficiently cover the multifaceted aspects of integration testing
with the two dimensions of composite and distributed system
operations and the actual component interplay that implements
these operations.

The ER!S approach is able to efficiently tackle these
challenges. It comprises a heterogeneous modeling notation that
considers both aspects of functional integration testing. The
notation enables the automated generation of test cases using
different coverage criteria. The results of the first evaluation
round were positive. Our approach produced test artifacts of
higher test quality regarding the test coverage. More detailed
results will be gathered in the second evaluation round. Other
future activities will comprise the improvement of the analysis
and test case generation algorithms and the extension of the tool
chain, which currently consists of a set of loosely coupled in-
house, external research, and commercial tools.

ACKNOWLEDGMENT

This work has been funded by the ARTEMIS project
“MBAT” (grant number: 269335). We would also like to thank
Sonnhild Namingha for proofreading.

REFERENCES
[1] Website of the project MBAT,,http//www.mbat-artemis.eu [12 Aug 2014]

[2] P. Liggesmeyer and M. Trapp, “Trends in Embedded Software
Engineering”, IEEE Software 26(3), pp. 19-25, Jan. 2009.

[3] M. Maurer and H. Winner, Automotive Systems Engineering, Springer
June 2013

[4] J. Zander, I. Schieferdecker, P. Mosterman, Model-Based Testing For
Embedded Systems, CRC Press, Sep. 2011

[5] IEC 61508, International Electrotechnical Commission, IEC 61508:2010
- Functional safety of electrical/electronic/programmable electronic
safety related systems, 2010

[6] ISO 26262, International Standardization Organization, ISO 26262:2011
- Road vehicles – Functional safety, 2011

[7] DO-178C,.Radio Technical Commission for Aeronautics Software, DO-
178C:2011 Considerations in Airborne Systems and Equipment
Certification, 2011

[8] EN 50128, CENELEC - European Committee for Electrotechnical
Standardization, EN 50128:2011, Railway applications - Communication,
signalling and processing systems - Software for railway control and
protection systems, 2011

[9] M. Utting, A. Pretschner, B. Legeard, “A Taxonomy of Model-based
Testing Approaches”, Softw. Test. Verif. Reliab. 22(5), pp. 297-312,
Aug. 2012

[10] A. V. Aho, A. T. Dahbura, D. Lee, M. Uyar, “An optimization technique
for protocol conformance test generation based on UIO sequences and
rural Chinese postman tours”, IEEE Transactions on Communications
39(11), 1604-1615, Nov. 1991

[11] Y. Wu, D. Pan, M.-H. Chen, “Techniques for Testing Component-Based
Software”, Proceedings of the 7th Int. Conf. on Engineering of Complex
Computer Systems, IEEE Computer Society, pp. 222-232, June 2001

[12] P. V. Koppol, R. H. Carver, K.-C. Tai, “Incremental Integration Testing
of Concurrent Programs”, IEEE Trans. Software Eng. 28(6), pp. 607-623,
June 2002

[13] A. Desmoulin and C. Viho, “A New Method for Interoperability Test
Generation”, Proceeding of the TestCom/FATES'07, Springer, pp. 58-73,
June 2007

[14] C. Robinson-Mallett, R. Hierons, J. Poore, P. Liggesmeyer, “Using
Communication Coverage Criteria and Partial Model Generation to Assist
Software Integration Testing”, Software Quality Control 16(2), pp. 185-
211, Apr. 2008.

[15] L. Gallagher, J. Offutt, A. Cincotta, “Integration testing of object-oriented
components using finite state machines”, Softw. Test., Verif. Reliab.
16(4), pp. 215-266, Jan. 2006

[16] F. Saglietti, N. Oster, F. Pinte, “Interface Coverage Criteria Supporting
Model-Based Integration Testing”, ARCS '07 - Workshop Proceedings,
VDE Verlag GmbH , pp. 85—93, 2007

[17] A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel, “Model-based
Testing for Real: The Inhouse Card Case Study”, Int. J. Softw. Tools
Technol. Transf. 5(2), 140—157, 2004.

[18] A. Abdurazik and J. Offutt, “Using UML Collaboration Diagrams for
Static Checking and Test Generation”, Proceedings of the 3rd
International Conference on The Unified Modeling Language: Advancing
the Standard, Springer-Verlag, pp. 383—395, 2000

[19] F. Basanieri and A. Bertolino, “A Practical Approach to UML-based
Derivation of Integration Tests”, in 4th International Software Quality
Week Europe, Nov. 2000

[20] H. Reza and E. Grant, “A Method to Test Concurrent Systems Using
Architectural Specification”, J. Supercomputing 39(3), pp. 347-357, Feb.
2007

[21] S. Nogueira, A. Sampaio, A. Mota, “Guided Test Generation from CSP
Models”, Proceedings of the 5th International Colloquium on Theoretical
Aspects of Computing, Springer, pp. 258-273, Sep. 2008

[22] S. Ali et al., “A State-based Approach to Integration Testing Based on
UML Models”, Inf. Softw. Technol. 49(11-12), pp. 1087-1106, Nov.
2007

[23] S. Benz, “Combining Test Case Generation for Component and
Integration Testing”, Proceedings of the 3rd International Workshop on
Advances in Model-based Testing, ACM, pp. 23—33, May 2007

[24] S. Wieczorek et al., “Applying Model Checking to Generate Model-Based
Integration Tests from Choreography Models”, 'Testing of Software and
Communication Systems', Springer, pp. 179-194, Nov. 2009

[25] M. Utting, A. Pretschner, B. Legeard, “A Taxonomy of Model-based
Testing Approaches”, Softw. Test. Verif. Reliab. 22(5), pp. 297-312,
Aug. 2012

[26] F. Böhr, Model-based Statistical Testing of Embedded Real-time
Software with Continuous and Discrete Signals in a Concurrent
Environment: The Usage Net Approach, PhD thesis, TU Kaiserslautern,
Dr. Hut, 2012

274Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

[27] J.-R. Abrial, The B-book: Assigning Programs to Meanings, Cambridge
University Press, 1996

[28] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, Apr.
1985

[29] R. Alur, and D. L. Dill, “A Theory of Timed Automata”, Theoretical
Computer Science 126 (2), pp. 183-235, Apr. 1994.

[30] M. J. Butler and M. Leuschel, “Combining CSP and B for Specification
and Property Verification”, Proceedings of the 2005 international
conference on Formal Methods, Springer, pp. 221-236, July 2005.

[31] T. Bauer and R. Eschbach, “Model-Based Testing of Distributed
Functions”, Advanced Automated Software Testing: Frameworks for
Refined Practice, CRC Press, pp. 151-181, Jan. 2012

[32] M. Pol, Software Testing: A guide to the TMap Approach, Addison-
Wesley Professional, Nov. 2001

[33] M. Shahbaz, Reverse Engineering Enhanced State Models of Black Box
Components to support Integration Testing, PhD thesis, Grenoble
Institute of Technology, 2008

[34] S. J. Prowell, and J. H. Poore, “Foundations of Sequence-Based Software
Specification”, IEEE Trans. Software Eng. 29(5), pp. 417-429, May 2003

[35] Website of Uppaal, http://www.uppaal.org/ [12 Aug 2014]

[36] Website of ProB, http://www.stups.uni-duesseldorf.de/ProB [12 Aug 2014]

[37] Website of Simulink http://www.mathworks.de//simulink [12 Aug 2014]

[38] Website of C-Unit http://cunit.sourceforge.net/ [12 Aug 2014]

APPENDIX

Figure 8. Aggregated recommendations of the ISO 26262 and DO-178C regarding software integration testing

275Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

