
Test Data Generation Based on GUI: A Systematic Mapping

Rodrigo Funabashi Jorge
Faculdade de Computação

Universidade Federal de Mato Grosso do Sul
Campo Grande, MS, Brazil

Email: rodrigo.funabashi@ufms.br

Márcio Eduardo Delamaro
Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo
São Carlos, SP, Brazil

Email: delamaro@icmc.usp.br

Celso Gonçalves Camilo Junior
Instituto de Informática

Universidade Federal de Goiás
Goiânia, GO, Brazil

Email: celso@inf.ufg.br

Auri Marcelo Rizzo Vincenzi
Instituto de Informática

Universidade Federal de Goiás
Goiânia, GO, Brazil

Email: auri@inf.ufg.br

Abstract—For the general case, the complete automation of
test data generation is an undecidable problem, and many
researches employ meta-heuristics trying to find a reasonable
partial solution. System testing performed via Graphical User
Interface (GUI) imposes extra challenge for automation due to
hundreds and often thousands of possibilities of events that can
be generated. This work presents a study based on systematic
mapping aiming at identifying the state of the art and the state
of the practice on the automation of system testing carried out
via GUI. We employed the traditional protocol of mapping study
to support the data collection. The work was carried out from
6th February 2012 to 1st May 2013 resulting in the selection of
39 out of 598 primary studies obtained with the application of
the search strings. Some of these works used, besides functional
testing criteria, structural testing criteria to guide meta-heuristics.
In relation to meta-heuristics, the distribution of work was more
uniform, with a slight majority using Genetic Algorithms for test
data generation. There are few research groups working on this
subject. One particular author is responsible for authoring more
than 30% of the selected primary studies and can be considered a
reference in the generation of test data from GUI. Some research
problems identified are 1) the difficult to represent all the possible
GUI interactions without cause state explosion, 2) the need to
evaluate the techniques on large software products, and 3) the
complexity to automate the representation of the GUI interactions
by reducing the number of infeasible sequences of actions.

Keywords–Systematic Mapping Study; System Testing; Testing
through GUI; Automated Test Data Generation

I. INTRODUCTION

Modern software systems include various components that
interact with each other to perform tasks. The correct behavior
of these components is often verified by means of unit tests,
integration, system and acceptance. In unit testing, the goal is
to identify logic and implementation faults on each software
unit. Integration testing is a systematic technique to integrate
the software units in order to identify faults in the communica-
tion interface between them. The system test is performed after
the system integration and aims to ensure that the software
meets all functional, behaviour and performance requirements
described in the specification. Finally, acceptance testing aims
to verify whether the developed product meets the require-
ments specified by users [1]. Many of today’s applications
have a special component in the form of a Graphical User
Interface (GUI). The GUI is composed by a set of control
elements widgets, such as buttons, menu items and text boxes.

The graphical interface is often the only piece of software
which the user interacts. This way, it is necessary to test this
interface in order to ensure product quality through the creation
of test data in the form of input sequences. An input for a GUI
application is a sequence of actions, such as clicking a button
control or dragging and dropping GUI elements. It is observed
that, in general, this type of test is performed during system
and acceptance testing.

To generate a good set of test data, test designers should
make sure that this set covers all the features of the system
and, in the context of GUI also has exercised all possibilities
of interface events. However, the difficulty in performing this
task is twofold: to manage the domain size and to sequence
the actions.

Within the first problem, unlike a system with a command
line interface, a graphical user interface has many operations
that need to be tested. A relatively small program, such as
Microsoft WordPad has 325 possible GUI operations [2].
Therefore, the number of operations can easily be an order
of extremely high magnitude for more complex programs [3].

Regarding the second issue, some functionality of the
system can only be performed following a complex sequence
of GUI events. For example, to open a file the user must
enter the File menu and select the Open operation and then
use a dialog box to specify the file name and complete
the operation. Obviously, increasing the number of possible
operations increases the sequencing problem exponentially,
making it difficult to create test data manually.

Due to the difficulties related to the generation of test
data which run via GUI, this work focused on the collection
of primary studies in this context by applying a systematic
mapping to verify what is available in the literature on this
subject and which gaps can still be explored on further
researches. In Section II, an explanation about GUI test,
its features, limitations and related issues are presented. In
Section III describes the planning, conduction, and analysis of
the application of the systematic mapping. The conclusion is
presented in Section IV.

II. GUI TESTING

Graphical user interface is a type of interface that allows the
user to interact with digital devices through graphical elements
such as icons and other visual indicators, as opposed to the

240Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

command line interface. The interaction is usually done via
mouse or keyboard, on which the user is able to select symbols
and manipulate them in order to get some practical result.
These symbols are referred to widgets and are grouped into
kits.

In our context, the testing via GUI means to perform a
system or acceptance testing of a particular product to ensure
it meets its specifications. This is normally done by using a
range of test data.

To generate a good set of test data, designers should check
that this set covers all the features of the system and, in the
context of GUI also has exercised all possibilities of interface
events. However, there are some open problems related to GUI
testing [3]:

1) the huge amount of possible sequences from each
state, i.e., in every state there are many alternative
actions leading to an exceptionally large search do-
main. Furthermore, it is computationally expensive to
generate and evaluate sequences, since the software
needs to be started and all actions need to be per-
formed in sequence. This requires efficient algorithms
to explore the search space in an intelligent way to
find optimal test sequences;

2) related to the generation of inputs for applications that
explore button clicks and drag and drop operations
components:

a) map the GUI to determine the visible widgets
and their properties. For example, the posi-
tion of the components such as buttons and
menu items;

b) derive a set of permitted actions at each stage
of implementation. For example, a visible
button may be disabled and could not be
pressed; and

c) perform and record the test sequence making
it possible to repeat (play) it again later.

To deal with the nature of the problems mentioned, the
Artificial Intelligence is very applied, since these are optimiza-
tion problems. Thus, the research area called Search-based
Software Engineering (SBSE) has emerged, which deals with
the application of mathematical optimization techniques to
solve complex problems in the field of Software Engineering.
According to the Software Engineering by Automated Search
(SEBASE) website [4], that maintains a updated database
about SBSE, 52% of the publications on SBSE focus on testing
and debugging. This is due to the high cost of implementing
these activities, which in general can spend 50% of the devel-
opment cost [1]. Given this scenario a subarea of SBSE called
Search-Based Software Testing (SBST) was created, focusing
on the application of mathematical optimization techniques in
solving problems in the context of testing activity. Therefore,
the challenge is to automate the testing process as much
as possible, and the generation of test data is, of course,
an essential part of automation. Also according to the site
SEBASE, only 6% of works in this area belong to Brazil.

III. APPLICATION OF SYSTEMATIC MAPPING

Systematic mapping is a type of literature review [5], in
which it is conducted a broader review of primary studies to
identify researches evidences and gaps, directing the focus of

future systematic reviews, which tries to answer more specific
research questions [5]. The systematic mapping study provides
an overview of a research area, the amount, the type of
research conducted, the results are available, in addition to
the frequency of publications over time to identify trends [6].
There are many reasons for conducting a systematic mapping,
the most common being [7]:

• to summarize the existing evidence regarding treat-
ment or technology, for example, to summarize em-
pirical evidence of the benefits and limitations of a
specific method;

• to identify gaps in current research in order to suggest
future areas of research; and

• to provide an overview/subsidy for advancing knowl-
edge in new areas of research.

However, the mapping can also be used to examine the
extent to which the empirical evidence supports/contradicts
theoretical assumptions, or even to aid in the generation of
new hypotheses [5], being composed of the following steps:
planning, conducting and reporting [5].

A. Planning

The planning of this systematic mapping, which describes
the protocol that was established, was carried out from the
adaptation of the protocol model presented by Petersen et.
al. [6], that specifies the following elements [5]: research
questions, search strategy and implementation, criteria for
inclusion and exclusion, and data extraction and synthesis
methods.

Research questions define the scope of the mapping. They
guide the development of the remainder of the study and
should be set according to the motivations of the study [6].
The research questions (RQ) were elaborated in order to find
primary studies to understand and summarize evidences on the
adoption of techniques for automatic generation of test data
from GUI:

• RQ1: Do the techniques employed in GUI testing
intend to cover a specific test criterion?

• RQ1.1: What is the test criterion?

• RQ2: What are the heuristics, techniques, algorithms
or strategies used for automatic generation of test data
from GUI?

• RQ3: Do the techniques for automatic generation of
GUI test data require a data model that abstracts the
GUI to perform the test generation?

• RQ3.1: If need, is the model generated automatically
or manually?

• RQ4: What are the available tools and how do they
support the automatic generation of test data from the
GUI?

• RQ5: In what domain are automatically generating test
data based on GUI applied?

Systematic mapping is a kind of secondary study in Soft-
ware Engineering [8], identifying primary studies from several
sources (databases). These sources can be classified into two
main categories [8]: index engines and sites of editors. The
index engines work with several publishers publications. One

241Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

can cite SCOPUS as an example of index engines. The sites of
editors refer to databases of online literature supplied by the
editors to facilitate the recovery of the published literature. A
popular site of editors in computing is the IEEE. However, as
is the case of the ACM, some of these sources fall into two
categories. The bases chosen in this study are ACM, IEEE,
Science Direct, and SCOPUS, considered to be relatively
efficient in conducting systematic reviews and mappings in
the context of Software Engineering [9].

To build the search string, key concepts that wish to
investigate were selected. From this, the synonyms, related
terms and acronyms were identified. Related to the concept
“Graphical User Interface” were graphical user interface, GUI
e web application. For the concept “Automatic Test Data
Generation” were test data generation, test-data generation,
generating test data, generate test data, automated testing,
automation testing, and automation test.

Based on the above key concepts, the default search string
was built using the Boolean AND/OR connectors:

(“graphical user interface” OR “GUI” OR “web applica-
tion”) AND (“test data generation” OR “test-data genera-
tion” OR “generating test data” OR “generate test data” OR
“automated testing” OR “automation testing” OR “automa-
tion test”)

A total of 10 articles were selected [10]–[19]. These articles
have provided evidence that this search string is adequate, since
all these items were returned after the application of search
string in their respective bases.

To determine the relevancy of given primary study it must
satisfy any Inclusion Criteria (IC) on the other hand it will be
excluded by any Exclusion Criteria (EC). Our inclusion criteria
are:

• IC1: The study presents a case study or experience
report using techniques for generating test data from
GUI;

• IC2: The study presents an investigation of the tech-
nical features to generate test data from GUI;

• IC3: The study proposes methods for evaluating tech-
niques for generating test data from GUI;

• IC4: The study presents tools that use techniques to
generate test data from GUI.

Primary studies considering different domains or presenting
ideas in a vague way were excluded. To classify these studies
the following exclusion criteria were identified:

• EC1: The work is not related to any of the research
questions;

• EC2: The work was selected by another search string
applied the same basis, sometimes with the keywords
searched in the title, sometimes in the abstract. Thus,
on these bases, the same work can be retrieved twice.

• EC3: Lack of information about the work;

• EC4: The work has already been selected by another
source;

• EC5: The work is not in English language.

Based on the inclusion and exclusion criteria, three stages
were defined for the selection of works. The first was based on
the analysis of keywords, title and abstract to decide whether

the work may or may not be included. In the second stage, the
introduction and conclusion were considered for analysis and
third, the analysis was applied to the whole work.

For synthesis and extraction of data, some additional infor-
mation to the research questions were collected, such as: which
work focuses on web applications for generation of test data,
whom authored the selected works, and what is the relation
between the selected primary studies.

B. Conducting

After the protocol specification, we started to apply the
search strings on the selected databases. Observe that this
step requires, sometimes, and adaptation of the default search
string to satisfy specific constraints of a particular database
search engine. The complete set of search strings were omit-
ted for sake of space, but they can be found in [20]. The
application and adaptation of search strings happened from 8
to 11 October 2012, which returned all the control articles
previously mentioned in Section III-A. In Table I, one can get
the number of items returned for each search string in each
database. Columns ICn and ECn correspond to the inclusion
and exclusion criteria defined in Section III-A, respectively.
Numbers in these columns represent the total of primary
studies included or excluded from analysis based on that
specific inclusion or exclusion criterion.

Identification and selection of the work was performed in
three steps: reading the title, keywords and abstract; reading the
introduction and conclusion, and reading the whole paper. In
the first step, using the JabRef [21], each work was analyzed by
two experts applying the all the inclusion and some exclusion
criteria (EC1, EC2, and EC3), defined in Section III-A, thus
helping organizing and cataloging the works. This analysis
took place in the order of application of search strings, first
considering the ones applied on titles (ACM-1 and IEEE-1) and
subsequently the ones applied on abstracts (ACM-2 and IEEE-
2), resulting in 98 works for the inclusion criteria representing
16,39% of the total.

However redundant works between databases had not yet
been identified, that is, the exclusion criterion (EC4) had not
yet been applied. After the application of EC4 and reading the
introduction and conclusion (Step 2) the number of selected
papers was reduced to 59, corresponding to 9,87% of the total,
as shown in the summary presented in Table I. Observe that
there is no primary study written on language different than
English, therefore, the exclusion criterion EC5 was not applied.

In the final selection process, third stage, studies were
analyzed completely and thereafter 39 primary studies were
selected to compose the mapping, 6,52% of the 598 primary
studies initially selected. It is observed that this reduction rate
is consistent with other surveys in the area [6][22].

C. Analysis of the Results

Figure 1 presents the 39 selected primary studies organized
by year as a directed graph. The arrows indicate a given
primary study cite another one. Observe that from 1998 until
the date of application of search strings, the majority of studies
is concentrated in 2010, summing up 10 studies. However, the
only primary study identified in 2001 was cited by 15 other
works, and all studies from 2010 are referenced together by 8
other studies. Two studies that may be considered references

242Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

TABLE I. Results of the Second Analysis of the Primary Studies

Strings IC1 IC2 IC3 IC4 EC1 EC2 EC3 EC4 Total IC (%) Total EC (%) Total

ACM-1 21 3 1 2 87 0 1 0 27 (23,48%) 88 (76,52%) 115
ACM-2 2 0 0 0 7 15 0 0 2 (8,34%) 22 (91,66%) 24
IEEE-1 10 1 0 1 53 0 2 13 12 (15,00%) 68 (85,00%) 80
IEEE-2 1 0 0 0 5 19 0 1 1 (3,84%) 25 (96,16%) 26
SCIENCE 4 1 0 0 151 0 25 1 5 (2,75%) 177 (97,25%) 182
SCOPUS 11 0 1 0 134 0 1 24 12 (7,02%) 159 (92,13%) 171
AMOUNT 49 5 2 3 437 34 29 39 59 (9,87%) 539 (90,13%) 598

1 9 9 8

1 9 9 9

2 0 0 0

2 0 0 1

2 0 0 2

2 0 0 3

2 0 0 4

2 0 0 5

2 0 0 6

2 0 0 7

2 0 0 8

2 0 0 9

2 0 1 0

2 0 1 1

2 0 1 2

[24]

[16]

[25]

[26]

[27]

[18]

[28]

[19]

[14]

[29]

[30]

[31]

[32]

[15]

[33]

[34]

[35]

[36]

[12]

[23]

[37]

[38]

[8] [39]

[40]

[41]

[42]

[43][11] [44] [3]

[45]

[46]

[47]

[2]

[48]

[49]

[50]

[17]

Figure 1. Distribution and Citation Between the Primary Studies

are the one authored by White and Almezen [23] and the
one authored by Memon et. al. [2] with 11 and 15 citations
each, respectively. The 39 selected primary studies involved
74 different authors of 27 affiliations (institutions) distributed
in 13 countries. Most work within this context are authored
by the same authors. An example is Dr. Atif M. Memon with
participation, in approximately, 31% of the selected studies
and can be considered a reference in the generation of test
data from GUI. Highlight for the University of Maryland
in the USA, appearing as an institution and country with
more participation in the selected studies, 12 (30,8%) and 15
(38,5%), respectively.

Regarding the first research question RQ1, the works do not
identify a specific test criterion, but sometimes they mention
which technique is used for generation of test data. Among the
three traditional testing techniques, functional, structural, and
fault-based, functional corresponds to 94,8%, since when the
study did not mention what technique was used it was consid-
ered as functional since test data generation is based on GUI.
Some works, however, besides the functional technique also
use the source (structural technique) to guide its search tech-
nique or methodology for test data generation [15][26][27][48].

To answer the research question RQ2, we analyzed the
meta-heuristics and techniques generally used in studies for the
generation of test data. In this case, the distribution of works
was more uniform, with a small majority of 10 studies (25,6%)
using Genetic Algorithms [3][14][26][32] [36][38][46][49].

Genetic algorithms are implemented as a computer sim-
ulation in which an initial population, in general randomly
generated, representing a possible solution, is evolved to a
better solution through iterations. The evolution occurs through
generations. On each generation, the quality of the current
solution in the population is evaluated, some individuals are
selected for the next generation, and mutated or recombined
to form a new population. The new population is then used as
input to the next iteration of the algorithm.

Another meta-heuristic that was also used in three studies
[16][18][34] was the Ant Colony Optimization. The algorithm
was created by Marco Dorigo in 1992 [51] and was inspired
in the behavior of ants searching for food. This is justified
by the fact that a colony of insects are very organized and
collective activities are carried out with self-organization. The
idea is that ants move randomly in search of food, i.e., they
conduct exploratory searches for possible solutions. Once one

243Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

finds food, it returns to the nest depositing pheromone. The
greatest amount of pheromone means that more ants found this
path and deposited the pheromone, increasing the likelihood
of this being the best or the shortest way. Thus, this path
became a solution that was optimized according to the level
of pheromone found in the trail.

Other meta-heuristics for generating test data were also
used, as is the case studies [14] and [35] which applied Q-
Lerning and the work of Raul et. al. [44] that used Particle
Swarm Optimization. In addition to meta-heuristics, other
techniques have been identified as the work [17] and [27] who
have used ontologies.

A fact that has been observed and that should be explored
is that several studies [14][15][29] need an initial model of
the GUI’s application to perform the generation of test data
(research question RQ3). Just the work of Mariani et al. [19]
employed automatic generation of a model and produced the
test data incrementally by traversing the GUI model of the
application under test, requiring no human intervention. They
used the Q-Lerning, a tool from the AI area that learns to
interact with the application under test and to stimulate their
functionality.

Responding to the fourth research question RQ4, some
tools that assist in generating test data were identified during
the mapping. Most tools are complementary, i.e., they allow
to obtain better results when combined. One of the most
used tool in the selected studies was GUI Testing Framework
(GUITAR) [45] which was used in 42% of the selected studies.
This is a project supported by National Science Foundation,
aiming at simplifying GUI testing by automatically generating
test data to test the functionality of the program under test
via the GUI. This tool is divided into four components that
represent its main functions: GUIRipper that extracts infor-
mation from the GUI of the application under testing; the
GUIStructure2Graph that builds an event flow graph (EFG)
with the GUI elements; the TestCaseGenerator which gener-
ates a set of test data based on the EFG (but without the use of
meta-heuristics); and GUIReplayer responsible for running the
program with the generated suite of tests. One of the studies
that applied the tool was performed by Huang et al. [3]. They
used genetic algorithms to correct invalid test data sets. The
work consisted of two steps: generate a set of test and repair
the test set containing viable sequences for this, used the EFG
model generated by GUITAR.

The work of Mariani et al. [19] aims to implement and
to evaluate a technique for generating test data focusing on
interactive applications, i.e., applications that interact with
users through a GUI or Web. The technique and tool devel-
oped and used are called AutoBlackTest, that works with the
generation of a model and produces the test data incrementally
by exercising the application under test. For this, it uses Q-
Lerning, an optimization techniques in the area of Artificial
Intelligence, that learns how to interact with the application
under test to stimulate their functionality.

An important feature of this work is that the AutoBlackTest
does not depend on an initial set for execution. The vast
majority of current techniques depends on this data set and
to generate GUI testing its works in two phases [37][40]:
generates a model of the sequences of events that can be
produced through the interaction with the GUI application

under test; and generates a set of test data that covers sequences
in the model.

The effectiveness of these techniques depends on the
integrity of the original model. When the initial model is
obtained by stimulation of the application under test with a
simple sampling strategy that uses a subset of GUI actions to
navigate and analyze the windows, the derived model is partial
and incomplete [19]. Thus, the test data generated can ignore
many interactions and windows not discovered in the initial
phase.

To evaluate the proposal, Mariani et. al. [19] carried out a
comparative empirical evaluation between AutoBlackTest with
the GUITAR tool using four applications for desktop comput-
ers. In the empirical comparison between AutoBlackTest and
GUITAR, when applied in sessions with 12 hours of testing,
was conclusive that AutoBlackTest can generate test data that
reach a higher code coverage and also reveals more flaws than
GUITAR.

Finally, answering the research question RQ5, most of the
selected studies, approximately 95% use desktop application
for generating test data from the GUI. Only the studies
[26][31][32] applies the proposal in a Web context, thus
showing that much can still be done in this area.

IV. CONCLUSION

This study applied a systematic mapping of the literature
between the years 1998 to 2012, on application of techniques
for generating test data from the GUI of the application under
test. 39 primary studies from different sources between regular
and high-level conferences were selected, corresponding to
6,52% of the total number of studies identified by the search
application. It was found that this percentage is justified due
to two reasons: (1) there are many works that apply, evaluate
and propose techniques to generate test data, but not using as
reference the GUI; and (2) some works focus on generating
test data to test the GUI itself and not use it as input for the
generation of test data.

With respect to the five research question we investigated,
we found that, in general, the proposed testing generation
techniques employed most functional testing criteria for test
set quality evaluation (RQ1). In terms of meta-heuristic (RQ2),
Genetic Algorithm is employed in 10 out of 39 the primary
studies, followed by ant colony employed in 3 out of 39
studies, and q-learn which were employed 2 out of 39 primary
studies (RQ3). In terms of automation (RQ4) GUITAR (a tool
to test GUI desktop applications) was used in 42% of the
primary studies, reinforcing the result obtained by RQ5 that
almost all studies were performed in the context of desktop
applications.

Therefore, based on primary studies identified and answers
to the research questions, we can highlight some research areas
in the context of testing from GUI to be explored, which is
the main purpose of a systematic mapping study:

• development of a software environment that allows
to abstract the GUI model automatically, providing
subsidies so that test data can be run at any time and
if there is a change or modification in the GUI, the
model can be updated and reevaluated at any time;

244Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

• conduction of experimental studies to compare the
different test data generation techniques, identifying
the main characteristics of each one;

• definition of a strategy to reduce the cost and increase
efficiency in the generation of test data from GUI;

• adaptation of the representation of the techniques
presented for generating test data from GUIs for Web
applications; and

• conduction of systematic reviews considering more
specific research questions about the use of meta-
heuristics to support the automation of test data gen-
eration.

ACKNOWLEDGMENT

The authors would like to thank the Brazilian funding
agencies Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (CAPES), Fundação de Amparo à Pesquisa
do Estado de Goiás (FAPEG), and Fundação de Apoio ao
Desenvolvimento do Ensino, Ciência e Tecnologia do Estado
de Mato Grosso do Sul (FUNDECT) which support this work.

REFERENCES

[1] G. J. Myers and C. Sandler, The Art of Software Testing. John Wiley
& Sons, 2004.

[2] A. Memon, M. Pollack, and M. Soffa, “Using a goal-driven approach to
generate test cases for guis,” in Software Engineering, 1999. Proceed-
ings of the 1999 International Conference on, May 1999, pp. 257–266.

[3] S. Huang, M. B. Cohen, and A. M. Memon, “Repairing
gui test suites using a genetic algorithm,” in Proceedings of
the 2010 Third International Conference on Software Testing,
Verification and Validation, ser. ICST’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 245–254. [Online]. Available:
http://dx.doi.org/10.1109/ICST.2010.39

[4] Y. Zhang, “Sbse repository,” Página Web, Aug. 2013, disponível
em: http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/. Acesso em:
12/12/2013.

[5] B. Kitchenham, S. Charters, D. Budgen, P. Brereton, M. Turner,
S. Linkman, M. Jorgensen, E. Mendes, and G. Visaggio, “Guidelines
for performing systematic literature reviews in software engineering,”
Software Engineering Group – School of Computer Science and Math-
ematics – Keele University, Keele, Staffs, ST5 5BG, UK, Tech. Rep.
EBSE-2007-01, Jul. 2007.

[6] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering,” in Proceedings of
the 12th international conference on Evaluation and Assessment
in Software Engineering, ser. EASE’08. Swinton, UK, UK:
British Computer Society, 2008, pp. 68–77. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2227115.2227123

[7] J. Biolchini, P. G. Mian, A. C. C. Natali, and G. H. Travassos,
“Systematic review in software engineering,” Systems Engineering and
Computer Science Dept. - COPPE/UFRJ, Rio de Janeiro/RJ - Brazil,
Technical Report RT-ES 679/05, 2005.

[8] L. Chen, M. A. Babar, and H. Zhang, “Towards an evidence-based
understanding of electronic data sources,” in International Conference
on Evaluation and Assessment in Software Engineering (EASE2010).
Keele, UK: BCS, Apr. 2010.

[9] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
“A systematic review of the application and empirical investigation
of search-based test case generation,” IEEE Trans. Softw. Eng.,
vol. 36, no. 6, Nov. 2010, pp. 742–762. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2009.52

[10] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical gui
test case generation using automated planning,” IEEE Trans. Soft.
Eng., vol. 27, no. 2, Feb. 2001, pp. 144–155. [Online]. Available:
http://dx.doi.org/10.1109/32.908959

[11] M. Cunha, A. Paiva, H. Ferreira, and R. Abreu, “Pettool: A pattern-
based gui testing tool,” in Software Technology and Engineering (IC-
STE), 2010 2nd International Conference on, vol. 1, Oct. 2010, pp.
202–206.

[12] X. Yuan and A. M. Memon, “Generating event sequence-based
test cases using gui runtime state feedback,” IEEE Trans. Softw.
Eng., vol. 36, no. 1, Jan. 2010, pp. 81–95. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2009.68

[13] ——, “Iterative execution-feedback model-directed gui testing,” Inf.
Softw. Technol., vol. 52, no. 5, May 2010, pp. 559–575. [Online].
Available: http://dx.doi.org/10.1016/j.infsof.2009.11.009

[14] A. Rauf, S. Anwar, M. A. Jaffer, and A. A. Shahid, “Automated
gui test coverage analysis using ga,” in Proceedings of the
2010 Seventh International Conference on Information Technology:
New Generations, ser. ITNG’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 1057–1062. [Online]. Available:
http://dx.doi.org/10.1109/ITNG.2010.95

[15] S. Arlt, C. Bertolini, and M. Schäf, “Behind the scenes: An approach
to incorporate context in gui test case generation,” in Proceedings of
the 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops, ser. ICSTW’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 222–231. [Online].
Available: http://dx.doi.org/10.1109/ICSTW.2011.70

[16] S. Bauersfeld, S. Wappler, and J. Wegener, “An approach to automatic
input sequence generation for gui testing using ant colony optimization,”
2011, pp. 251–252.

[17] H. Li, H. Guo, F. Chen, H. Yang, and Y. Yang, “Using ontology to
generate test cases for gui testing,” Int. J. Comput. Appl. Technol.,
vol. 42, no. 2/3, Feb. 2011, pp. 213–224. [Online]. Available:
http://dx.doi.org/10.1504/IJCAT.2011.045407

[18] Y. Huang and L. Lu, “Apply ant colony to event-flow model for
graphical user interface test case generation,” IET Software, vol. 6,
no. 1, 2012, pp. 50–60.

[19] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro, “Autoblacktest: Au-
tomatic black-box testing of interactive applications,” Software Testing,
Verification, and Validation, 2008 International Conference on, vol. 0,
2012, pp. 81–90.

[20] R. F. Jorge, “Geração de dados de teste a partir de gui: Um
mapeamento sistemático,” 2013, 24 junho 2014. [Online]. Available:
http://www.inf.ufg.br/~auri/icsea2014/

[21] JabRef, “Ferramenta JabRef,” Página do Projeto, Oct. 2013, disponível
em: http://jabref.sourceforge.net/. Acesso em: 12/12/2013.

[22] E. EngstrÃm and P. Runeson, “Software product line testing a system-
atic mapping study,” Information and Software Technology, vol. 53,
2011, pp. 2–13.

[23] L. White and H. Almezen, “Generating test cases for
gui responsibilities using complete interaction sequences,” in
Proceedings of the 11th International Symposium on Software
Reliability Engineering, ser. ISSRE’00. Washington, DC, USA:
IEEE Computer Society, 2000, pp. 110–124. [Online]. Available:
http://dl.acm.org/citation.cfm?id=851024.856239

[24] C. Bertolini and A. Mota, “A framework for gui testing based on use
case design,” in Proceedings of the 2010 Third International Conference
on Software Testing, Verification, and Validation Workshops, ser.
ICSTW’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
252–259. [Online]. Available: http://dx.doi.org/10.1109/ICSTW.2010.37

[25] S. Qian and F. Jiang, “An event interaction structure for gui test case
generation,” in Computer Science and Information Technology, 2009.
ICCSIT 2009. 2nd IEEE International Conference on, Aug. 2009, pp.
619–622.

[26] X. Peng and L. Lu, “A new approach for session-based test case
generation by ga,” in Communication Software and Networks (ICCSN),
2011 IEEE 3rd International Conference on, May 2011, pp. 91–96.

[27] H. Li, F. Chen, H. Yang, H. Guo, W. C.-C. Chu, and Y. Yang, “An
ontology-based approach for gui testing,” in Proceedings of the 2009
33rd Annual IEEE International Computer Software and Applications
Conference - Volume 01, ser. COMPSAC’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 632–633. [Online]. Available:
http://dx.doi.org/10.1109/COMPSAC.2009.92

245Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://dx.doi.org/10.1109/ICST.2010.39
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/
http://dl.acm.org/citation.cfm?id=2227115.2227123
http://dx.doi.org/10.1109/TSE.2009.52
http://dx.doi.org/10.1109/32.908959
http://dx.doi.org/10.1109/TSE.2009.68
http://dx.doi.org/10.1016/j.infsof.2009.11.009
http://dx.doi.org/10.1109/ITNG.2010.95
http://dx.doi.org/10.1109/ICSTW.2011.70
http://dx.doi.org/10.1504/IJCAT.2011.045407
http://www.inf.ufg.br/~auri/icsea2014/
http://jabref.sourceforge.net/
http://dl.acm.org/citation.cfm?id=851024.856239
http://dx.doi.org/10.1109/ICSTW.2010.37
http://dx.doi.org/10.1109/COMPSAC.2009.92

[28] X. Zhu, B. Zhou, J. Li, and Q. Gao, “A test automation solution
on gui functional test,” 2008, pp. 1413–1418. [Online]. Available:
http://goo.gl/cxZ623

[29] Y. Hou, R. Chen, and Z. Du, “Automated gui testing for
j2me software based on fsm,” in Proceedings of the 2009
International Conference on Scalable Computing and Communications;
Eighth International Conference on Embedded Computing, ser.
SCALCOM-EMBEDDEDCOM’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 341–346. [Online]. Available:
http://dx.doi.org/10.1109/EmbeddedCom-ScalCom.2009.67

[30] P. A. Brooks and A. M. Memon, “Automated gui testing guided
by usage profiles,” in Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, ser.
ASE’07. New York, NY, USA: ACM, 2007, pp. 333–342. [Online].
Available: http://doi.acm.org/10.1145/1321631.1321681

[31] A. Shahzad, S. Raza, M. Azam, K. Bilal, Inam-Ul-haq, and S. Shamail,
“Automated optimum test case generation using web navigation graphs,”
2009, pp. 427–432. [Online]. Available: http://goo.gl/tiHCG8

[32] S. H. Kuk and H. S. Kim, “Automatic generation of testing
environments for web applications,” in Proceedings of the 2008
International Conference on Computer Science and Software
Engineering - Volume 02, ser. CSSE’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 694–697. [Online]. Available:
http://dx.doi.org/10.1109/CSSE.2008.1026

[33] X. Yuan, M. Cohen, and A. M. Memon, “Covering array
sampling of input event sequences for automated gui testing,”
in Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, ser. ASE’07. New
York, NY, USA: ACM, 2007, pp. 405–408. [Online]. Available:
http://doi.acm.org/10.1145/1321631.1321695

[34] Y. Lu, D. Yan, S. Nie, and C. Wang, “Development of an improved gui
automation test system based on event-flow graph,” in Proceedings of
the 2008 International Conference on Computer Science and Software
Engineering - Volume 02, ser. CSSE’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 712–715. [Online]. Available:
http://dx.doi.org/10.1109/CSSE.2008.1336

[35] G. Becce, L. Mariani, O. Riganelli, and M. Santoro, “Extracting widget
descriptions from guis,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 7212 LNCS, 2012, pp. 347–361. [Online].
Available: http://goo.gl/jmLntA

[36] A. Rauf, A. Jaffar, and A. Shahid, “Fully automated gui testing and
coverage analysis using genetic algorithms,” International Journal of
Innovative Computing, Information and Control, vol. 7, no. 6, 2011,
pp. 3281–3294. [Online]. Available: http://goo.gl/zsRadh

[37] X. Yuan, M. B. Cohen, and A. M. Memon, “Gui interaction
testing: Incorporating event context,” IEEE Trans. Softw. Eng.,
vol. 37, no. 4, Jul. 2011, pp. 559–574. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2010.50

[38] I. Alsmadi and K. Magel, “Gui path oriented test generation
algorithms,” in Proceedings of the Second IASTED International
Conference on Human Computer Interaction, ser. IASTED-HCI’07.
Anaheim, CA, USA: ACTA Press, 2007, pp. 216–219. [Online].
Available: http://dl.acm.org/citation.cfm?id=1698252.1698291

[39] C. Bertolini, A. Mota, E. Aranha, and C. Ferraz, “Gui testing
techniques evaluation by designed experiments,” in Proceedings
of the 2010 Third International Conference on Software Testing,
Verification and Validation, ser. ICST’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 235–244. [Online]. Available:
http://dx.doi.org/10.1109/ICST.2010.41

[40] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage criteria for
gui testing,” in Proceedings of the 8th European software engineering
conference held jointly with 9th ACM SIGSOFT international
symposium on Foundations of software engineering, ser. ESEC/FSE-9.
New York, NY, USA: ACM, 2001, pp. 256–267. [Online]. Available:
http://doi.acm.org/10.1145/503209.503244

[41] A. Beer, S. Mohacsi, and C. Stary, “Idatg: an open tool for automated
testing of interactive software,” in Computer Software and Applications
Conference, 1998. COMPSAC’98. Proceedings. The Twenty-Second
Annual International, Aug. 1998, pp. 470–475.

[42] M. Hayat and N. Qadeer, “Intra component gui test case generation
technique,” in Information and Emerging Technologies, 2007. ICIET
2007. International Conference on, Jul. 2007, pp. 1–5.

[43] X. Yuan and A. M. Memon, “Iterative execution-feedback
model-directed gui testing,” Inf. Softw. Technol., vol. 52,
no. 5, May 2010, pp. 559–575. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2009.11.009

[44] R. Abdul, N. Ejaz, Q. Abbas, S. Rehman, and A. Shahid, “Pso based
test coverage analysis for event driven software,” 2010, pp. 219–224.
[Online]. Available: http://goo.gl/7mdpDZ

[45] D. R. Hackner and A. M. Memon, “Test case generator for
guitar,” in Companion of the 30th international conference on
Software engineering, ser. ICSE Companion’08. New York,
NY, USA: ACM, 2008, pp. 959–960. [Online]. Available:
http://doi.acm.org/10.1145/1370175.1370207

[46] X. Yuan, M. Cohen, and A. Memon, “Towards dynamic adaptive
automated test generation for graphical user interfaces,” in Software
Testing, Verification and Validation Workshops, 2009. ICSTW ’09.
International Conference on, Apr. 2009, pp. 263–266.

[47] K. C. Chuang, C. S. Shih, and S. H. Hung, “User behavior augmented
software testing for user-centered gui,” in Proceedings of the 2011
ACM Symposium on Research in Applied Computation, ser. RACS’11.
New York, NY, USA: ACM, 2011, pp. 200–208. [Online]. Available:
http://doi.acm.org/10.1145/2103380.2103421

[48] Q. Xie and A. Memon, “Using a pilot study to derive a gui model
for automated testing,” ACM Transactions on Software Engineering
and Methodology, vol. 18, no. 2, 2008, pp. 1–35. [Online]. Available:
http://goo.gl/cXsdQi

[49] I. Alsmadi, “Using genetic algorithms for test case generation
and selection optimization,” 2010, pp. 1–4. [Online]. Available:
http://goo.gl/xNZhRY

[50] X. Yuan and A. M. Memon, “Using gui run-time state as feedback
to generate test cases,” in Proceedings of the 29th international
conference on Software Engineering, ser. ICSE’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 396–405. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2007.94

[51] M. Dorigo and L. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” Evolutionary
Computation, IEEE Transactions on, vol. 1, no. 1, 1997, pp. 53–66.

246Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://goo.gl/cxZ623
http://dx.doi.org/10.1109/EmbeddedCom-ScalCom.2009.67
http://doi.acm.org/10.1145/1321631.1321681
http://goo.gl/tiHCG8
http://dx.doi.org/10.1109/CSSE.2008.1026
http://doi.acm.org/10.1145/1321631.1321695
http://dx.doi.org/10.1109/CSSE.2008.1336
http://goo.gl/jmLntA
http://goo.gl/zsRadh
http://dx.doi.org/10.1109/TSE.2010.50
http://dl.acm.org/citation.cfm?id=1698252.1698291
http://dx.doi.org/10.1109/ICST.2010.41
http://doi.acm.org/10.1145/503209.503244
http://dx.doi.org/10.1016/j.infsof.2009.11.009
http://goo.gl/7mdpDZ
http://doi.acm.org/10.1145/1370175.1370207
http://doi.acm.org/10.1145/2103380.2103421
http://goo.gl/cXsdQi
http://goo.gl/xNZhRY
http://dx.doi.org/10.1109/ICSE.2007.94

	Introduction
	GUI testing
	Application of Systematic Mapping
	Planning
	Conducting
	Analysis of the Results

	Conclusion
	References

