
Refactoring to Static Roles

Fernando Barbosa

Escola Superior de Tecnologia

Instituto Politécnico de Castelo Branco

Castelo Branco, Portugal

fsergio@ipcb.pt

Ademar Aguiar

INESC TEC and Departamento Informática

Faculdade de Engenharia da Universidade do Porto

Porto, Portugal

ademar.aguiar@fe.up.pt

Abstract— Roles can be used to overcome some composition

limitations in Object Oriented Languages and contribute to a

better code reuse, reducing code replication and improve code

maintenance. Therefore, the refactoring of legacy code to roles

is an important step in maintaining and evolving this code. In

this paper, we present refactorings to convert a system to roles

We also present some refactorings that enable roles to be even

more reusable.

Keywords- roles; refactoring; code reuse; code maintenance

I. INTRODUCTION

The “tyranny of the dominant decomposition” states that
a single decomposition strategy cannot capture all possible
views of a system [1], so there are always concerns that
cannot be adequately decomposed and are scattered among
the various modules. Several decomposition alternatives
have been proposed: mixins [2], traits [3], features [4],
aspects [5] and both dynamic [6][7] and static roles [8].

We use static roles as defined by Riehle in [6]. We do not
use roles as dynamic entities that can be attached or detached
from objects. There is much work on dynamic roles [7][9]
[10] so this is mentioned to avoid confusion. Our static roles
model concerns that are a subset of a class responsibility:
those that are not the class main concept. Roles compose
classes by adding their code to the class. The class interface
can be seen as a whole or as a union of all the methods
offered by the roles it plays. To program with roles we use
JavaStage, an extension to Java. For more information on
static roles and JavaStage we refer to [8].

Our experience with the use of static roles showed that
they provide better decomposition when compared to class
decomposition [8]. We would improve legacy systems if we
make them use roles. The use of roles would provide a better
way to reuse code, eliminate code replication, enhance the
systems’ modularization and easy maintenance.

Refactoring [11][12] is program transformation where
the program maintains its behavior but is improved in non-
functional qualities like readability, reuse or changeability.
We can use refactorings as a way to transform a system
without roles into a system with roles. There is not, however,
a catalogue for role related refactorings. To fill this gap we
present, in this paper, a collection of role related refactorings.

In these refactorings we use the JavaStage language [8]
because it is backward compatible with Java and JVM
compliant. Existing systems can be upgraded to roles in a
transparent way to their users.

The refactorings were developed using our experience
using roles to reduce code replication in several systems,
including those referred in [8], and also when developing
design patterns using roles [13]. The proposed refactorings
may not be complete but they provide a starting point for a
role refactoring catalogue. Our experience has been
transforming existing systems into roles and not developing
and maintaining systems with roles, so there may be some
refactorings that only deal with roles yet to be discovered.

The rest of the paper is organized as follows: Section II
shows a refactoring example. Section III presents the
advantages of refactoring to roles. Section IV presents the
proposed refactorings. Section V deals with related work and
Section VI concludes the paper.

II. A FIRST EXAMPLE

Consider the example of Figure 1 which shows an
excerpt of an Abstract Figure class that is a superclass for all
the figures in a drawing application. The figure must warn
the view whenever it is changed so the view can be updated.
An Observer [14] is used for this purpose. We can argue that
being a subject is not the class’s main concern. From this we
can say that the code from lines 7 to 20 should not be in the
class. We can put that code into a FigureSubject role by
using Extract Role. The outcome is shown in Figure 2.

A role may define methods and fields with access levels
(lines 11-26). To play a role the class uses a plays directive
and gives the role an identity (line 2). A class playing a role
is called a player of the role. When a class plays a role all the
non private methods of the role are added to the class.

Looking at the role we can see that to use it in other
situations we could just use another observer type. Ignoring
methods names, for now, we could apply the Replace Type
with Generic refactoring and build the role in Figure 3.

We can observe that what prevents this role from being
reusable for other instances of the observer pattern are the
methods names. The methods that require the use of Make
Method Name Configurable are the methods that add and
remove observers, the fire methods and the update methods.

The JavaStage language allows the configuration of a
method name. It can also require certain collaborators to
have specific methods. These features are used in the Make
Method Name Configurable refactoring.

Each configurable method name may have three parts: a
configurable one and two fixed (optional). The configurable
part is bounded by # as in fixed#config#fixed. Configuration
is done by the class playing the role in the plays clause.

265Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

public class AbstractFigure implements Figure {

 private Color color;

 public void moveBy(int dx, int dy) {

 fireFigureMoved(); }

 public void setColor(Color c){

 fireFigurePropertyChanged(); }

 private Vector<FigureObserver> observers =

 new Vector<FigureObserver>();

void addFigureObserver(FigureObserver o){

 observers.add(o); }

void removeFigureObserver(FigureObserver o){

 observers.remove(o);}

 protected void fireFigureMoved(){

 for(FigureObserver o : observers)

 o.figureMoved();

 }

protected void fireFigurePropertyChanged(){

 for(FigureObserver o: observers)

 o.figurePropertyChanged();

 }

}

Figure 1 An excerpt of an AbstractFigure class doing work outside its

main concern

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

public class AbstractFigure implements Figure {

 plays FigureSubject figSubject;

 private Color color;

 public void moveBy(int dx, int dy) {

 fireFigureMoved();

 }

 public void setColor(Color c){

 fireFigurePropertyChanged();

 }

}

public role FigureSubject {

 private Vector<FigureObserver> observers =

 new Vector<FigureObserver>();

void addFigureObserver(FigureObserver o){

 observers.add(o); }

void removeFigureObserver(FigureObserver o){

 observers.remove(o); }

 protected void fireFigureMoved(){

 for(FigureObserver o : observers)

 o.figureMoved();

 }

protected void fireFigurePropertyChanged(){

 for(FigureObserver o : observers)

 o.figurePropertyChanged();

 }

}

Figure 2 The class from Figure 1 now refactored to roles.

1

2

3

4

5

6

7

8

9

role Subject<ObserverType> {

 private Vector<ObserverType> observers =

 new Vector<ObserverType>();

void addObserver(ObserverType o){

 observers.add(o); }

void removeObserver(ObserverType o){

 observers.remove(o); }

// ...

}

Figure 3 The role from Figure 2 using other types of observers

JavaStage has a multiple method version feature. It is
possible to declare several versions of a method using
multiple definitions of the configurable name. Methods with
the same structure are defined once. Using these features we
can develop the role and class that are depicted in Figure 4.

III. REASONS TO REFACTOR TO ROLES

In this section we present the advantages of refactoring a
system to roles.

1) Refactor to Reuse Code. Delegation and inheritance
may be used to reuse code. A class represents a concept
others reuse by using instances of the class. If some classes
have a common behavior we put that behavior in a class and
make those classes inherit from it. However, with single
inheritance, classes that are part of another hierarchy cannot
reuse the common behavior. Multiple inheritance has many
problems so many recent languages do not support it.

If we place the common behavior in a role we can reuse
that role whenever we need, since they have not the multiple
inheritance problems neither have single inheritance
limitations. A class can play many roles and even play the
same role more than once without duplicated field conflicts.
The fact that roles are tailorable for a particular task, due to
method renaming and type configuration allows a wider
range of reuse not available with inheritance or delegation.
The GenericSubject role shows how reusable a role can be.

2) Refactor to Remove Code Clones. Programmers
sometimes reuse solutions by copying code and modifying it
to fit a new purpose. This leads to code cloning as several
fragments of a system will be identical or very similar. This
can have immediate advantages like reduced development
time, but in the long run a system with code clones is more
difficult to maintain [15][16] and more error prone [16].

Code clones can be eliminated by better design [17] or
refactoring [11][18][19]. Traditional refactoring used to deal
with clones are: Extract Method, Pull Up Method, Extract
Superclass, Extract Class and Form Template Method. We
extend these refactorings by proposing to refactor to roles.

To eliminate duplicated code using roles we need to
develop a role providing the replicated behavior. This way a

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

role Subject<ObserverType> {

requires ObserverType implements

 void #Event.update#();

Vector<ObserverType> observers =

 new Vector<ObserverType>();

public void add#Observer#(ObserverType o){

 observers.add(o); }

void remove#Observer#(ObserverType o) {

 observers.remove(o); }

protected void fire#Fire#(){

 for(FigureObserver o : observers)

 o.#Fire.update#();

}

}

public class AbstractFigure implements Figure {

 plays Subject<FigureObserver>

 (Fire=FigureMoved, Fire.update=figureMoved,

 Fire = FigurePropertyChanged,

 Fire.update = figurePropertyChanged

 Observer = FigureObserver) figSubject;

 private Color color;

 public void moveBy(int dx, int dy) {

 fireFigureMoved();

 }

 public void setColor(Color c){

 fireFigurePropertyChanged();

 }

}

Figure 4 A subject role and an AbstractFigure class playing it.

266Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

class does not need to replicate the code, just play the role.
3) Refactor to Enhance Modularization. A single

decomposition strategy cannot adequately capture all the
system’s details [1]. The result are crosscutting concerns,
that appear when several modules deal with the same
problem because one cannot find a single module
responsible for it. This leads to replicated code as each class
must implement the code on its own.

With roles however, we can place the crosscutting
concern in a role. The concern is thus neatly modeled.
Because there is a role-player interface they can be seen as
independent modules. Roles are used to compose classes but
they are also independent of the classes so we can argue that
roles provide a better modularization.

4) Refactor to Ease Maintenance. If a module deals with
a problem that is spread by several others then changes to
the code will, probably, affect other modules. Independent
development is compromised. Evolution and maintenance
are a nightmare because changes to that code needs to be
done in all modules. If a role is used to model that concern
then all changes are made in the role alone.

IV. ROLE REFACTORINGS

This section presents the role refactorings we propose.
We present in tables 1 and 2, for each refactoring, the name,
a summary of the situation in which the refactoring is useful
and a summary of the recommended actions.

We grouped the refactorings in two categories:
refactorings to extract concerns into roles (shown in table 1)
and refactorings to improve role reuse (shown in table 2).
We recommend that the role extraction refactorings should
be used first. After the role is in place it is easier to find how
we can refactor it to make it more reusable. We can also
detect that some roles are similar and refactoring them so
they become identical and we can leave just one.

We will present, for each refactoring, a motivation and a
discussion of the mechanics. Due to space constraints we
cannot present the full details but will cover the main
problems and variations. We do not state where to compile
and test and rely that readers are aware that these steps are
crucial in refactoring. Also due to space constraints we will
not present step by step snippets of code or even code
samples for each refactoring but will present examples that
show how several refactorings are used.

A. Refactorings to extract concerns to roles

These refactorings are intended to extract concerns to
roles so classes can deal with their main concern only. There
are top level refactorings like Extract Role and low level
ones as Move Method Between Class and Role.

1) Extract Role. We use this refactoring whenever we
feel that a class is doing work that falls outside the class
main concern. The motivation is thus the same as for the
Extract Class from [11].

The mechanics are simple: Create a role with a name that
indicates the concern it deals with; Move each field and
method that are related to that concern to the role by using
Move Field From Class to Role and Move Method From
Class to Role; Make the class play the role.

a) Extract Role vs Extract Class. Extract Class can be

replaced by Extract Roles. This way classes do not need to

create delegation methods, just play the role. Which one to

use depends on the code nature. If it is a standalone concept

it should be put into a class, otherwise it should be put into a

role. This follows the role definition that a role is an

observable behavioral aspect of a class. In Figure 1 the code

reflects only a partial behavior, an entity that maintains an

observer list and informs them, so role use is better.

b) Extract Role vs Extract Superclass. This refactoring

could be used instead of Extract Superclass. Again the

decision is based on the concept the code represents. If it is

better modeled by a class and inheritance is adequate then

Extract Superclass should be used. If the concept is better

modeled by a role then Extract Role should be used. Extract

Superclass forces classes to be in an inheritance hierarchy.

In contrast, Extract Role does not require player classes to

be related. On the other hand, Extract Superclass can take

advantage of polymorphic code and roles cannot.

2) Move Method from Class to Role. Moving a method
to a role is different than moving a method to a class, so we
included this refactoring. When a class plays a role it
obtains the role methods, thus we do not need delegate
methods. Figure 2 shows the outcome of this refactoring for
the add, remove and fire methods.

The simplified mechanics are: Apply Move Method to
the method always removing the delegate method; If the
method makes references to the player object replace that
object with the performer keyword; For each method that is
called on the player place it in the requirements list.

3) Move Field Between Class and Role. As with moving
methods, moving a field to a role is somewhat different
from moving it between classes so we decided to include a
new refactoring. The main difference is that a role cannot
access the player fields nor the class can access role fields.

The simplified mechanics are: If the field is used by the
class from which it is being moved then use Encapsulate
Field; Use Move Field on the field and Move Method on the
getters and setters. Figure 2 shows the outcome of this
refactoring for the vector of observers.

4) Replace Superclass with Role. Inheritance is a good
way to get a default implementation for a concern. But this
cannot be used just for code reuse, the classes must have
something in common than just code. The benefits of
reusing implementations, however, are so great that
inheritance is used just the same. Roles provide another way
of reusing implementations and can be used in this situation.
Figure 5 shows such an example.

For this refactoring the simplified mechanics involve:
Use Make Class a Role on the superclass; Replace every
extends for the superclass with a plays for the role.

5) Make Class a Role. When a class only provides
behavior meant to be used by other classes then it is not a
class but a role (see examples in Figure 6). We use Make
Class a Role by: creating a new role; Copy the code of the
class into the role; If the code has references to the client
type then make them refer to the Performer type; If the code

267Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

has references to the client object then substitute those
references to performer. For every client method referred to
in the role add it to the requirements list.

6) Replace Delegation with Role Playing. A class may
be used by others just to provide an implementation for
some features, where the client class just delegates the job.
We can have the same effect by placing the implementation
in a role and the client playing the role (see Figure 6). The
mechanics for this are: If the class is used in this way by all

clients then use Make Class a Role; If the delegated class is
used in another way by other clients consider using Extract
Role on the delegated class to extract its behavior into a
role; Make the class play the new role; Remove all
references to the class; Remove all delegate methods.

7) Inline role. A class that plays a role has become a
more suitable implementation as its concern has evolved to
include that of the role, or the role is played by just one
class and has an insignificant amount of behavior.

We can Inline Role by: Copying every field and method
from the role to the class; If a role field has the same name of
a class field Rename one so that there is not a name clash; If
a class method has the same signature of a role method then
do not copy that method from the role, except if the class
explicitly calls that method, in which case you must Rename
the role method so there is not a name clash; Delete the plays
clause; Delete the role.

8) Move Method from Role to Class. This is different
from Move Method From Class to Role, because of the
steps involved: If the method is configurable them use the
refactoring Name a Configurable Method first; If the
method uses generics in the role but not on the class apply
Replace Generic with Type; Apply Move Method to the
method; If the method makes references to role fields use
accessor methods. If the method calls other role methods
make the calls explicit by using the role identity.

9) Replace Role Playing with Superclass. Classes that
play the same role may be related by inheritance instead.
The mechanics are: Verify if classes that use the same role
using the same configurations should be related by

TelephoneHolder

number

getNumber()

setNumber()

Person Person

<<plays>>

TelephoneHolder

<<role>>

number

getNumber()

setNumber()

Figure 5 Replace Superclass with Role

TelephoneHolder

number
getNumber()

setNumber()

Person

Person

<<plays>>

TelephoneHolder

<<role>>

number
getNumber()

setNumber()

phoneHolder

getNumber()

setNumber()

1

Figure 6 Replace Delegation with Role Playing

Table 1. SUMMARY OF REFACTORINGS TO EXTRACT CONCERNS TO ROLES

Refactoring name Situation summary Typical Action Summary

Extract Role You have a class doing work outside its main concern
Create a role and move the relevant fields and methods to

the new role

Move Method from Class to Role
A method is used or using more features from a role than

the class on which it is defined

Create a new method with a similar body in the role and

remove it from the class

Move Field Between Class and Role
A field is used by a role or class more than it is used by

the class or role on which it is defined

Create a new field in the role or class, encapsulate it and

change the class or role to access the field trough methods

Replace Superclass with Role
A superclass is used by its subclasses for reuse purposes

only

Create a new role with similar code of the class and make

subclasses play the role instead of inheriting from the class

Make Class a Role You have a class that represents only a partial behavior Make the class a role

Replace Delegation with Role Playing
A class has a number of delegating methods to another

class

Create a role with similar code of the delegated class. Make

the delegating class play the role instead.

Inline role You have a role that only one class plays Move the role code into the class

Move Method from Role to Class
A method is used or using more features from a class

than the role on which it is defined

Create a new method with a similar body in the class and

remove it from the role

Replace Role Playing with Superclass
Classes that are related trough inheritance are using role

playing instead

Create a class that plays the role and make subclasses

inherit from the class.

Table 2. SUMMARY OF THE REFACTORINGS TO IMPROVE ROLE REUSE

Refactoring name Situation summary Typical Action Summary

Replace Type with Generic
A role is bound to a type but could be used with another

type as well

Turn the type into a generic and instantiate the type when

playing the role

Make Method Name Configurable
A method name is too general to be of use in several

instances of a role

Use the renaming scheme to provide a configurable name

and let players configure its name.

Rename Role Method The name of a role method does not reveal its purpose Change the name of the method

Name a Configurable Method A method name is configurable when it should be fixed
Remove the configurable part of the name and give the

method a suitable name

Replace Generic with Type
A generic type is used in the role but players always use

the same concrete type
Replace the generic type with the concrete type

268Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

inheritance; Create a new Class with a suitable name; Make
the new class play the role using the same configurations as
it subclasses; Make all classes extend the new class;
Remove the plays in all subclasses.

B. Refactorings to Improve Role Reuse

We can make a role more reusable if we can expand its
possible players, whether by making the types it uses more
general or by making its methods configurable by the player.

1) Replace Type with Generic. Generics can be used as
a place holder for the real type. The real type is defined
when the code is actually being used. We suggest that if a
type used by a role can be replaced by a generic it should.

Problems arise when we intend to call methods on those
generic types. Java can bound a generic to certain types. For
example, class Sample<T extends SuperType>, bounds T to
be a subclass of SuperType. The problem when using roles is
that these boundaries can be restricting. For example, in an
Observer subject observers can be of any type and their
interfaces are different. Roles have a requirements list that
takes care of this problem.

We recommend the use of generic types instead of a
concrete type. This is how to do it: Identify which types can
be made generic so the role may be more reusable; Substitute
each type by a generic; For each method that is called on the
generic type place it in the requirements list; If the method
name is not general use Rename Role Method or consider
using Make Method Name Configurable.

An example is presented in Figure 3, where the
FigureSubject role of Figure 2 has its FigureObserver type
replaced by the generic ObserverType.

2) Make Method Name Configurable. Meaningful
method names can be difficult to achieve. Role developers
do not know the concrete context where the role will be
used so use names that are generic. The player developer
knows which names would fit the concrete use but cannot
rename them because it could break other players.

To Make a Method Name Configurable: Identify which
part of the method is more likely to change; Consider other
methods that may have similar name parts so they can all be
altered with this refactoring; Give a suitable configurable
part for each method; If a method is used by the role then
rename it in every place it is called and in the requirements
list; The role name may also be Renamed to accommodate
its wider use; Configure each player of the role so that they
give the configurable methods the same names as before.

An example is presented in Figure 4. The FigureSubject
role from Figure 2 is renamed to Subject and its methods are
made configurable so players can choose a proper name for
the add and remove methods and for each fire method.

3) Rename Role Method. Renaming a role method is
trickier than renaming a class method, because the name
may be configurable. If a name is not configurable then the
mechanics of renaming the method is equal to Rename
Method, with the difference that we must check every client
of every player class. When the method is configurable the
renaming is done thus: If the renaming affects only the
configurable part then change it in all the role code that uses
the method; Change the configurable part in all the plays

clauses for that role. If the renaming affects the fixed part of
the name replace it in every occurrence in the role. For each
player class check if the renamed method is overridden and
if it is decide if the class should not rename its own method;
Change each client of each player to use the new name.

4) Name a Configurable Method. Configurable role
methods allow the method name to be adequate in several
situations, but sometimes we can make names configurable
where a single name is suitable for every use. To Name a
Configurable Method: Check if all players use the same
name for the method or the name suits all players; Check if
any player uses a multiple version of this method; In the role
rename the method to the fixed name; In the role update all
references to the method with the new name; In each player
delete the configuration of the method from the plays clause
if this was the only method to use that configurable part.

5) Replace Generic with Type. When developing
generic roles we know we overdue the use of generics if all
clients use the same concrete type. This refactoring makes
the role simpler to use. The mechanics are: Replace all
occurrences of the generic with the concrete type in the role;
If the generic has entries in the requirement list delete them;
In each player remove the instantiation of the concrete type.

V. RELATED WORK

There is much work related to Object Oriented
refactorings [11][12] and we adapted some of those to roles,
but to our knowledge there is no published work that
concerns refactoring to roles. This includes the works of
dynamic roles and not just static roles. Static roles have been
used in the work of VanHilst and Notkin in [20] where they
proposed to use roles in the C++ language. Dynamic role
approaches as EpsilonJ [21] and PowerJava [10] have been
around for a while but no refactorings to dynamic roles have
been published. We believe that our adaptation of code
smells to roles can also benefit these role related approaches.

Object Teams in its project home page [22] mentions the
adaptation of Extract Method, Move Method, Pull Up, Pull
Down and Rename to the objects teams specific relationships
(implicit role inheritance, team nesting, role-base bindings
and method bindings). They also support new role related
refactorings like Extract Callin and Inline Callin. But, there
is not a presentation or mechanics of these refactorings.

The role object pattern [23] is used for representing
objects that expose different properties in different contexts.
Steimann and Stolz [24] describe a way to refactor code to
this pattern that provides lightweight role objects with a
leaner code than the previous approaches. They also softened
the preconditions on when to apply the refactoring.

 There are other approaches to class compositions, like
Traits [3], Multi-dimensional separation of concerns [1].
Package Templates (PT) [25], Caesar and its Virtual classes
[26], Jiazzi and its Units [27]. To our knowledge none of
these approaches tackled the problem of refactoring legacy
code. We consider Traits to be the most related approach to
static roles, as we can see a trait as a role without state. We
believe, therefore, that some role refactorings can be used in
Traits, namely Extract Role could be used as an Extract Trait

269Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

as long as we removed the part related to moving fields and
replaced it with Encapsulate Field.

Feature Oriented Programming (FOP) decomposes the
system into features [3]. Features reflect user requirements
and incrementally refine each other. In [28], Liu et al
propose a theory of Feature Oriented Refactoring (FOR),
which is the process of decomposing a program into features,
thus recovering a feature based design and giving it an
important form of extensibility. Since a feature’s
implementation can vary between systems, the authors
developed an algebraic theory of FOR that exposes the
highly regular structure that features impose on programs.
They also supply a methodology and a tool based on the
theory. This work, however, can be applied only to FOP.

Aspect-Oriented Programming as used in AspectJ [5] is
an approach that tries to modularize crosscutting concerns.
There is work on refactorings systems to aspects [29]. Due to
the renaming capability of JavaStage we can include some
refactorings related to method names, while in AOP we
cannot.

VI. CONCLUSIONS AND FUTURE WORK

We showed that refactoring a system to roles brings
benefits to the system like a higher reusability, better
modularization, among others.

We proposed a series of refactorings based on our studies
with converting OO systems to roles and design pattern
implementation using roles. These refactorings provide a
way to convert legacy code to role code. Some refactorings
deal with the problem of making the role more general
purpose thus enhancing code reuse.

For future work we intend to develop a tool to give these
refactorings some automatic support. We also intend to carry
on our studies concerning role development so we can
discover new refactorings that involve role development and
use, not just upgrading roles and refactoring to roles. This
will contribute to a more complete role refactoring catalogue.

REFERENCES

[1] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr., “N
degrees of separation: multi-dimensional separation of
concerns”, Proc. International Conference on Software
Engineering, 1999, pp. 107-119.

[2] G. Bracha and W. Cook, “Mixin-based inheritance”. Proc.
OOPSLA/ Proc. ECOOP, 1990, pp 303-311.

[3] S. Ducasse, N. Schaerli, O. Nierstrasz, R. Wuyts and A.
Black, “Traits: a mechanism for fine-grained reuse”.
Transactions on Programming Languages and Systems. vol.
28, no. 2, March 2006, pp. 331-388.

[4] S. Apel and C. Kästner, “An overview of Feature-Oriented
Software Development”, in Journal of Object Technology,
vol. 8, no. 5, July–August 2009, pp 49–84.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W.G. Griswold, “An overview of AspectJ”. Proc. ECOOP
2001, pp 327-353.

[6] D. Riehle and T. Gross, “Role model based framework design
and integration”, Proc. OOPSLA ’98. 1998, pp. 117-133.

[7] F. Steimann, “On the representation of roles in object-oriented
and conceptual modeling”, Data & Knowledge Engineering,
vol. 35, no. 1, 2000, pp 83–106.

[8] F. Barbosa and A. Aguiar, (2013), “Using roles to model
crosscutting concerns”, Proc. Aspect Oriented Software
Development (AOSD13), March 2013, pp 97-108.

[9] S. Herrmann, “Programming with Roles in ObjectTeams/
Java”. AAAI Fall Symposium: Roles, An Interdisciplinary
Perspective, 2005.

[10] M. Baldoni, G. Boella and L. van der Torre, “Interaction
between objects in power-Java”, Journal of Object
Technologies, vol 6, 2007, pp 7 – 12.

[11] M. Fowler. “Refactoring – Improving the Design of Existing
Code”, Addison Wesley, 2000.

[12] W. Opdyke, “Refactoring Object-Oriented frameworks”,
Ph.D. thesis, Univ. of Illinois at Urbana-Champaign, 1992.

[13] F. Barbosa and A. Aguiar, “Generic roles, a test with
patterns” Proc. Pattern Languages of Programs, 2011.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
Patterns: elements of reusable Object-Oriented software”,
Addison-Wesley, 1995.

[15] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier,
“Clone detection using abstract syntax trees”, Proc. of the Int.
Conf. on Software Maintenance, Nov. 1998, pp 368-377

[16] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner,
“Do code clones matter?”, Proc. Int. Conf. on Software
Engineering, IEEE Computer Society, 2009, pp 485-495

[17] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K.
Kontogiannis, “Measuring clone based reengineering
opportunities”. Proc. International Software Metrics
Symposium, Nov. 1999, pp 292-303

[18] R. Fanta and V. Rajlich, “Removing clones from the code”.
Journal of Software Maintenance: Research and Practice, vol.
11, no 44, August 1999, pp 223-243.

[19] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
“Refactoring support based on code clone analysis”. Proc.
International Conference on Product Focused Software
Process Improvement, 2004, pp 220-233.

[20] M. VanHilst and D. Notkin, (1996) “Using role components
to implement collaboration-based designs”. Proc. OOPSLA
’96, 1996, pp 359-369.

[21] T. Tamai, N. Ubayashi, and R. Ichiyama, “Objects as actors
assuming roles in the environment”, in Software Engineering
For Multi-Agent Systems V: Research Issues and Practical
Applications, Lecture Notes In Computer Science, vol. 4408.
Springer-Verlag, 2007, pp 185-203

[22] http://www.eclipse.org/objectteams/features.php, last access
in Jan. 2013.

[23] D. Bäumer, D. Riehle, W. Siberski, and M. Wulf, “The role
object pattern”, Proc. PLoP1997, 1997. pp 15-31

[24] F. Steimann and F. U. Stolz,. “Refactoring to role objects”,
Proc. International Conference on Software Engineering,
2011, pp 441-450.

[25] S. Krogdahl, B. Møller-Pedersen, and F. Sørensen,
“Exploring the use of Package Templates for flexible re-use
of Collections of related Classes”, Journal of Object
Technology, vol. 8, no. 7, Nov. – Dec. 2005, pp 59-85.

[26] E. Ernst, K. Ostermann, and W. R. Cook. “A virtual class
calculus”, Conference record of the 33rd Symposium on
Principles of Programming Languages. 2006, pp 309-330.

[27] S. McDirmid, M. Flatt, and W.C. Hsieh, “Jiazzi: new-age
components for old-fashioned Java”, Proc. OOPSLA 2001, pp
211-222.

[28] J. Liu, D. Batory, and C. Lengauer, “Feature oriented
refactoring of legacy applications”. Proc. Inter. Conference on
Software Engineering (ICSE '06), 2006, pp 872-881.

[29] M. Monteiro and J. Fernandes. “Towards a catalog of aspect-
oriented refactorings”. Proc. Int. Conf. on Aspect-Oriented
Software Development, 2005, pp 111–122.

270Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

