

Figure 1: PassiveFTP interaction Diagram

Weaving Crosscutting Concerns into Inter-process Communications (IPC) in
AspectJ

Ali Raza, Dr. Stephen W. Clyde
Computer Science Department

Utah State University
Logan, Utah, USA

ali.raza@aggiemail.usu.edu

Abstract—Implementing crosscutting concerns for message-
based inter-process communications (IPC) are difficult, even
using aspect-oriented programming languages (AOPL) such
as AspectJ. Many of these challenges are because the context
of communication-related crosscutting concerns is typically
a conversation consisting of message sends and receives.
Other challenges stem from the wide variety of IPC
mechanisms, their inherent characteristics, and the many
ways in which they can be implemented, even using a
common communication framework. Additionally, current
AOPL do not provide pointcuts for weaving of advice into
high-level IPC abstractions like conversations. This paper
describes an extension to AspectJ, called CommJ, with which
developers can implement communication-related concerns
in cohesive and loosely coupled aspects.

Keywords-modularity; aspect-oriented programming
(AOPL); crosscutting concerns; AspectJ; software reuse and
maintenance.

I. INTRODUCTION
Inter-process communications (IPC) are ubiquitous in

today’s software systems, yet they are rarely treated as
first-class programming concepts. Instead, developers
typically have to implement communication protocols
indirectly using primitive operations, such as connect,
send, receive, and close. The sequencing and timing of
these primitive operations can be relatively complex. For
example, consider a distributed system that uses the
Passive File Transfer Protocol (PFTP) to move large data
sets from a client to a server. The server would enable
communications by listening for connection requests on a
published port, e.g., 21. A client would then initiate a
conversation, i.e., an instance of the PFTP protocol, with a
connection request to the server on that port. Figure 1
shows a typical sequence of messages following the initial
connection request.

Neither the client’s nor the server’s side of the
conversation is simple. In fact, to ensure responsiveness
for end users and to handle multiple simultaneous clients,
both the client and server might execute parts of a single
conversation on different threads, making it even harder to
follow concurrent conversations dynamically. A system
using PFTP could be further complicated by
communication-related requirements not central to
primary objective of moving large amounts of data, such
as logging, detecting network failures, monitoring

congestion, and balancing load across redundant servers.
From a communications perspective, these concerns

(and many others not listed above) are what Aspect-
oriented Software Development (AOSD) refers to as
crosscutting concerns, because they pertain to or cut
through multiple parts of core or base concepts. Directly
implementing these concerns in a typical system can cause
the scattering and tangling of code. Scattering occurs
when the same or very similar logic exists in multiple
places in the software. Tangling occurs when single
software component is complicated by logic for secondary
concerns. Scattering and tangling often occur together.

 AOSD, which first started to appear in the literature in
1997 [12, 25], reduces scattering and tangling of code by
encapsulating crosscutting concerns in first-class
programming constructions, called aspects [15]. In
strongly typed languages, an aspect is an Abstract Data
Type (ADT) with all of the same capabilities as an object
class. However, an aspect can also contain advice methods
that encapsulate logic for addressing crosscutting concerns
and pointcuts for describing where and when the advice
needs to be executed. More specifically, a pointcut
identifies a set of join points, which are temporal places in
the execution of the system for where and when weaving
of advice takes place [15].

AspectJ is an AOPL that extends Java for aspects [14-
17]. It allows programmers to weave advice into join
points that correspond to constructor calls or executions,
methods calls or executions, class attribute references, and
exceptions.

It is possible for skilled software developers to create
reusable, well-encapsulated crosscutting concerns in a
traditional object-oriented programming language OOPL.

234Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 2: CommJ Architectural Block Diagram

However, the difference between AOPLs and\an OOPLs is
that AOPLs offer convenient mechanisms for separating
crosscutting concerns from core functionality and for
following a principle called obliviousness [18]. Although
perhaps poorly named, obliviousness is the idea that core
functionality should not have to know about crosscutting
concerns [13].

The problem is that AspectJ, like other AOPLs, does
not support the weaving of advice into high-level
communication abstractions, such as conversations. Our
work, called CommJ, extends AspectJ so developers can
weave crosscutting concerns into IPC in a modular and
reusable way, while keeping the core functionality
oblivious to those concerns. See Section II for a high-level
overview. Section III describes a conceptual model that
provides a theoretical foundation for CommJ, namely its
message event joint points (see Section IV) and event
tracking (see Section V). Section VI describes base
aspects central to CommJ’s implementation. To validate
CommJ, we have created a library of reusable aspects for
common communication crosscutting concerns and have
applied them to a variety of sample systems (see Section
VII). Then, Section VIII discusses how application
programmers can write their own communication aspects.
Related work is presented in Section IX. Finally, Section
X summarizes the current state of CommJ and outlines our
future work.

II. HIGH-LEVEL OVERVIEW
Overall CommJ enables the partitioning of a complex

communication problem into manageable cohesive
concepts and promotes greater reuse with better
maintainability. Figure 2 shows an architectural block
diagram that represents relevant conceptual layers and
their dependencies. The following paragraphs describe the
high-level components and their dependencies.

In general, a universe model is a formal description of
a closed universe of things, as well as their relationships,
properties, interactions, and behaviors. Figure 3 shows part
of our universe model for IPC, which we refer to as the
UMC or Universe Model of Communication. Section III
describes a portion of UMC in more detail.

CommJ is an AspectJ library that implements message-
event join points and keeps track of conversations. A
software developer that wants to use communication-

related aspects simply has to include this library. Sections
IV - VI explain how CommJ implements the join points,
keeps track of conversations, and base abstractions for the
application programmers, respectively.

The Reusable Aspect Library (RAL) is a toolkit-like
collection of communication aspects that application
programmers should find useful for in many different
kinds of applications. They include aspects for measuring
turn-around times, tracing conversations, and introducing
behaviors into complex, multi-step protocols, like PFTP.
Section VII describes this library in more detail.

Application-level Aspects are those written by the
application programmers, either by using the abstractions
provided by CommJ or by specializing the aspects in RAL.
Section VIII discusses how these application-level aspects
can encapsulate complex crosscutting behaviors in an
understandable and maintainable way, without sacrificing
obliviousness or flexibility.

III. UNIVERSE MODEL FOR COMMUNICATIONS
The UMC establishes a conceptual framework for

discussing and reasoning about network-based
communications. Figure 3 shows a portion of this model,
namely the part that deals with message concepts. The full
UMC includes other concepts, like connections, that we do
not discuss here for brevity.

The central idea of the portion presented in Figure 3 is
that of a Message Event, which is the “happening” of a
message being sent (i.e., Sent Event) or a message being
received (i.e., Received Event). It is a time point related to
a particular message and is part of a Conversation
following a Protocol. Every Received Event must have a
corresponding Message Received object, which is simply a
message in the role of having been received. Similarly,
every Sent Event must have a Message Sent object. Also,
consistent with theoretical foundations for IPC [28], all the
Message Events in a system form a partial ordering; the
events on a single thread are totally ordered; and a
message’s Sent Event always comes before its Received
Event(s).

Message in Figure 3 is an abstraction that represents
data sent from one process to another as part of
conversation. Each Message can be associated with at
most one send and possible many receive events, which is
the case for multicasts or broadcasts. The Message class
contains abstract reflection methods for retrieving message
identifying information (MII), which consists of message,
conversation, and protocol identifiers. Application
developers implement these methods for their specific
types of messages and then CommJ uses those
implementations in keeping track of conversations. Since
these methods are abstract and are implemented in the
application, developers remain in full control of their
message structure.

Even though the UMC focuses on communications, it
includes Channel, Thread, Node, and Process classes to
help provide context information for the individual
messages and conversations

235Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 3: A conceptual model for UMC

Figure 4: Conversations in CommJ

IV. MESSAGE EVENT JOIN POINTS
Communication join points fall into two general

categories: message related and connection related. Since
this paper is focusing on Message Events, we only discuss
the former here.

 As mentioned earlier, join points represent places and
times where/when advice can be executed. In AspectJ,
they correspond to constructors, methods, attributes, and
exceptions. Advice can be executed before, after, or
around these various contexts. CommJ adds conversations
to the list of possible contexts, but unlike the advice
contexts in AspectJ, a conversation is not tied to a single
programming language construct. Instead, a context in
CommJ can be either:

A - an entire conversation from a process’s
perspective (see Figure 4)

B - any sequence of message send or receive events
in the conversation as seen by a process

C - a single send or receive event in a conversation

The green boxes in Figure 5 are CommJ classes that
implement join points for these different kinds of contexts.

MultiStepConversationJP represents join points for entire
conversations, as well as joints points for sequences of
events within a conversation. RRConversationJP (i.e.,
request-request conversation join points) also represents
join points for complete conversations, but only those that
follow request-reply protocols. MultiStepConversationJP
could be used for the same, but RRConversationJP
includes optimizations for this common type of
conversation. SendEventJP and ReceiveEventJP
implement joint points for individual message events.

A developer can implement crosscutting concerns,
define conversation-related pointcuts, and weave advice
into any of above join points by specializing the
corresponding abstract CommJ aspects, shown in yellow in
Figure 5.

V. EVENT TRACKERS AND REGISTRIES
Behind the scenes, CommJ uses JoinPointTrackers,

which are monitors [22] that perform pattern matching on
communication events, to track individual events and to
organize them into high-level conversation contexts. Since
the monitoring of communications is itself a crosscutting
concern, JoinPointTrackers are implemented as aspects
that weave the necessary monitoring logic into places
where communication event may take place. Although
CommJ can support many different kinds of
JoinPointTrackers, Figure 5 only shows one special kind
of tracker, namely MessageJoinPointTracker, which has
been specifically designed for send and receive events on
standard JDK sockets and channels.

When a MessageJoinPointTracker discovers a relevant
communication event, it creates a join point instance, e.g.,
a SendEventJP, correlates it with other events in the same
conversation, and then adds it to a registry, namely the
MessageJPRegistry shown in Figure 5. Advice in a
communication aspect can access these join point objects
to obtain context information, like the conversation’s start
time, channel, or the protocol.

236Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

public abstract aspect MessageAspect{
 public pointcut MessageSend(SendEventJP jp) ...
 public pointcut MessageRecieve(ReceiveEventJP jp) ...
}

Figure 6: Pointcuts in MessageAspect

Figure 5: CommJ Message Event Join Points and Aspects

VI. BASE ASPECTS
All communication aspects are ultimately derived from

abstract MessageAspect, which provides concrete
pointcuts that dynamically track send and receive events
(See Figure 6 for more details). For space considerations,
the full definitions of the pointcuts are not shown, and are
not necessary for understanding their purpose. However,
it is important to note that they take join point objects as
parameters, because this is how advice based on these
pointcuts can access communication contexts.

The four specializations of MessageAspect in Figure 5
correspond to four different kinds of conversation
contexts, as mentioned earlier, and extend MessageAspect
with pointcut abstractions that are meaningful to those
contexts (see Figures 7a-7d). Developers can create their
own application-level communication aspects that inherit
from these aspects and include advice based on these
pointcuts.

The OneWaySendAspect is relatively trivial because it
represents a simple one-message conversation from the
message sender’s perspective. Similarly, the OneWay-
ReceiveAspect represents a one-message conversation
from the message receiver’s perspective.

The RRConversationAspect extends MessageAspect
with pointcuts for conversation beginnings and
conversation ends. Developers can use this aspect to
weave advice before, after, or around simple request-reply
conversations, either from a conservation initiator or
responder perspective.

The MultistepConversationApsect is the most complex
of the four. In addition to pointcuts for conversation

beginnings and ends, it provides a way for applications to
specify arbitrarily complex communication protocols,
which define the message patterns that comprise
conversations. A process can participate in a conversation
with one or more ProcessRoles. See Figure 8.

The key to working with complex protocols is that an

aspect developer can formally define them in terms of
ProcessRoles and then ProcessRoles in terms of finite
state machines (see State Machine in Figure 9.) For
example, consider a communication protocol that involves
three processes, A, B, and C, and where A starts a
conversation by sending a message to B and waits for a
response. When A receives a response B, it then sends a
message to C and waits for a response. When A receives a

public abstract aspect OneWaySendAspect
 extends MessageAspect{
 public pointcut ConversationBegin(SendEventJP jp)....
}

Figure 7(a): OneWaySend aspect in RAL

public abstract aspect OneWayReceiveAspect
 extends MessageAspect{
 public pointcut ConversationEnd(ReceiveEventJP jp)....
}

Figure 7(b): OneWayReceive aspect in RAL
public abstract aspect RRConversationAspect
 extends MessageAspect{
 public pointcut ConversationBegin(RRConversationJP jp)
 public pointcut ConversationEnd(RRConversationJP jp)

}

Figure 7(c): RRConversation aspect in RAL

 public abstract aspect MultistepConversationAspect
 extends MessageAspect{
 public pointcut ConversationBegin(MultistepConversationJP jp)....
 public pointcut ConversationEnd(MultistepConversationJP jp)....
 ….
}

Figure 7(d): MultistepConversation aspect in RAL

237Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 8: Process participation in conversations by roles and role

defines by state machines
response from C it sends a final message to both B and C.
Figure 9 shows a finite state machine for the A
ProcessRole of this protocol. The B and C ProcessRoles
are considerably simpler and are not shown here.

The CommJ StateMachine class includes a
buildTransitions method that allows developers to define
state machines in terms of states and message-event
transitions. Figure 10 shows the implementation of this
method to define a StateMachine for the sample
ProcessRole shown in Figure 9.

VII. REUSABLE ASPECTS LIBRARY
Aspects in the RAL are also derived from the base

aspects in CommJ. They represent general crosscutting
concerns commonly found in applications with significant
communication requirements. Table 1 lists some of the
aspects currently in the RAL and Figure 11 shows part of
the implementation of first one, TotalTurnAroundTime-
Monitor. Note how the advise in this aspect follows the
Template Method pattern [29]. This allows developers to
quickly adapt it to the specific needs of their application
by overriding the Begin and End methods. Other aspects
in the RAL make use of this and other reuse techniques to
easily integrate them into existing or new applications.

We expect that RAL will continue to grow as new
generally applicable communication aspects are
discovered, implemented, and documented.

VIII. APPLICATION-LEVEL COMMUNICATION ASPECTS
As mentioned, aspect developers implement and add

application-level aspects into core application logic by
either reusing RAL aspects or specializing the base aspects
in CommJ. As an example, this section describes the
implementation of an application-level aspect that weaves
performance measurements in the multistep protocol,

public aspect TotalTurnAroundTimeMonitor
 extends MultistepConversationAspect{
 private long startTime = 0;
 private long turnAroundTime = 0;
 before(MultistepConversationJP jp):
ConversationBegin(jp){
 startTime = System.currentTimeMillis();
 Begin(jp);
 }
 after(MultistepConversationJP jp): ConversationEnd(jp){
 long turnaroundTime = (System.currentTimeMillis() –
 startTime)/1000;
 End(multiStepJP);
 }
 public getTurnAroundTime { return turnAroundTime; }
 protected void Begin(MultistepConversationJP jp){
 // Specialization of this aspect should override the
method
 }
 protected void End(MultistepConversationJP jp){
 // Specialization of this aspect should override the
method
 }
 …
}

Figure 11: A code snippet of TurnAroundTimeAspect

Figure 9: Sample Process Role

public class SampleProcessRole extends StateMachine{

 @Override
 public void buildTransitions(){
 addTransition("Initial", 'S', "M1", "WaitingRspFromB");
 addTransition("WaitingRspFromB ", 'R', "M2", " ReceivedRspFromB");
 addTransition("ReceivedRspFromB", 'S', "M3", " WaitingRspFromC");
 addTransition("WaitingRspFromC", 'R', "M4"," ReceivedRspFromC");
 addTransition("ReceivedRspFromC", 'S', "M5"," Final");
 }

....
}

Figure 10: State Machine configuration for sample Process Role

TABLE I. SIX OF THE ASPECTS IN THE RAL AND THEIR DESCRIPTIONS
Aspect Name Description

TotalTurnAroundTimeMonitor Provides virtual helper methods for conversations which help programmers to override RAL aspects in their
applications

MessageLoggingByConversation Log messages by conversations in a developer-defined format and repository
MessageEncryption Add session-level encryption/decryption to communication protocols
NetworkNoiseSimulator Allows developers to add noise, message log, and message duplication to network communications, which is

useful for system testing
NetworkLoadBalancer Helps programmers balance message loads across two more communication channels
VersionControlAspect Helps programmers manage multiple version of messages structures for their applications

238Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

introduced in the previous section. For discussion
purposes, assume that the performance measurements are a
rolling window of throughput and average-conversation
turn-around time statistics. Also, assume that the core
application considers a unit of work to be the completion
of a conversation that follows this protocol. So, we can
measure throughput for a unit of time, say 1 minute, by
simply counting the number of these conversations
completed in that minute. The average turn-around time is
the average of timespans from conversation start times to
conversation end times. The rolling window keeps track
of these statistics for the current minute and 10 previous
minutes. Figure 12 in the next page shows the key snippets
of an aspect that implement this performance measure
crosscutting concern.
First notice how this advice is derived from TotalTurn-
AroundTimeAspect and in doing so, it can reuse its
implementation of the conversation turnaround time

concept directly. Then, it adds the Stats array for holding
the rolling window of statistics and some additional
behavior to the ending of a conversation to compute the
statistics.

IX. RELATED WORK
We found many papers that talk about using aspect-

oriented technology for communication-related cross-
cutting concerns, such as replication [5], persistence [9],
synchronization [8, 16], and remote pointcuts [6]. To date,
we have not found any other work that extends the
possible contexts and join points for aspects to
conversations or sequences of events in a specific
conversation. The closest idea discusses the composition
of communication abstractions by separating out definition
of communications from the definition of other aspects [7].
Although this work is of value, we believe that CommJ
enables better modularity while preserving obliviousness.

Marco, et al., describe a Java-based communication
middleware, called AspectJRMI, that applies AOPL
concepts to modular design and the implementation of
RMIs [27]. Their primary contribution is the
decomposability of RMI into small crosscutting concerns.

Other related ideas deal with the definition of reusable
communication constructs in languages, like Erlang,
which is based on processes communicating via
asynchronous message passing [26, 21]. However, these
approaches do not inherently encourage the separation of
crosscutting concerns from core application requirements.

Gary, et al., describe an approach for building
customized protocols using Cactus – a system in which
micro-protocols are implementing individual attributes of
transport [1]. More complex protocols can then be
composed from these micro-protocols. Dirk, et al., show
how to separate the definition of communication from the
definition of other system functionality [2]. A paper on
extensible client-server software by Coady, et al., talks
about requiring a clear separation of core services from
those that should be customizable [3]. Remi, et al., talk
about concurrent event-based AOPL and define an
approach of writing concurrent aspects [11]. All these
works address research objectives different from CommJ
and only indirectly related to our research.

X. SUMMARY AND FUTURE WORK
This paper introduced the notation of communication

aspects and discussed an AspectJ framework, i.e., CommJ,
for weaving aspects into inter-process communications. It
then describes the design and implementation of some of
CommJ key components, namely the base aspects. It also
provides an overview of a toolkit that consists of reusable
communication aspects and doubles as a proof of concept,
since these aspects can be directly applied to a wide range
of existing applications.

Based on preliminary evidence, we believe that
CommJ is capable of encapsulating a wide range of
communication-related crosscutting concerns in modular
aspects. However, more research and experimental
evidence is needed. We plan to conduct real world

public aspect MyAppPerformanceMonitor
extends TotalTurnAroundTimeMonitor{

 private Stats[] statsList = new ArrayList[11];
 private int currentStatsIndex = 0;

 @Override
 protected void End(MultistepConversationJP jp) {
 // Get number of elapsed minutes since beginning of current
Stats
 long elapsedMinutes = Min(Stats[currentStatsIndex].
getMinutesSinceStartTime(), 10);
 // Roll Stats window forward, if necessary
 for (int i=0; i<elapsedMinutes; i++){
 currentStatsIndex++;
 if (currentStatsIndex>10)
 currentStatsIndex=0;
 Stats[currentStatsIndex].Reset();
 }
 currentStats.addCompleteConversation(getTurnaroundTime);
 }
}

class Stats{
 private long startTime;
 private int completeConvCount;
 private double avgTurnaroundTime;

 public Stats{
 Reset();
 }

 public Reset(){
 startTime = currentTime;
 completeConvCount = 0;
 avgTurnaroundTime = 0;
 }
 public long getMinutesSinceStartTime() {
 // using current time, compute and return the number of
minutes since the start time of this Stats object. A zero means
we still in the same minute
 }

 public void addCompleteConversation(double
newTurnaroundTime) {
 avgTurnaroundTime =
((completeConvCount*avgTurnaroundTime) +
newTurnaroundTime)/(++completedConvCount);
 }
}

Figure 12: performance measure crosscutting concern

239Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

experiments using CommJ to verify its benefits in software
reuse and maintenance. We also hope to gather more
empirical evidence of CommJ value by increasing the
number of aspects in the RAL and by continuing to expand
the number and types of applications that use CommJ.

Those interested in trying out CommJ or contributing
to it can obtain a copy of the framework from
http://commj.cs.usu.edu.

REFERENCES
[1] Wong G., Matti A. and Richard D., “A Configurable and

Extensible Transport Protocol,” IEEE/ACM Transactions on
Networking, Vol 15, No 6, 2007.

[2] Heuzeroth D., Lowe W., Ludwig A., and Amann U., “Aspect-
Oriented Configuration and Adaptation of Component
Communication,” Proceedings of the Third International
Conference on Generative and Component-Based Software
Engineering GCSE 01.

[3] Coady Y., et al., “Can AOP Supports extensibility in Client-Server
Architectures,” In Proceedings, ECOOP Aspect-Oriented
Programming Workshop 2001.

[4] Bergmans L., Tekinerdogan B., Glandrup M. and Aksit M.,
“Composing Software from Multiple Concerns: A Model and
Composition Anomalies,” ICSE00.

[5] Nishizawa M., Chiba S., “Jarcler: Aspect Oriented Middleware for
Distributed Software in Java,” Research Report Computer Science
Department, Tokyo Institute of Technology (2002).

[6] Nishizawa M., Chiba S., and Tatsubori M., “Remote Pointcut – A
Language Contruct for Distributed AOP,” AOSD 2004.

[7] Daniel L., et al., “Explicitly distributed AOP using AWED,”
AOSD 2006.

[8] Carlos A., Sobral L., and Miguel P., “Reusable Aspect-Oriented
Implementations of Concurrency Patterns and Mechanisms,”
AOSD06.

[9] Soares S., Laureano E., and Borba P., “Implementing Distribution
and Persistence Aspects with AspectJ,” OOPSLA 2002.

[10] Antunes M., et al., “Separating Replication from Distributed
Communication: Problems and Solutions,” International
Conference on Distributed Computing Systems Workshop, 2001.

[11] Douence R., Botlan D., Noye J., and Sudholt M., “Concurrent
Aspects,” (GPCE 2006).

[12] Kiczales, G., et al., “Aspect-oriented programming,” (ECOOP),
1997, 220--242.

[13] Bergmans L., Tekinerdogan B., Glandrup M., Aksit M.,
“Composing Software from Multiple Concerns: Composability and
Composition Anomalies,” ICSE’2000.

[14] AspectWorkz2, http://aspectwerkz.codehaus.org/, last updated on
August 14, 2013.

[15] ApectJ, http://www.eclipse.org/AspectJ/, last updated on August
14, 2013.

[16] JBoss AOP, http://www.jboss.org/jbossaop, last updated on
August 14, 2013.

[17] Spring AOP, org.springframework, last updated on August 14,
2013.

[18] Clifton C., Gary T., “Obliviousness, Modular Reasoning, and the
Behavior Subtyping Analogy,” SPLAT 2003.

[19] Shigeru C. “Load-Time Structural Reflection in Java,” (ECOOP
'00).

[20] Tennent R., “The Denotational Semantics of Programming
Languages,” Communications of ACM 1976.

[21] Farchi E., Nir Y., and Ur S., “Concurrent bug patterns and how to
test them,” Parallel and Distributed Processing Symposium 2003.

[22] Douence R., Motelet O., and Sudholt M., “A formal definition of

crosscut,” MISC 2001.
[23] Block Diagram, wikipedia.org/wiki/Block_diagram, last updated

on February 09, 2013.
[24] Shaw M., Garlan D., “Software Architecture: Perspective on an

Emerging Descipline”, Publication Date: April 12, 1996, ISBN-
10: 0131829572.

[25] Lopes, C. “D: A Language Framework for Distributed
Programming”. PhD Thesis, Northeastern University, 1997.

[26] Christakis M., and Sagonas K., “Detection of Asynchronous
Message Passing using Static Analysis”, PADL'11.

[27] Tulio M., et al.. “An aspect-oriented communication middleware
system”, (OTM'05)

[28] Dollimore J. et al.. “Distributed Systems: Concepts and Design,”
(4th Edition); ISBN-10: 0132143011

[29] Gamma E., Helm R., Johnson R., and Vlissides J., “Design
Patterns: Elements of Reusable Object-Oriented Software,”
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA. 1995.

240Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://aspectwerkz.codehaus.org/
http://www.eclipse.org/aspectj/
http://www.jboss.org/jbossaop

	I. Introduction
	II. High-Level Overview
	III. Universe Model for Communications
	IV. Message Event Join Points
	A - an entire conversation from a process’s perspective (see Figure 4)
	B - any sequence of message send or receive events in the conversation as seen by a process
	C - a single send or receive event in a conversation

	V. Event Trackers and Registries
	VI. Base Aspects
	VII. Reusable Aspects Library
	VIII. Application-level Communication Aspects
	IX. Related Work
	X. Summary and Future Work
	References

