
CREATE: A Co-Modeling Approach for Scenario-based
Requirements and Component-based Architectures

Marcel Ibe, Martin Vogel, Björn Schindler and Andreas Rausch
Technische Universität Clausthal

Clausthal-Zellerfeld, Germany
{marcel.ibe, m.vogel, bjoern.schindler, andreas.rausch}@tu-clausthal.de

Abstract—Requirements engineering and architectural de-
sign are key activities for successful development of software-
intensive systems. Both activities are strongly intertwined and
interrelated. Particularly, in early development stages require-
ments and architecture decisions are frequently changing.
Thus, advanced systematic approaches are needed, which
could minimize the risks of wrong early requirements and
architectural decisions. The fundamental problem addressed
in this paper is the development of inconsistencies at the
advanced approaches for co-evolution of requirements and
architectures. Inconsistencies lead to an incorrect considera-
tion of requirements by the system under development and
consequently to unfulfilled requirements. In this paper, a
domain specific model-based approach is presented, which
supports the co-evolution of requirements and architectures.
The approach provides simplified scenario-based models for
the description of requirements, which are suitable for vali-
dation by stakeholders. Furthermore, the approach provides a
component-based model for a precise and complete description
of architectures. Adequate inter-relations between scenario-
based and component-based models are defined, which support
the consistence maintenance.

Keywords-requirements; architecture; evolution; consistency.

I. INTRODUCTION

Requirements Engineering (RE) and Architectural Design
(AD) are essential for successfully developing high-quality
software-intensive systems. RE and AD activities are in-
tertwined and iteratively performed [2]. The architecture
of a software system must satisfy its requirements, yet
architectural constraints might prohibit certain requirements
to be realized. This might imply a change to the initial
requirements or the selection of a different appropriate archi-
tecture. Further, additional requirements might be discovered
during the development process, leading to changes in the
architecture. Design decisions that are made early in this
iterative process are the most crucial ones, because they
are very hard and costly to change later in the development
process.

In classical development processes, artifacts like, for
instance, the requirements specification or the architecture
are developed sequentially. This is also the case at iterative
process models like the spiral life cycle model of Böhm
[1]. The iterative, concurrent evolution of requirements and
architectures demands that the development of an archi-
tecture is based on incomplete requirements. Also, certain

Level

of

detail

Technology Dependence

low

high

highlow

architecturerequirements

Intermediate

CBSP model

Figure 1. Intermediate model within the twin peaks [3]

requirements can only be understood after modeling or even
partially implementing the system architecture. Nuseibeh [2]
describes an advanced approach, which adapts the spiral
life cycle model and aims at overcoming the often artifi-
cial separation of requirements specification and design by
intertwining these activities in an interactive evolutionary
software development process. This approach is called the
twin peaks model. To map requirements into architectures
and maintaining the consistency and traceability between the
two Grünbacher et al. [3] introduces an intermediate model
called Component Bus System Property (CBSP) (see Fig. 1).
This model maps requirements to architecture elements by
the CBSP model, which allows a systematic way to reconcile
requirements with stakeholders.

Nevertheless, the advanced twin peaks model is kept very
general. For instance, it does not specify the level of detail
of requirements in relation to the architecture [4]. Due to the
fact that there is no concrete advanced approach supporting
the co-evolution of requirements and architecture we were
commisioned by the German armed forces and the German
government to undertake a research project. In order to be
able to consider all required aspects, we made an expert
survey. Therefore, we interviewed staff and leaders of three
medium to big sized development projects with up to 30
project participants on customers and contractors side about
their problems in the field of RE and AD.

220Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

A general mentioned problem was that the developed
systems did not fulfill all requirements of the customers.
The result of the survey was a list of the following reasons
and derived guidelines:

• For the contractor the requirements were to informal,
imprecise and incomplete. Requirements had to be
repeatedly elicited and specified during architecture de-
sign. Hence, requirements on a software system should
be complete and precise.

• At the elicitation process, the reconcilement of more
precise and formal descriptions was to costly. The rea-
son was the need of a detailed explanation by the con-
tractor. For an improved reconcilement requirements
descriptions should be precise as well as comprehensi-
ble. These guidelines are also mentioned by Nuseibeh
[5]. Furthermore, the complexity of the models have to
be manageable for validation by stakeholders.

• The most serious problem was caused by frequently
changing requirements during architecture design.
Changes frequently cause inconsistencies between re-
quirements and architectures. Thus, requirements were
frequently not fulfilled by the developed systems. Ar-
chitectures have to describe how the system under
development fulfills the given requirements by a pre-
cise definition of its structure and behavior. Consis-
tency constraints between requirements and architec-
tures should be defined, which enable an automatic
support of the consistence maintenance.

Starting from this initial situation the target of the project
was the development of a domain specific model-based
approach, which fulfilles the mentioned guidelines. The
subject of this paper is the presentation of the developed
domain specific co-modeling approach CREATE for the
description of requirements and architectures. Furthermore,
the experiences at the application in practice are described.
The presented approach is domain specific for interactive
information systems like web-based systems and modern
communication systems. In Section II, existing model-based
approaches for the co-evolution of requirements and archi-
tectures are considered. In Section IV, the overall approach
is introduced and in Section V the approach is shown at an
example. Section VI contains a description of our experi-
ences at the development and application of the approach
in practice. Section VII includes a discussion of the results
and pending points for future work.

II. RELATED WORK

Existing model-based development approaches for re-
quirements and architectures can be categorized into model-
based approaches for requirements engineering, model-
based approaches for architecture design and combined
approaches.

Representative model-based approaches for requirements
engineering are described in [6]–[8]. In [6], requirements

are described by Unified Modeling Language (UML) [18]
activity diagrams. A formal operational semantics enables
execution of activity diagram specifications. The executed
activity diagram specification serves as prototype for vi-
sualization of requirements. In the approach illustrated in
[7], UML collaboration diagrams are enriched by user inter-
face information in order to specify elicited requirements.
These diagrams are transformed into complete dynamic
specifications of user interface objects represented by state
diagrams. These state diagrams are used for generation of
prototypes. In [8], use case and user interface information are
recorded at stakeholder interviews. Therefore, use case steps
are enriched by scribbled dialog mockups. Prototypes are
created, which visualize dialog mockups of use case steps
in sequence for fast feedback of stakeholders. In general,
these approaches have a well elaborated model structure
for requirements engineering and improve the validation of
requirements by stakeholders. On the other side, the mapping
to the architecture is not precisely enough defined at these
approaches to support a co-evolution of requirements and
architectures.

Representative model-based approaches for architecture
design are described in [9,10]. In Model-Driven Architecture
(MDA) [9], the Computation Independent Model (CIM)
can be used to describe business processes. The Platform
Independent Model (PIM) may describe the structure and
behavior of the software system. Component models like
KobrA [10] are concrete approaches supporting MDA. In
general, these approaches have a well elaborated model
structure for architecture design and enable a detailed de-
scription of the structure and behavior of the software
system. On the other side, these approaches do not support a
co-evolution of requirements and architectures. The mapping
between requirements and architectures is not precisely
enough defined for this field of application.

Representative combined modeling approaches for re-
quirements and architectures are described in [3,11,12]. In
[11], a Requirements Definition Language (RDL) is used,
which allows a structured definition of requirements. Meta
model elements of the RDL are mapped to correspond-
ing meta model elements of the Architecture Description
Language (ADL). The approach described in [3] uses the
intermediate model CBSP to map requirements to archi-
tecture elements. Different subtypes of CBSP elements
allow classification of requirements. Requirements exhibit
overlapping CBSP properties can be split and refined until
no stakeholder conflicts exist. The Software Architecture
Analysis Method (SAAM) [12] describes a method for a
scenario-based analysis of software architectures. In this
method, scenarios and architecture descriptions are devel-
oped iteratively. For each scenario it is determined whether
a change of the architecture is required for execution. Based
on the importance and conflicts of required changes an
overall ranking of the developed scenarios is determined.

221Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

An advantage of these approaches is the combination of
models for the description of requirements and architectures.
On the other side, these approaches are very abstract and
do not specify concrete models and mappings, which fulfill
the conditions defined in the introduction for an adequate
description of requirements and architectures.

Besides the stated existing approaches further approaches
are conceivable, which are based on synthesis approaches
[13] of complete state-based models from scenario-based
models. Scenario-based and state-based models can po-
tentially be used for the description of requirements and
architectures. Consistency is, for instance, a subject of
the approaches described in [14,15]. Unfortunately, these
approaches are generally maintaining a complete consistency
by means of a bijection. Architectures need to describe
more details about the software system. These details have
to be well separated from the requirements. Hence, an
alternating correction of inconsistencies and not a bijection
is required for the support of a co-evolution of requirements
and architectures.

III. CONTRIBUTION

The main contributions of this paper can be summarized
as follows:

• Definition of a domain specific model-based approach
for requirements engineering and architecture design in
the sense of twin peaks. Requirements descriptions have
to be precise and comprehensible. This necessitates
a well-balanced trade-off between expressiveness and
manageability of models for the description of require-
ments. Furthermore, the architecture has to provide a
detailed description of the behavior and the resulting
structure of the software system. In our domain spe-
cific approach, simplified scenario-based requirements
models are defined for the description of requirements
and component-based models for the description of
architectures.

• Definition of consistency constraints which support a
co-evolution of requirements and architectures. Com-
plex dependencies between requirements and architec-
tures cause a high complexity for consistence main-
tenance. Thus, not only for the requirements model,
but also for the inter-relations between requirements
and architecture models a well-balanced trade-off be-
tween expressiveness and manageability is necessary.
In our approach, inter-relations between scenario-based
requirements and component-based architecture models
are provided, which enable an automatic consistence
maintenance.

• This paper presents the results of the evaluation of the
approach at real system development projects. Several
iterations of phases for model definition and practice
tests were required to find the presented solution. The
approach is presented by a case study.

IV. OVERALL APPROACH

Our domain specific model-based approach supports con-
current development of requirements and architectures. An
appropriate process for concurrent development is described
by the twin peaks model [2]. In this model, requirements and
architectures have an equal status and are evolved iteratively.
This is illustrated by twin peaks (see Fig. 2).

Level

of

detail

Technology Dependence

low

high

highlow

requirements

architecture

structure
be

ha
vi
or

inter-

relations

structure be
ha

vi
or

DSD

SD

ID

HRL

DD

ASD

ABD

OD

Figure 2. Co-modeling approach within twin peaks

Our domain specific model-based approach concretizes
twin peaks by defining a concrete description technique.
Diagrams are used for a precise description of requirements
and architectures. These diagrams are illustrated within dia-
monds in the twin peaks model (see Fig. 2). The process flow
of our approach begins with a formal description of inital
requirements. Afterwards, the architecture is developed and
consistence to the requirements is maintained continuously.
Inconsistencies are resolved by changing requirements or the
architecture.

The main contribution of our domain specific approach
is the concrete description technique with well-defined
inter-relations between requirements and architecture de-
scriptions. It is well known that scenarios help to elicit
and validate requirements [13]. A precise description of
elicited requirements can be achieved by scenario-based
models [13]. The co-modeling approach provides simplified
scenario-based models for the description of requirements.
Furthermore, the description is reduced to representative
and concrete scenarios. Hence, the complexity of these
models is manageable for the validation by stakeholders.
The validation is improved by combining these models
with models enabling visualization of requirements by user
interface mockups [8]. During AD, the architecture of the co-
modeling approach is developed. An architecture describes
the behavior and the resulting structure of the software sys-
tem precisely. This description is enabled by a component-
model. Component-Based Software Engineering (CBSE)

222Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

[16] has been continuously improved and successfully ap-
plied over the past years. Systems are composed by existing
software ’parts’ called software components. Component
models enable a precise description of component-based
architectures [17].

In our domain specific model-based approach, diagrams
are used to model structural or behavioral aspects of re-
quirements or architectures. For instance, elicitation and
specification of processes at the domain (e.g., business
processes) is an important aspect at requirements engineer-
ing. In our approach, these processes can be described by
a Scenario Diagram (SD). Thus, the SD is assigned to
the behavior part of the requirements diamond (see Fig.
2). In Section V, the provided diagrams and their inter-
relations are described in detail. Some models, for instance,
the Hierarchical Requirements List (HRL) can be used to
describe structural as well as behavioral aspects. Existing
languages, such as UML [18], include among others struc-
tural and behavioral diagrams for the modeling of systems.
Our domain specific approach uses exemplarily a subset
of UML diagrams and their available model elements to
formally describe requirements and architectures. Additional
models are used to enable a visualization of requirements by
user interface mockups.

Consistence maintenance during the development of re-
quirements and architectures is supported by well-defined
inter-relations between scenario-based requirements models
and component-based architecture models (see Fig. 2). Inter-
relations are also defined within these models. They are de-
fined by associations between model elements and additional
consistency constraints. The defined inter-relations enable an
automatic consistence maintenance by, for instance, check-
ing the consistency constraints and permitting changes not
until detected inconsistencies are solved.

V. MODELING EXAMPLE

Details of the description technique and the consistence
constraints of the domain specific model-based approach are
shown at a case study. The subject is the development of a
library system.

A. Scenario Description

1) HRL: The HRL enables a text-based description of
structural and behavioral requirements. They can be arranged
hierarchically. In this way, it is possible to refine one
requirement by several other requirements. In our example,
the HRL contains some structural information about the
system environment. The requirements list describes the
system under development, the user of the system and an
entity that should be managed by the system (red marked in
Fig. 3 upper left). The requirement show statistics describes
a desired behavior of the system. Manage books is a very
general requirement and is refined by the requirement show
statistics, which is more precise.

2) Domain Structure Diagram (DSD): The domain struc-
ture, e.g., the business structure, can be described by the
DSD. It is based on UML Composition Structure Diagrams
[18]. First, the domain structure consists of systems and
persons as well as their ability to communicate to each other
described by parts and connections of the DSD. The DSD
Library describes the system to develop, the library system
and a person, the employee (see Fig. 3 requirements left).
The connection between the employee and the library system
assumes that they can interact with each other. Furthermore,
the DSD describes the relevant entities by parts. Currently,
there is only one of the type Book. The parts of the domain
structure (e.g., persons) have to be initially mentioned in the
HRL (see gray line in Fig. 3).

3) SD: The description of processes at the domain (e.g.,
business processes) is an important task at requirements
engineering. Processes can be described precisely by the
SD, which is based on scenario-based UML Communication
Diagrams [18]. SD describes representative scenarios at the
domain, which have to be supported by the system under
development. The scenarios are described as a sequence of
messages between instances of the parts introduced in the
DSD. Messages between two instances can only be sent
if a connection exists between the corresponding parts of
the DSD. In our example, the scenario ShowBookStatistic
describes an interaction between an employee m and the
library system with two messages (see gray line in Fig. 3
requirements upper right).

4) Interaction Mockup Diagram (ID): The ID can be
used to visualize requirements to stakeholders. For this, it
describes the messages of the SD by interaction mockups.
Interaction mockups are user interface mockups, which
visualize interactions of the system in general. In the SD, it
is possible to describe the source and target of a message. In
the ID, every message is detailed by exactly one interaction
mockup for visualization. The scenario can be visualized to
stakeholders by showing the interaction mockups step by
step following the sequence of the messages of the SD. In
our example, one interaction mockup shows the summary
of all books of the message 1 in SD ShowBookStatistic (see
gray line in Fig. 3 requirements). Another shows the detailed
view of one book with its statistic.

B. Architecture Design

An architecture is a plan, which describes how a software
system fulfills given requirements. The following architec-
ture models allow a complete description of the behavior and
the resulting structure of the system under development.

1) System Overview Diagram (OD): The OD of the
architecture is based on the UML Use Case Diagram [18]. It
is used to describe the most abstract structure and behavior
of the system and its context by the system boundary and
the associated use cases, which are called functions. The
actors and the system context are derived from the DSD,

223Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Architecture

DD

ASD

LibrarySystem

OD

ShowBooksStatistic

Requirements

<<component>>

LibrarySystem

<<component>>

Client

<<component>>

BookManager

HRL Library System

1) The library system must be able to manage books.

1.1) The library system must provide the option to show

 statistics about books to the employee.

DSD Library

: Book [0..*]: LibrarySystem [1]

ID ShowBookStatistic

Book overall viewBook overall view

Title Authors Year

Moby Dick H. Melville 1851

Exit

Book StatisticBook Statistic

Overview

Add Edit Delete

Step 1:

„select

statistic“

Statistic

Title Status Date

Moby Dick borrowed 14.04.2013

Return

15.04.2013

Step 2:

„select

overview“

It S. King 1986

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Overview

Exit

books

Employee

title: String

Book

SD ShowBookStatistic

m/ : Employee

/ : LibrarySystem

1 2

: Employee [1..*]

books

Legend

RE-AD inter-relations

other inter-relations

all other lines UML conform

transition to next

scenario step

Figure 3. Requirements models, architecture models and inter-relations

the functions from SD. The OD of the example describes a
system with the function ShowBooksStatistics and the actor
employee (see Fig. 3 architecture upper right). Employee
is connected to the function. This connection also exists
between DSD (Employee) and SD (ShowBookStatistic).
The process of a function is described by an architectural
behavior diagram.

2) Architectural Behavior Diagram (ABD): The ABD
describes the behavior of the software system and is based
on the UML Activity Diagram including data flow. The
ABD describes the process of the functions defined in OD
completely. The function ShowBookStatistic is, for instance,
described by the activity ShowBookStatistic (see gray line
in Fig. 3 right). Within the ABD different action types like
InterfaceAction and ServiceAction are used. A ServiceAction
is performed by the system (e.g., a database call). An In-
terfaceAction describes an interaction of the system with its
environment and is, therefore, associated with an interaction
mockup of the ID. The action ShowBooksStatistics is, for
instance, associated with an interaction mockup (see Fig. 3
right).

3) Data Diagram (DD): At a function described by ABD
data objects can be used by the system. The DD is based

on UML Class Diagrams [18] and describes the data types
of the data objects. For example, the DD describes a type
book, which is the type of the variable books of the ABD
ShowBooksStatistics (see gray line in Fig. 3 architecture
left). The data objects to be processed by the system are
derived from the entities of DSD. The DD describes these
entities in more detail. If there is a connection between two
parts within the DSD, a relation must exist between the types
of the parts and the corresponding data types in DD.

4) Architectural Structure Diagram (ASD): The ASD is
based on UML Component Diagrams [18] and describes
the internal components of the system under development
and their offered interface as a black-box view. Subse-
quently, the components are further decomposed to refine
their internal structure. The ASD LibrarySystem describes,
for instance, the internal structure of LibrarySystem of the
OD (see gray line in Fig. 3 architecture bottom). The
internal structure is derived from the actions of the ABD.
Hence, each component must be associated with an action
of an ABD. The component LibrarySystem is refined by
a component BookManager, which is associated with the
action GetAllBooks of the ABD as well as the component
Client.

224Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

C. Consistence constraints

The consistence maintenance is supported by the defini-
tion of inter-relations between requirements and architecture
models. Inter-relations between models of the scenario-based
requirements and the component-based architecture (e.g.,
between HRL and DSD) are described in Section V-A and
V-B (see gray lines in Fig 3). Essential for the concurrent
development are the inter-relations between requirements
and architectures (see red lines in Fig 3). Inter-relations are
defined in the term of associations and additional consistency
conditions. A violation of a consistency condition means an
inconsistency. We defined all necessary inter-relations. In the
following, a subset of these inter-relations are exemplarily
introduced, which is most suitable to explain the dependen-
cies between our requirements and architecture descriptions:

• (1) The existence of an entity in the DD implies the
existence of a corresponding type in the DSD.

• (2) The existence of a type in DSD whose part is
directly connected with the part of the system to build
implies the existence of a corresponding actor in the
OD.

• (3) Every interaction mockup in the ID must be mapped
on exactly one InterfaceAction in an ABD.

Probable changes during the development of concurrently
evolved requirements and architectures are illustrated in
Fig 4. While modeling the architecture it was noticed, that
the system has not only to handle books. Also magazines
should be managed. Hence, a new entity Magazine was
added to the DD. As a consequence, the entity Media,
as a generic term was introduced. Respectively two new
inheritance relations were added. After this, the consistency
condition (1) is violated. The DSD doesn’t contain any
corresponding element to these two new entities from the
DD (arrows (1) in Fig. 4). A change in the requirements
model was necessary, when it became clear that the manager
needs other statistics about a book, then an employee. Hence,
the manager as a new part of the system environment is
added. In consequence, the condition (2) is violated. The
manager is directly connected to the system but there is no
corresponding actor in the OD (arrow (2) in Fig. 4). Because
of the new needs of the manager, the scenario also has to
be adapted. Depending on who uses the system, the shown
information about a book varies. Thus, a new interaction
mockup for the manager has to be added. This violates again
the condition (3). The new interaction mockup is not mapped
on an InterfaceAction from the ABD (arrow (3) in Fig. 4).

To correct these inconsistencies, a few further changes
have to be made. It is necessary to add the entities Media
and Magazine to the DSD. After this consistency condition
(1) holds again (see arrows (1) in Fig. 5). To comply
with the second condition, a new actor for the manager
has to be introduced into the OD (arrow (2) in Fig. 5).
Finally, a mapping from the added interaction mockup to

an InterfaceAction is missing. One could map the new
interaction mockup to an existing InterfaceAction or extend
the ABD by a new InterfaceAction. By extending the ABD
by the InterfaceAction ManagerStats the interaction mockup
can be mapped on it (arrow (3) in Fig. 5). The new action
may be processed by a new component ManagerClient at the
ASD. By making these changes all consistency conditions
were restored. As shown above, checking the consistency
conditions helps to detect inconsistencies. An automatic
support of the consistence maintenance can, for instance, be
realized by permitting changes not until all inconsistencies
are solved.

VI. EVALUATION

The development of the co-modeling approach took place
at research projects in cooperation with a public institution
over a period of four years. At these research projects, we
gave advice and supported to system development projects
in order to test our results in practice. The goal of the
overall approach is to support consistence maintenance of
requirements and architectures in early development phases.
The goal of the evaluation was to test the usability and the
inconsistence prevention of our approach. At a first step,
we developed the component-based architecture model for
a precise description of the architecture. For reconcilement
with stakeholders we developed a prototype generator, which
is able to interpret the developed models. The stakeholders
should validate the architecture and the consistence to their
requirements with the aid of the prototypes. This approach
was tested at a system development project over a period
of one year. The subject of this project was a commu-
nication system. At this project, a model was developed
comprising 20 system functions, 253 activity nodes and
35 data types. Conclusive it revealed that the usability of
the approach has to be improved. The number of possible
states described by the component-based architecture leads
to less comprehensibility to stakeholders. They were not able
to agree to the developed specifications. Consequently, the
consistence maintenance of requirements and architectures
could not be supported by this approach. Based on the results
of this practice test we extended the approach by scenario-
based models. This extended co-modeling approach, which
is introduced in this paper, was tested in practice at a
further system development project with a similar subject
over a period of one year. In this period, the usability was
significantly better. Stakeholders were able to agree to the
visualized and scenario-based requirements. Furthermore,
they were able to give helpful feedback, which leads to a
big number of changes. We measured at three milestones
the number of changes, the detected errors and especially
remaining inconsistencies. Between these milestones we
documented 500 changes and 67 errors. 8 of these errors
were inconsistencies. The rate of inconsistencies to changes
is low. For an indication, at a study described in [19], change

225Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Architecture

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Overview

Exit

booksbooks

DD

ASD

LibrarySystem

OD

ShowBooksStatistic

Requirements

<<component>>

LibrarySystem

<<component>>

Client

<<component>>

BookManager

DSD Library

: Book [0..*]: LibrarySystem [1]

Employee

: Employee [1..*]

Book StatisticBook Statistic

Overview

Title Status Date

Moby Dick borrowed 14.04.2013

Return

15.04.2013

count

56

ID ShowBookStatistic

Boo...Boo...

Add

Title

Moby

Boo...Boo...

Overview

HRL Library System

1) The library system must be able to manage books.

1.1) The library system must provide the option to show statistics about books to the employee.

2) The library system must provide the option to show the number of borros of each book to the

manager.

: Manager [1]

title: String

Media

Magazine Book

(2)

(1)

(1)

(3)

Legend
RE-AD inter-relations check

all other lines UML conform

(..)

transition to next scenario step

Figure 4. Changes at the requirements and architecture model

Architecture

DD

ASD

LibrarySystem

OD

ShowBooksStatistic

Requirements

<<component>>

LibrarySystem

<<component>>

Client

<<component>>

BookManager

DSD Library

: LibrarySystem [1]

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Exit
books

Employee

: Employee [1..*]

ID ShowBookStatistic

title: String

Media

Magazine Book

(1)

(1)

Manager

:Media[0..*]

: Book [0..*]

1) The library system must be able to manage books.

1.1) The library system must provide the option to show statistics about books to the employee.

1.2) The library system must manage media: books and magazines.

2) The library system must provide the option to show the number of borros of each book to the

manager.

(2)

HRL Library System

: Manager [1]

books

<<InterfaceAction>>

ManagerStats

<<component>>

ManagerClient

: Magazine [0..*]

Book StatisticBook Statistic

Overview

Title Status Date

Moby Dick borrowed 14.04.2013

Return

15.04.2013

count

56

Boo...Boo...

Add

Title

Moby

Boo...Boo...

Overview

(3)

Overview Overview

Legend
RE-AD inter-relations check

all other lines UML conform

(..)

transition to next scenario step

Figure 5. Changes to solve the inconsistencies

226Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

data of requirements documents are analyzed. In this study,
88 changes, 79 errors, and 16 inconsistencies were detected.

VII. CONCLUSION AND FUTURE WORK

The fundamental problem addressed in this paper was the
development of inconsistencies at the advanced approaches
for co-evolution of requirements and architectures. In this
paper, a domain specific model-based approach was intro-
duced, which supports a co-evolution of requirements and
architectures. The approach uses a scenario-based model for
a precise description of requirements and a component-based
model for the description of architectures. Well-defined
inter-relations enable an automatic consistence maintenance.

A frequently stated argument is the entailment of high
costs for the development of precise requirements and archi-
tecture models at a software project. This can be countered
by the fact that an incorrect consideration of requirements
not uncommonly leads to complete project failures. Thus,
maintaining the consistency at the co-evolution of require-
ments and architectures is important. Supporting this task
by models enabling an automatic consistence maintenance
reduces the risk of a project failure and costs for consistence
maintenance. Furthermore, the developed models can be
reused for automatic generation of code, test cases and
documents like, for instance, requirements specifications.
Nevertheless, the usage of formal models at a development
project should, among others, be made conditional on the
size of the project. At the beginning of a development
project, the advantages and disadvantages of using formal
models have to be weighed.

As future work, a further evaluation is planned to com-
pare the effectivity of the co-modeling approach to other
model-based approaches for requirements and architectures.
Furthermore, it is planned to develop a tool for automatic
consistence maintenance.

REFERENCES

[1] B.W. Böhm, ”A spiral model of software development and
enhancement”, IEEE Computer Society Press, vol. 21, May
1988, pp. 61–72.

[2] B. Nuseibeh, ”Weaving Together Requirements and Architec-
tures”, IEEE Computer Society Press, vol. 34, March 2001,
pp. 115–117.

[3] P. Grünbacher, A. Egyed, E. Egyed, and N. Medvidovic,
”Reconciling Software Requirements And Architectures With
Intermediate Models” in Software and Systems Modeling.
Springer, 2003, pp. 202–211.

[4] R. Ferrari and N. H. Madhavji, ”The Impact of Requirements
Knowledge and Experience on Software Architecting: An Em-
pirical Study” in Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2007, pp. 44–54.

[5] B. Nuseibeh and S. Easterbrook, ”Requirements Engineering:
a roadmap” in Proceedings of the Conference on The Future of
Software Engineering (ICSE), ACM Press, 2000, pp. 35–46.

[6] C. Knieke and U. Goltz, ”An executable semantics for UML
2 activity diagrams” in Proceedings of the International Work-
shop on Formalization of Modeling Languages (FML), ACM
Press, 2010, pp. 3:1–3:5.

[7] M. Elkoutbi, ”Automated Prototyping of User Interfaces based
on UML Scenarios” in Journal of Automated Software Engi-
neering, vol. 13, Kluwer Academic Publishers, 2006, pp. 5–40.

[8] K. Schneider, ”Generating fast feedback in requirements elic-
itation” in Proceedings of the 13th international working con-
ference on Requirements engineering: foundation for software
quality (REFSQ), Springer-Verlag, 2007, pp. 160–174.

[9] A. G. Kleppe, J. Warmer, and W. Bast, ”MDA Explained: The
Model Driven Architecture: Practice and Promise”, Addison-
Wesley Longman Publishing Co. Inc., 2007

[10] C. Atkinson, J. Bayer, and D. Muthig, ”Component-Based
Product Line Development: The KobrA Approach” in Software
Product Line Conference, Denver, Kluwer Academic Publish-
ers, 2000, pp. 289-309.

[11] R. Chitchyan, M. Pinto, A. Rashid, and L. Fuentes, ”COM-
PASS: Composition-Centric Mapping of Aspectual Require-
ments to Architecture” in Transactions on AspectOriented
Software Development, 2007, pp. 3–53.

[12] R. Kazman, G. Abowd, L. Bass, and P. Clements, ”Scenario-
Based Analysis of Software Architecture” in IEEE Softw., vol.
13, IEEE Computer Society Press, Nov. 1996, pp. 47–55.

[13] H. Liang, J. Dingel, and Z. Diskin, ”A comparative survey of
scenario-based to state-based model synthesis approaches” in
Proceedings of the 2006 international workshop on Scenarios
and state machines: models, algorithms, and tools (SCESM),
ACM Press, 2006, pp. 5–12.

[14] Y. Bontemps, P. Schobbens, and C. Löding, ”Synthesis of
Open Reactive Systems from Scenario-Based Specifications”
in Proceedings of Application of Concurrency to System
Design, 2003, pp. 41–50.

[15] V. Garousi, L. Briand, C. Lionel, and Y. Labiche, ”Control
Flow Analysis of UML 2.0 Sequence Diagrams” in Model
Driven Architecture Foundations and Applications, 2005, pp.
160–174.

[16] C. Szyperski, ”Component Software: Beyond Object-Oriented
Programming”, Addison-Wesley Longman Publishing Co. Inc.,
2002.

[17] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, ”The
Common Component Modeling Example: Comparing Software
Component Models”, ser. Springer Lecture Notes in Computer
Science, vol. 5153, 2008.

[18] OMG, ”UML, Version 2.2. OMG Specification Superstructure
and Infrastructure”, 2009.

[19] V. R. Basili and D. M. Weiss, ”Evaluation of a software
requirements document by analysis of change data” in Pro-
ceedings of the 5th international conference on software engi-
neering, IEEE Press, 1981, pp. 314–323.

227Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

