ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Architectural Decisions in the Development of Multi-Layer Applications

Jose Garcia-Alonso
Quercus Software Engineering Group
Centro Universitario de Merida
Merida, Spain
Email: jgaralo@unex.es

Abstract—Maulti-layer architectures have become one of the
most widely used architectures for enterprise application devel-
opment. Among other reasons, this is due to the proliferation
of development frameworks simplifying the implementation of
applications based on such architectures. However, the software
architect is faced with a significant challenge at the beginning
of the development process with having to decide among the
great number of design patterns and development frameworks
that support these architectures. The present work proposes a
technique to assist the architect in deciding which technologies
are best suited to satisfying both the functional and the non-
functional requirements of the system. This technique forms part
of a broader procedure to facilitate the software architect’s task
of converting a preliminar concept of an application into a specific
design optimized to the project in hand.

Keywords—Multi-layer architectures; design patterns; develop-
ment frameworks; architectural knowledge.

I. INTRODUCTION

A significant proportion of applications being developed
today are targeted at enterprises. They tend to be complex
systems with significant scalability and performance require-
ments. These requirements are further complicated by the
rise in recent years of cloud computing and development
for mobile platforms. When these applications make use of
such environments the non-functional requirements regarding
reliability, performance, integration, security, migratability, etc;
gain even greater relevance [1].

The focus of the present study is on the development of the
back end of these applications — specifically, of those whose
development is based on the use of multi-layer architectures.
Defining and designing the architecture of a system of this
type is an arduous and complex process for the architect.

Firstly, many frameworks and design patterns have been
proposed to simplify the implementation of these architectures
[2]. Currently, the use of development frameworks, and conse-
quently of the design patterns that they help to implement, is
a widely extended practice. Proof of this is the large number
of available frameworks [3], the number of versions released
annually, and the job offers that require their skills [4]. The
great number of existing design patterns and development
frameworks forces architects to devote substantial effort to
learning them. It is not enough to obtain an in-depth knowledge
of a set of them, it is necessary to have adequate knowledge
about all of them, the web of interactions between them [5] and
the use of one or another favouring or penalizing the fulfilment
of certain non-functional requirements.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

Javier Berrocal Olmeda
Juan Manuel Murillo
Quercus Software Engineering Group
Escuela Politecnica
Caceres, Spain
Email: {jberolm,juanmamu}@unex.es

And secondly, in order to make these decisions prop-
erly, the architect must have a thorough knowledge of the
requirements and of the relations between them. The architect
must extract the knowledge about the system requirements
from the analysis of a series of documents on which, in
many cases, the relationship between functional and non-
functional requirements are not explicitly detailed [6]. The
ability of the architecture to meet the system’s requirements
depends on the interpretation of these documents. Therefore,
any misinterpretation on her part in this complex analysis
implies the inclusion of errors in the architecture.

The combination of these two factors exposes the architect
to situations in which a misinterpretation could lead to the
choice of an inappropriate design pattern or development
framework, with the problems that it would entail [7]. The
present work focuses on the architect’s decision making. Its
principal contribution is a technique which makes use of a
feature model to provide the architect with a catalogue of
the commonest architectural decisions in the development of
framework-based multi-layer applications [8]. The architect
can use that catalogue, alongside the preliminary design of
the application marked with quality attributes [9], as a basis
for orderly decision-making. The decisions actually made by
the architect are also recorded and later they can be used as
design guidelines in developing similar applications [10].

The rest of this communication is organized as follows.
Section 2 presents the motivations for this work. Section 3
gives a complete overview of the proposal. Section 4 details
the proposed decision-making process and the automatisms
provided. Section 5 specifies the tools which support this
proposal. Section 6 gives a review of the most significant
related work. Finally, Section 7 presents the conclusions to
be drawn from the study, and some indications of future work
planned in this line of research.

II. MOTIVATION

During the development of industrial software applications,
the preliminary designs obtained from the requirements are not
usually implemented as such. First, they must be adapted to
the chosen multi-layer architecture [11].

Once the layer architectural pattern [12] has been applied to
the initial design of a system, different design patterns may be
used in each layer. For example, the Data Access Object (DAO)
pattern can be used in the design of a persistence layer and the
Model-View-Controller (MVC) pattern to design a presentation
layer. This kind of multi-layer architecture has become widely

214

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Invalid user Notify invalid

user acess

Show user's . Store worked
task list >| Show task detail % time for the task

Activity diagram (part of the initial design).

Check user
permission

Fig. 1.

accepted in the industry, especially since the introduction of
development frameworks [2].

However, the use of such architectures has its downsides.
Specifically, what was once a clear advantage, nowadays, with
the explosion in the number of frameworks and patterns, has
become an additional risk. The architect needs a depth knowl-
edge about a large number of frameworks and the interrelations
between them. For this reason, the architect’s work becomes
more error prone, and, worse, these are errors that may have
a significant impact on the overall project.

In order to motivate the problems addressed by this work
we present here an example of the design process for an
application’s architecture. Figure 1 shows an activity diagram
of a very common use case in enterprise applications. This use
case allows the system’s users to check a series of elements, to
see detailed information about any one of them, and to modify
that information. The system performs a check on whether or
not the user has permission to perform that operation. If not,
a notification is sent informing of an invalid access attempt.

Establishing the system requirements is the starting point
for architects designing a new architecture. The designed
architecture should maximize the chances of complying with
all the requirements. This is in itself a complicated task. In
many cases systems are asked to meet requirements that are
difficult to combine and the architect should reach a balance

[6].

Once the architect acquires all the information about the
requirements, he or she should start its design. For this, the
architect must take into account the large number of patterns
available. Choosing a particular pattern can lead to different
degrees of requirements being satisfied, especially in the case
of non-functional requirements [13].

Referring the case study, the developed system must meet
certain security and auditing requirements. If the architect
omits, forgets or misinterprets the relation between this re-
quirements, she might try to meet both requirements at the
same time. However, these requirements may conflict making
the architect choice a possible cause of future errors.

This study presents a technique to simplify and record
architectural decisions in the development of multi-layer appli-
cations. Studies such as those of Zimmermann [10], [14] focus
on the architectural decisions making process in a similar way
as discussed in this article. However, to the best of the authors’
knowledge, despite the industrial acceptance of multi-layer
architectures and development frameworks, there has been no
previous work on support for architectural decision making in
framework based multi-layer applications.

This work forms part of a broader proposal that covers
the entire process of designing these applications. In the next
section, we shall briefly describe the complete proposal so as

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

to provide a clear context for the contribution to be described
in the rest of the paper.

III. MULTI-LAYER ENTERPRISE APPLICATIONS

Figure 2 shows a complete diagram of the process proposed
for the development of framework-based multi-layer applica-
tions.

It shows how the proposed process begins with the pre-
liminar design, normally consisting of a use case diagram and
multiple activity diagrams representing the behaviour of those
use cases. In activity 1 this design has to be refined by the
architect or requirements experts to include information about
the quality attributes of the system.

As mentioned above, usually the relationship between
functional and non-functional requirements are not explicitly
detailed [6]. To make these relationships explicit, the architect
or the requirements expert mark the preliminary design with
information about the quality attributes to be met by the
application. The technique used to accomplish this marking
is described in more detail in another paper by the authors

[9].

Once the architect has the marked design, the next task
is to select the layers into which to split the application,
activity 2 in the diagram. In order to simplify this task, the
process offers to the architect an initial selection of layers.
This initial selection is based on the preliminary design and
the information added by the marks. However, is the architect
who must refine, validate or reject it based on other criteria
such as technological limitations, type of project, client, etc.
This task is done in the activity 3 in the diagram.

Once the layers have been selected, the initial design can
be refined to adapt it to them. This adaptation is performed
by a transformation of the model that takes as input the
initial design and the configuration of the feature model. This
correspond to activity 4.

Feature modeling is one of the most extensively accepted
techniques for modeling variability [15]. The specific model
used in the present work follows the approach of Cardinality
Based Feature Modeling, a widely used technique with proven
usefulness in working with development frameworks [16].

To use a feature model as input or output for models trans-
formations it needs to conform to a clearly defined structure or
some sort of “metamodel”. This structure must, however, be
flexible enough to incorporate both the existing architectural
and technological elements and any new ones that may arise in
the future. For the model to have these features, we performed
a study of some of the most used development frameworks
(including Spring, Hiberate, Struts, JSF, CXF, Axis, DWR,
etc.). More details on the analysis performed for the creation
of the feature model and the decisions made for its creation
may be found in [8].

At this point in the process, the architect must specify the
design patterns and development frameworks on which to base
the final design of the application, activity 5 in the diagram.
To make this selection, the architect uses the information
contained in the feature model, and then must link each
element of the layer design to the architectural decisions that
affect it, activity 6 in the diagram.

215

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Artifacts created by the
architect

Activities done by the
architect

Artifacts provided or
generated
D Automated activities

. Marked
[;:flgln BllarkiDesiag Desiog tra:éf’&\:ﬂr?::tlion
(QA)

Feature Model 3. Validate
(Layer Layer
configuration) Configuration

Feature
Model

2. Configure
layers

Frameworks
usage
information

7. Model
transformation

Layer
Design

6. Link features to
model

5. Configure
Design Patterns
and Frameworks

Specific
Design

Features
relations

Model / ‘

Validated
Feature Model
(Layer
configuration)

Feature Model
(Framework
Configuration)

Architectural
Decisions

Fig. 2. The multi-layer application development process.

It should be noted that we propose a specific order for
the decision making process, first the layers then the design
patterns and finally the development frameworks. However,
this order is not fixed and the architect can change it to suit
their needs and preferences The abilities exhibited by features
model to allow such flexibility were one of the main motivation
to choose them as our architectural knowledge representation
tool.

Finally, with all the information available, a model trans-
formation is performed to convert the application layer design
obtained previously into a specific design for the architectural
decisions taken by the architect, activity 7 in the diagram. For
this transformation, information is required about the develop-
ment frameworks to be used. This information is included in
the transformation by means of specific models describing the
use of a particular technology.

The present work focuses on the architect’s decision mak-
ing. Specifically, in activities 3 and 5 in the diagram shown
in Figure 2. To accomplish these activities, the architect uses
three elements: the feature model containing information about
the design patterns and the development frameworks that can
be use for the development, the preliminary marked design
that contains information about the relationship between the
requirements and the system’s quality attributes and his or her
own knowledge about the system.

For a better understanding of this technique, we shall
describe an example of how it works. Figure 3 shows the same
activity diagram used previously enhanced with additional
information about the quality attributes that the system must
satisfy. Specifically, the verification of user permissions must
meet security requirements, the notification of invalid access
attempts should communicate with an external system and the
modifications made by users should be auditable.

IV. MAKING ARCHITECTURAL DECISIONS

The elements presented in the previous section compose the
basis for the architect’s decision making. The present section

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

will describe in detail the activities 3 and 5 in the diagram.

A. Selecting layers

A reasonable way to begin the decision making process
when designing a multi-layer architecture is to choose the lay-
ers that will form part of the application. Many applications of
this type use a common set of layers with similar functionality.
Examples are the persistence, the presentation, and the Web
service layers. The feature model we use contains a set of
common layers, which can be easily expanded by adding new
layers.

To simplify the architect’s work, the information about the
quality attributes added to the application’s preliminary design
can be used to offer an initial suggestion of an appropriate set
of layers that might satisfy those attributes.

The layer suggestion process is based on a relatively simple
set of rules. Specifically, a layer is suggested based on two
criteria.

The first is the presence of certain elements in the pre-
liminary design specific to each layer. The presence of these
elements, which can be detected by querying the preliminary
design model, determines whether a layer is to be proposed to
the architect as part of the application’s architecture. For exam-
ple, the web services layer is suggested when the preliminary
design includes interactions with external systems.

The second criterion is based on the marks with quality
attribute information. Certain quality attributes entail the sug-
gestion of certain layers. The presence of these marks is also
detected by querying the design model. For example, whenever
there appears an activity marked as Auditable the use of a log
layer is suggested.

Table I shows a summary of the main criteria used to
suggest the most common layers.

Technically these criteria consist of a set of model trans-
formations that take as input the preliminary design and the

216

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

==(JA>> External system ™

Irvealid user

Notify invalid

Fd za(jf== Sa;urﬁy "

)

==0A=> Auditable

Check user
permission

Show user's ,
task list)e(slww task detalqi

Store worked
time for the task

Fig. 3.

TABLE I
LAYER SELECTION CRITERIA.

Criteria

There is direct interaction with a Database or the
same object is used in the activity diagram of more
than one use case

Always present, included here for further config-
uration at a lower abstraction level

Layer
Persistence

Business logic

Presentation There is interaction with a human actor

Web services There is interaction with external systems

Security There is a Security mark on one or more of the
elements in the UML diagrams

Log There is a Maintainability mark on one or more
of the elements in the UML diagrams

Test There is a Testability mark on one or more of the

elements in the UML diagrams

feature model. The output of this transformation is another
model with an initial configuration of the feature model in
which the suggested layers are selected.

Applying these criteria to the diagram shown in Figure 3,
the architect is offered a basic initial selection of layers. This
selection is presented in the form of a partial configuration of
the feature model. In the case of the diagram in the figure,
the architect will be proposed the use of the following layers:
persistence because the activity diagram requires information
to be retrieved that was stored in the system earlier and
information to be stored for later use. Presentation because
this layer includes all the elements related to interaction with
the user. Web services because notifying an unauthorized ac-
cess attempt requires communication with an external system.
Security because checking the user’s privileges has to be a
secure task. And log because some of the diagram’s activities
have to be auditable.

An additional layer is suggested that encapsulates the
application’s business logic. This is a standard layer in en-
terprise applications to incorporate elements relating to the
application’s behaviour.

The architect’s next task is to validate the set of suggested
layers, or to modify it as may be deemed opportune. The
final set of layers selected by the architect is registered as
a partial configuration of the feature model and it is used to
perform an initial model transformation. This transformation
gives as output a specific design for the layers in which to
split the application where each activity is represented in the
layers in which it operates. Figure 4 shows a small fragment of
the output of this transformation applied to a the preliminary
design shown previously.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

|

Marked activity diagram.

T
E‘ Check user
2 permission
g
o
(]
2
m
-
=
& Check user
= permission
2
o
o

Check user

permissio

BusinessLogic Layer

Check user
permission

Fig. 4. Fragment of the layer adapted design.

Persistence Layer

B. Selecting patterns, technologies, and use

The following architectural decisions that have to be made
consist in selecting the design patterns and technologies to use
in the development of each of the layers identified in the pre-
vious section. It is possible, as was done during the selection
of the layers, here too to present the architect with an initial
selection based on the information contained in the initial
design. Now, however, the architect’s decisions have greater
importance. In many situations, the choice of a particular
technology will depend less on the application’s requirements
and more on either the criteria of the firm responsible for the
development or the preferences of the architect. For example,
the experience of the developers is one of the most important
factors when selecting a technology to implement the MVC
design pattern in a presentation layer. There are a number
of frameworks that give full support to this pattern, the one
which is normally used is that with which the architect or the
development team has most experience. However, one should
not forget that the chosen technologies must support the quality
attributes of the application. So, the information about the
quality attributes included in the preliminary design is most
useful to validate the architect’s decisions than to provide
initial suggestions.

217

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

:
-
g UserPermissionDAO UserPermissionVO
k4 {] {]
7
&
Fig. 5. Fragment of the design pattern adapted design.

Due to this, the weight of this task falls largely on the
architect. It is generally done in two steps. In the first, the
architect selects the design patterns to use in the development
of each layer. To make this choice the architect uses the
list of patterns available in the feature model for each layer
and the preliminary design with the information about the
functional and non-functional requirements of the applica-
tion. Typically, the selection is that which can best fulfill
the application’s functional and non-functional requirements.
However, the architect has the final say on the matter and
can take architectural decision based on different criteria such
us his or her own previous experience or the development
team knowledge about specific technologies. In the example
we are using, the architect could choose the MVC and Web
Remoting patterns jointly for the presentation layer, and the
ReST pattern instead of SOAP for the Web services layer.
With this information, it is possible to apply a new partial
transformation to obtain a more detailed design adapted to the
design patterns chosen by the architect. Figure 5 shows a small
fragment of the result of this transformation after applying the
DAO pattern to an activity in the persistence layer.

In the second step, the architect must select which technol-
ogy or development framework will be used to support each
of the selected design patterns. Again, this set of architectural
decisions is based on the information contained in the feature
model and the preliminary design. The selection will be made
from among the technologies specific to the design patterns
chosen and will depend mainly on the architect experience.
For example, in the case of ReST, the architect must choose
a technology that will support it, omitting consideration of
other Web service technologies. Also, the presence in the
feature model of the constraints mentioned above prevents
the architect selecting incompatible technologies, and provides
suggestions of technologies that are closely related to those
already chosen. With this information, it is possible to apply
the last transformation to obtain design adapted to the architec-
tural decisions. Figure 6 shows a small fragment of the result
of this transformation after using the Hibernate framework to
implement the DAO pattern.

As mentioned above, for clarity reason, in this paper we
show how our proposal supports architectural decisions in
a specific hierarchical order. However, the architect could
choose a different order. The use of feature models to specify
architectural knowledge and the architectural decisions make
it possible whilst the consistence is kept during the transfor-
mation process.

Using the described process provides the architect with
two major advantages. One is that the number of options to
consider when making decisions is pruned, with irrelevant ele-
ments eliminated from the process, and allowing the architect
to focus on the use of just an allowed set. The other advantage

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

Usarf Hib
emateVO

Sontext H Hil

Model transformation sequence.

Persistance Layer

[DAOContext H

Fig. 6.

=

is that using the feature model provides a simple mechanism
for storing architectural decisions. Every decision made by the
architect is reflected as a configuration of the feature model,
and these configurations are easily stored for reference and use
in future developments. The firm’s architects will thus have
a set of design guidelines based on successes or failures in
previous projects.

V. SUPPORT TOOLS

In order to validate the techniques proposed in this paper, a
set of tools is under development targeted at providing support
to the entire process described in Section 2.

For tasks related to the architectural decision making, the
core of the present work, a feature model is used that is similar
to that described in Section 3, and which contains information
on more than a dozen of the commonest development tech-
nologies.

Regarding the architectural decisions themselves, the tech-
niques described in this paper are supported by a custom-
designed Eclipse plug-in for the creation of multi-layer ar-
chitecture Java projects. To create one of these projects, the
plug-in needs a feature model such as that mentioned above.
The options that will be presented to the architect for decision
making are obtained from this model. The plug-in configura-
tion allows specification of the URL at which to search for the
feature model. This permits a firm to have a centralized model,
so that any updates to include new technologies or to remove
any that have become outdated are immediately distributed to
all its architects.

Once the feature model to be used has been obtained, the
plug-in presents the architect with the decisions to be taken.
The different decisions are presented to the architect as wizards
pages. We opted for an interface of this kind to simplify the
architect’s task. While feature models are a widely used tool in
the context of product lines, an architect specializing in multi-
layer application development would not necessarily know this
notation, so that its use would impose an additional burden.

VI. RELATED WORK

In the area of architectural decision making, particularly
stand out for their close relationship with our proposal two
works of Zimmermann [10], [14]. They present a framework
for the identification and modeling of recurring architectural
decisions, and for converting those decisions into design
guidelines for future development projects. In particular, Zim-
merman proposes seven identification rules (IRs). These rules
have their counterpart in our proposal. The main difference
between our work and that of Zimmerman is the use made of

218

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

those architectural decisions. In his work, the main objective
is to gather information for use in future projects. Our focus is
on using that information to simplify the process of obtaining
an specific design of the application on which architectural
decisions are made.

In the field of Web application development, Melia &
Gomez [17] propose an extension to the model-driven methods
of Web application development. Their proposal is closely
related to the present work. Both pursue the same goal —
to increase the architect’s reliability when using model-driven
techniques to design the architecture of a Web application.
Nevertheless, their work focuses on RIA development, while
ours is intended to encompass the entire class of multi-
layer applications. Also, unlike our proposal, that of Melia
& Gomez does not allow for control of the technologies used
to implement the application, and neither does it provide any
mechanism to log and store the decisions made by the architect
for later use.

Finally, the studies of Antkiewicz [16] and Heydarnoori et
al. [18] are of particular interest in the area of framework-
based software development. Antkiewicz’s techniques allow
the modeling of specific designs for certain frameworks, and
these models are then used to generate the source code.
Heydarnoori et al. propose a technique for automatically ex-
tracting templates for implementing concepts of development
frameworks. Unlike our work, the proposed techniques are
very code centric, and their creation requires expertise in each
framework employed. Our work is aimed at increasing the
level of abstraction in the sense of being able to start from
a technology-independent design, and progress to obtaining
the final specific design by using the decisions made by the
architect and model transformations.

VII. CONCLUSIONS AND FUTURE WORK

This paper has addressed the problems facing the soft-
ware architect when designing a multi-layer architecture. The
complexity of these architectures, the complex relationship
between functional and non-functional requirements and the
high number of development frameworks and how they affect
the non-functional requirements complicate the architect’s task.
We have proposed a technique for simplifying the architec-
tural decision making process by means of the use of a
feature model and a marked preliminary design. The proposed
technique forms part of a broader procedure to address the
transition from an initial design of an application to a design
adapted to the architecture and technologies selected by the
architect. This is a complex process that requires deep technical
knowledge of the technologies involved. This complexity can
be significantly mitigated by using model-driven development
processes.

The next steps related to the architect’s decision making
will be based on improving the feature model’s constraints.
They can be used to incorporate additional information about
quality attributes of the technologies, such as the performance
of a given framework or the level of integration of two tech-
nologies. This additional information could be used to provide
the architect with fuller and more precise initial suggestions.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ACKNOWLEDGMENTS

This work was partially funded by the Spanish Ministry
of Science and Innovation under Project TIN2012-34945, as
well as by the Autonomous Government of Extremadura and
FEDER funds.

REFERENCES

[11 M. Fowler, Patterns of Enterprise Application Architecture. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[2] R. Johnson, “J2ee development frameworks,” Computer, vol. 38, no. 1,
pp. 107 — 110, jan. 2005.

[3] T. C. Shan and W. W. Hua, “Taxonomy of java web application
frameworks,” E-Business Engineering, IEEE International Conference
on, vol. 0, pp. 378-385, 2006.

[4] M. Raible, “Comparing jvm web frameworks,” http:/static.
raibledesigns.com/repository/presentations/Comparing_JVM_Web_
Frameworks_Jfokus2012.pdf, Jfokus, 2012.

[S] N. B. Harrison and P. Avgeriou, “How do architecture patterns and
tactics interact? a model and annotation,” Journal of Systems and
Software, vol. 83, no. 10, pp. 1735-1758, 2010.

[6] L. Chung and J. C. S. do Prado Leite, “On non-functional requirements
in software engineering,” in Conceptual Modeling: Foundations and
Applications, 2009, pp. 363-379.

[71 M. Dalgarno, “When good architecture goes bad,” Methods & Tools,
vol. 17, pp. 27-34, 2009.

[8] J. Garcia-Alonso, J. B. Olmeda, and J. M. Murillo, “Architectural
variability management in multi-layer web applications through
feature models,” in Proceedings of the 4th International Workshop
on Feature-Oriented Software Development, ser. FOSD ’12. New
York, NY, USA: ACM, 2012, pp. 29-36. [Online]. Available:
http://doi.acm.org/10.1145/2377816.2377821

[9] J. Berrocal, J. Garcia-Alonso, and J. M. Murillo, “Facilitating the
selection of architectural patterns by means of a marked requirements
model,” in ECSA, ser. Lecture Notes in Computer Science, M. A. Babar
and I. Gorton, Eds., vol. 6285. Springer, 2010, pp. 384-391.

[10] O. Zimmermann, “Architectural decisions as reusable design assets,”
IEEE Software, vol. 28, no. 1, pp. 64-69, 2011.

[11] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord,
and B. Wood, “Attribute-driven design (add), version 2.0,” Software
Engineering Institute, Tech. Rep. CMU/SEI-2006-TR-023, 2006.

[12] P. Avgeriou and U. Zdun, “Architectural patterns revisited - a pattern
language,” in EuroPLoP, A. Longshaw and U. Zdun, Eds. UVK -
Universitaetsverlag Konstanz, 2005, pp. 431-470.

[13] K.-J. Stol, P. Avgeriou, and M. A. Babar, “Design and evaluation of a
process for identifying architecture patterns in open source software,” in
ECSA, ser. Lecture Notes in Computer Science, I. Crnkovic, V. Gruhn,
and M. Book, Eds., vol. 6903. Springer, 2011, pp. 147-163.

[14] O. Zimmermann, “Architectural decision identification in architectural
patterns,” in WICSA/ECSA Companion Volume, ser. ACM International
Conference Proceeding Series, T. Ménnisto, M. A. Babar, C. E. Cuesta,
and J. E. Savolainen, Eds., vol. 704. ACM, 2012, pp. 96-103.

[15] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged configuration
through specialization and multilevel configuration of feature models,”
Software Process: Improvement and Practice, vol. 10, no. 2, pp. 143—
169, 2005.

[16] M. Antkiewicz, K. Czarnecki, and M. Stephan, “Engineering of
framework-specific modeling languages,” IEEE Trans. Software Eng.,
vol. 35, no. 6, pp. 795-824, 2009.

[17] S.Meli4, J. Gémez, S. Pérez, and O. Diaz, “Architectural and technolog-
ical variability in rich internet applications,” IEEE Internet Computing,
vol. 14, no. 3, pp. 24-32, 2010.

[18] A. Heydarnoori, K. Czarnecki, and T. Tonelli Bartolomei, “Two studies
of framework-usage templates extracted from dynamic traces,” IEEE
Transactions on Software Engineering, 2011.

219

