
Finding Common Subsequences in Recorded Test Cases

Martin Filipsky, Miroslav Bures and Ivan Jelinek

Department of Computer Science and Engineering

Czech Technical University in Prague

Prague, Czech Republic

{filipma2, buresm3, jelinek}@fel.cvut.cz

Abstract—Current trends in the agile software development

prefer to deliver finished stories with automated tests, which

results in a fact that many Quality assurance engineers struggle

with the lack of time. Rapidly changing applications prevent

them from finishing the automation by the end of the sprint as

they cannot develop the tests in advance, and have to wait until

the stable deliverable is done. Test recording might help them to

resolve the problem as it offers very fast test automation in

comparison to other approaches. However, it results in a very

expensive and a time demanding test maintenance. In this paper,

we present an approach that helps the engineers with the

maintenance by introducing a concept of automatically detected

reusable parts within the test recordings. Those reusable parts

increase the efficiency of the test recording approach, remove its

main drawbacks, and help to bring test recording closer to

scripting approaches.

Keywords-functional testing, test automation, test recording,

genetic algorithm

I. INTRODUCTION

Test automation includes a couple of challenges [9]. Since
testing teams are usually limited by finances, time as well as
resources [3], they have to use simple but efficient approaches
for the test harnessing. Here comes the test recording [5] in
place as it allows creating automated tests quickly. On the
other hand, this method is not generally understood as
efficient due to its significant maintenance overhead [1].

In our recent research [6], we have proposed a framework
for the test automation based on the test recording. We
introduced a concept of reusable parts allowing simplifying
the test maintenance. Introducing the reusable parts means to
find common parts within the recorded tests. The problem of
finding them can be transformed into the finding longest
common subsequence problem [2].

The paper is organized as follows. Section 2 introduces the
problem. Section 3 summarizes the previous results. In
Section 4, we describe our solution of the problem. In Section
5, we conclude with outlines for future work.

II. THE PROBLEM

The Longest Common Subsequence (LCS) problem is
defined as finding LCS common to all sequences in a set of
sequences. The subsequence is a sequence that can be derived
from another sequence by deleting some elements of the
original sequence without changing the order of the remaining
elements. Unlike the subsequences, the substrings cannot be
derived from another string by deleting some elements.

Consider a string S = "AACECAACE", then following
strings: (i) S, (ii) "AACAE", (iii) "CCCE", (iv) "ACECA" and

(v)  are subsequences of the string S. The subsequence
"ACECA" is also the substring of the string S but the
subsequences "AACAE" and "CCCE" are not. Now consider
strings S1 = ”AEBEEBCCBACA” and S2 =
”CEACEBEBCBAA”. Then “AEEBCBAA” is the LCS of
the given strings, which currently preserves the order of
elements and allows deleting elements from the original
strings.

The standard LCS problem is defined for finding a single
LCS. However, if we need to find all subsequences with at
least length l, the problem is getting more complex. In general,
the decision, if a subsequence w, which is common to all
sequences and has the length at least l, exists over an alphabet

, is an NP-complete problem [13]. To overcome this
limitation, we are planning to employ an evolutionary
computational technique to find LCS.

Understanding tests as sequences of steps might be more
beneficial than understanding them as strings. Finding
common subsequences (CS) might result in longer
subsequences than finding common substrings. However, it
brings the need to define conditions when a subsequence is
valid when excluding some steps from the test case.
Otherwise, it might happen that the found CS could not be
executed independently as the some steps might depend on
excluded steps. Therefore, the state of the application would
not be identical for all steps within the common part.

When finding CS for informational purposes, all steps can
be excluded. However, if we want to understand CS as
functions (as we want to get closer to the scripting approach),
we have to exclude all steps changing the state of the
application (Fig. 1), i.e., only the passive (validation) steps can
be interposed between the common sequence.

III. RELATED WORK

Searching in structured data like test steps or test scripts
represent challenges in the current computing. As the machine
processing becomes more widely used in order to replace the
human labor, standard approaches [10, 11] for the string
searching introduced in 70's cannot be often easily employed
for those data.

Unlike unstructured data, the structured data are organized
in elements. However, the elements (tags) are not supposed to
convey information, e.g., in Extensible Markup Language
(XML).

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 1. Two types of inserted steps (in light red)

Tags define a structure of the document. We talk about hybrid
data when both types of data are in one document.

Zhu et al. [17] noticed that the text search on hybrid data
may result in a bad ranking of the searching results. They
demonstrated why the text search fails or gives insufficient
results when used without considering the structured data.

XML can be seen as a good format for a test case
representation. However, searching within those structured
data requires special approaches, which can be divided into
two categories: (i) information retrieval, and (ii) database-
oriented. The database-oriented approach [12] is based on a
decomposition of XML documents and their storage in
relational databases. The drawback is a query processing,
which may become expensive due to an excessive number of
joins required to recover information from the fragmented
data. The information retrieval approaches employ other
computational techniques like genetic algorithms in several
ways [16].

Srinivasa et al. [15] introduced an approach for an XML
information retrieval mechanism. Based on keyword queries,
they explored how to retrieve and rank XML fragments using
Genetic Algorithms.

An evolutionary technique for the LCS problem is
discussed in [7]. The genetic algorithm (GA) encodes
candidate sequences as binary strings as long as the shortest of
given string. Authors initialize conventionally random
genotypes. They demonstrated that the algorithm always
found an optimum solution, runs in reasonable times even on
large instances, and achieves better results when compared to
approaches based on the dynamic programming.

Julstrom and Hinkemeyer [8] noticed that GA might find
good solutions more quickly in situations, when a problem is
one of constrained optimization, and genotypes of the initial
population are represented by empty solutions.

Finding longest common subsequences in strings is
commonly solved by GAs or dynamic programming. The
recent research shows that GAs achieve the best results in
comparison to other approaches. Several research teams
presented approaches finding the LCS in strings. Nevertheless,
those approaches do not deal with structured and
parameterized data represented by tests in different input
alphabets. Since the current research in testing is mostly
focused on the generation of test cases based on a code
analysis [4], or on an analysis of regression test selection [14],
we see a potential in the research of techniques for
the maintenance of recorded tests to decrease costs for the test
maintenance.

IV. PROPOSED SOLUTION

In this section, we present individual parts of our approach.

We start with mapping tests to strings. Then we present

control parameters, outputs, and introduce our proposal of

LCS solver. Finally, we explain step signatures.

A. Mapping of Tests to Strings

Current solutions for the LCS problem are proposed for
strings (unstructured data). Since test cases are represented,
e.g., in a domain-specific language (DSL), we need to adapt
the current solutions to work with the structured data. Strings
consist of single elements, i.e., characters, which form
sequences. We plan to represent the test cases internally in the
DSL (see Listing 1) describing tests, modules, objects, actions,
etc. The Listing 1 shows the recorded user activity forming the
sequence in the XML.

If we consider all child tags of the XML tag Step including
their parameters and values, we will deal with high number of
variables. It will result in a difficult mapping of the XML tag
Step to a single character required by LCS solvers. On the
other hand, if we consider just Step as one character, we can
understand the tag as one character of the string. Therefore,
the string will consist of complex units (Fig. 2). Such a
representation enables working with structured data using
conventional LCS solvers. However, this approach would be
too simplified as the steps might be understood as identical.
They do not have enough properties for the identification,
since the tag id or tag name is not enough. Therefore, all steps
mapped to the same character could not be recognized. To
identify test steps, we introduce step signatures, which are
supposed to replace a step description. Otherwise, we would
have to choose between the full text search not recognizing
two identical but parameterized steps, and the mapping of
steps to characters not allowing distinguishing them.

Unlike test cases in DSL, the use of, for example, Java
brings new challenges. First of all, steps represented by
commands or functions of the scripting language have to be
simplified. Consider the complexity of the comparison when
counting with language-specific features, parameters etc.
However, the simplified elements still should have signatures
to describe them, which results in a need to find either direct
mapping of commands to steps including signature definitions
for every proposed language. Another option is to find a
general mapping of a limited subset of commands to the
intermediate layer (DSL), and propose one signature based on
the DSL.

In our research, we plan to do more investigations in order
to decide if it is better to work with the source code directly, or
if it is worth to transform the source code to the DSL and then,
to process this representation.

B. Inputs and Outputs

The LCS solver expects two kinds of input data: (i) raw
input data intended for processing (test recordings), and (ii)
control data driving the processing. For the finding LCS, we
expect to provide the LCS solver, i.e., the GA, with the input
files either in the DSL, or in direct source codes.

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 2. Mapping tests to simple strings

The condition is that the relevant mapping exists from test
scripts to elements with signature. The output from the LCS
solver should be a processed package of test recordings with
identified common subsequences.

Since the LCS solver should be proposed to find the
longest common subsequence as well as shorter CS in order to
detect reusable parts, we need to provide the LCS solver with
a threshold defining what lengths of common subsequences
we are interested in. Moreover, we want the LCS solver to
work with simple test step signatures and/or with the complex
ones allowing recognizing identical but parameterized steps.
In other words, the LCS is supposed to work at different level
of details.

C. Evolutionary Computations

We based our solution on the approach presented in [8]
and tailored the GA used in the LCS solver to fit our needs.
For the LCS search, candidate sequences are encoded as
binary strings as long as the shortest mapped given tests or the
first given test if they are of the same length. If the element is
present in the candidate sequence (in the chromosome), it is
encoded by "1". If not, it is encoded by "0". Since [8]
demonstrated that the GA achieves better results when the
population is empty, i.e., the population is represented by
zeros, we have decided not to employ any technique for the
generation of the population.

Consider the example of three mapped tests T1 = “A E B E
E B C C B”, T2 = “C E A E E C B C B”, and T3 = “A E E E
A B C B E“, and the chromosome c[*] = 1 0 0 1 1 1 0 1 1,
then it means that T1: c[i] = 1 is in the subsequence T1[i], and
T1: c[i] = 0 is not in the subsequence T1[i]. T1 represents the
shortest given test or the first test from tests with identical
lengths.

Once GA finds a solution of the LCS problem, the LCS
will be encoded in the chromosome. However, the found
solution represents the LCS in one test, but does not define
where to find the subsequence in other tests. We only know
the mapping from the chromosome to T1. Since the LCS solver
is required to build a structure enabling to identify and access
the subsequence in all tests, the computation of the LCS has to
be followed up by another stage of computations finding the
mapping.

The fitness function v is proposed to remunerate (1) long
sequences, (2) the genotype whose subsequence is long as T1,
(3) strongly remunerate the genotype, in which the
subsequence appears for each given test (4) strongly penalize
the genotype whose subsequence is not found in any test. The
fitness function cannot be positive unless the sequence appears
in all given tests. Based on the assumptions above and the
research of [8], the initial general fitness function is defined
for every case as follows:

 v = l +  * m (1)

v = v +  (2)

v =  * v (3)

v =  * v * (K - m) (4)

where l is a length of the subsequence, which c[*] represents,
m is number of tests, which match with the subsequence, and

K is the number of tests in the instance. The constants , , ,
and  represent the parameters of the genetic algorithm and
will be experimentally determined.

We are planning to employ several techniques for driving
the evolution of the population, which will be divided into
elite genotypes and the majority population. If the elite
population does not change for several generations, some of
the elite genotypes will be replaced by random genotypes to
avoid local optimums. Remaining genotypes will be evolved
using either a selective breeding of a position, or a mutation of
the position. The genotypes to be modified will be selected by
the tournament selection with the probability 1/l. We are
intending to carry out additional investigations to decide
which strategy would bring the best results.

D. Signatures

Steps of parameterized tests can be compared only in text
mode. Therefore, we proposed signatures to help the steps get
compared, and find common parts. Since the structure of the
command might be variable (for example, consider commands
with one, two, or more parameters), the usage of regular
expressions would require to define regular expressions for all
possible combinations to compare strings. Otherwise, the
standard LCS solver could not compare parameterized data.
Unlike the regular expressions, the signatures allow to define
simplified ones for rough searches, and also detailed
signatures for fine-grained searches. Moreover, they make use
of the opportunity of the clear structure of the DSL (see Figure
3 representing a sample recorded test), and can be built in a
simplified way for all commands than regular expressions.

<test case id=1 name="AddBob">
 <step id="1">
 <object id="Menu" type="Tree"\>
 <action name="Select" onFailure="">Tools;Login</action>
 </step>
 <step id="2">
 <object id="Username" type="InputBox"
 environment="Flex" \>
 <action name="Set" onFailure="">Alice</action>
 </step>
 <step id="4">
 <object id="Login" type="Button" environment="Flex" \>
 <action name="Click" onFailure="" \>
 </step>
</test case>

Figure 3. Recorded test case in the DSL

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Let us explain the signatures on the example of the
recorded test case captured in the DSL. The test case
represents the login to the system. The base signature consists
of descriptions of two entities (objects and actions). We
proposed several levels of signatures for different needs. The
Level 0 signatures are intended to represent subsequences of
similar objects and actions. It provides the users with a
possibility to find groups of similar commands independently
of concrete objects. Level 1 is proposed for the standard LCS
search. It enables to work with parameterized tests, but it is
not so strict like Level 2, which finds absolute conformities of
the subsequences including input values. Level 2 gives the
user a choice, what attributes and parameters should be in the
signature.

TABLE I. SIGNATURES

Level Step Signature

0 2 obj:inputbox&act:set

1 2 obj:inputbox.username&act:set

2 2
obj:inputbox.username+environment=flex

&act:set+val:(hash)

The Table 1 presents the signatures for each level based on

the sample recording (Figure 3) for the step 2. To simplify the
signature as much as possible (consider long input data), the
input parameters are replaced by hashes. The syntax of the
signature is defined as follows:

obj:<type>{.<object_name>}{+<attribute>=<value>}&
act:<action_name>{+<parameter>:<value>}

where obj stands for the object entity, act represents the action
entity, the & char links different entities. If more attributes are
required to describe entities in the signature, they can be
associated with the entity using the char "+". The entity
attributes are not mandatory.

V. CONCLUSIONS AND FUTURE WORK

We have proposed the approach for finding LCS of test
steps based on the evolutionary computational approach
presented in [8]. Moreover, we proposed the method of the
adaptation of the GA processing strings to process structured
data represented by test cases. Furthermore, we introduced
signatures for descriptions of steps, which currently enable
finding LCS in different equivalence classes.

Our next goal of the research is to conduct experimental
verifications of the proposed approach as well as to tune up
the parameters of the GA. We are planning to compare results
gained using the signatures to results gained using the regular
expressions, and to find out the impact of different sizes of the
input alphabet. One of our goals is also to confirm or disprove
whether it is better transform inputs into the DSL, or if it is
worth to work with test recordings directly without
preprocessing.

Finally, we are planning to evaluate the results from
several points of view. Firstly, we will check whether the
results make sense, and whether found LCS would be similar
to reusable units designed by human testers. Secondly, we will
investigate the contribution of such approach with an

emphasis on the efficiency of test automation and test
maintenance.

REFERENCES

[1] B. R. Anand, H. Krishnankutty, K. Ramakrishnan, and V.C.

Venkatesh, Business Rules-Based Test Automation: A Novel
Approach for Accelerated Testing, White paper, Infosys,
SETLabs Briefing, Special Issue April 2007, pp. 21-28.

[2] M. F. Balcan, CS 3510 – Design and Analysis of Algorithms,
Lecture notes, Georgia College of Tech Computing, 2011.

[3] R. Black, Investing in Software Testing: The Cost of Software
Quality, White paper, RBCS, 2000.

[4] Ugo Buy, Alessandro Orso, and Mauro Pezze. 2000.
Automated Testing of Classes. In Proceedings of the 2000
ACM SIGSOFT international symposium on Software testing
and analysis (ISSTA '00), ACM, New York, USA, pp. 39-48.

[5] M. Fewster and D. Graham, Software Test Automation:
Effective Use of Test Execution Tools, Addison-Wesley
Professional, ACM Press Books, September, 1999.

[6] M. Filipsky, M. Bures, and I. Jelinek, Framework for Better
Efficiency of Automated Testing, In Proceedings The Seventh
International Conference on Software Engineering Advances,
Lisbon, Portugal, 2012, pp. 615-618.

[7] B. Hinkemeyer and B. A. Julstrom, A Genetic Algorithm for
the Longest Common Subsequence Problem, In Proceedings of
the 8th annual conference on Genetic and evolutionary
computation, GECCO '06, ACM, New York, USA, 2006, pp.
609-610.

[8] B. Julstrom and B. Hinkemeyer. Starting From Scratch:
Growing Longest Common Subsequences With Evolution. In
Parallel Problem Solving from Nature - PPSN IX, vol. 4193 of
Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2006, pp. 930-938.

[9] C. Kaner, Software Test Automation: A Real-World Problem,
White paper, Los Altos Workshop on Software Testing 1-3,
1997-98.

[10] R. M. Karp and M. O. Rabin, Efficient Randomized Pattern-
Matching Algorithms, IBM J. Res. Dev., vol. 31(2), March,
1987, pp. 249-260.

[11] D. E. Knuth, J. J. H. Morris, and V. R. Pratt, Fast Pattern
Matching in Strings. SIAM Journal on Computing, vol. 6(2),
1977, pp. 323-350.

[12] R. W. Luk, H. V. Leong, T. S. Dillon, A. T. Chan, W. B. Croft,
and J. Allan, A Survey in Indexing and Searching XML
Documents, J. Am. Soc. Inf. Sci. Technol., vol. 53(6), May,
2002, pp. 415-437.

[13] D. Maier, The Complexity of Some Problems on Subsequences
and Supersequences, Journal of the ACM 25, 1978, pp. 322-
336.

[14] G. Rothermel and M. J. Harrold, “Analyzing Regression Test
Selection Techniques,” IEEE Transactions on Software
Engineering, vol. 22, pp. 529–551, August 1996.

[15] K. G. Srinivasa, S. Sharath, K. R. Venugopal, and L. M.
Patnaik, Gaxsearch: An XML Information Retrieval
Mechanism Using Genetic Algorithms, In Australian
Conference on Artificial Intelligence, 2005, pp. 435-444.

[16] J. Yang and R. R. Korfhage, Effects of Query Term Weights
Modification in Annual Document Retrieval: A Study Based on
a Genetic Algorithm, In Proceedings of the Second Symposium
on Document Analysis and Information Retrieval, 1993, pp.
271-285.

[17] H. Zhu, X. Yang, B. Wang, and Y. Wang, Improving Text
Search on Hybrid Data, In Web-Age Information Management,
vol. 7419 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2012, pp. 192-203.

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

