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Abstract—Current trends in the agile software development 

prefer to deliver finished stories with automated tests, which 

results in a fact that many Quality assurance engineers struggle 

with the lack of time. Rapidly changing applications prevent 

them from finishing the automation by the end of the sprint as 

they cannot develop the tests in advance, and have to wait until 

the stable deliverable is done. Test recording might help them to 

resolve the problem as it offers very fast test automation in 

comparison to other approaches. However, it results in a very 

expensive and a time demanding test maintenance. In this paper, 

we present an approach that helps the engineers with the 

maintenance by introducing a concept of automatically detected 

reusable parts within the test recordings. Those reusable parts 

increase the efficiency of the test recording approach, remove its 

main drawbacks, and help to bring test recording closer to 

scripting approaches. 
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I.  INTRODUCTION 

Test automation includes a couple of challenges [9]. Since 
testing teams are usually limited by finances, time as well as 
resources [3], they have to use simple but efficient approaches 
for the test harnessing. Here comes the test recording [5] in 
place as it allows creating automated tests quickly. On the 
other hand, this method is not generally understood as 
efficient due to its significant maintenance overhead [1].  

In our recent research [6], we have proposed a framework 
for the test automation based on the test recording. We 
introduced a concept of reusable parts allowing simplifying 
the test maintenance. Introducing the reusable parts means to 
find common parts within the recorded tests. The problem of 
finding them can be transformed into the finding longest 
common subsequence problem [2]. 

The paper is organized as follows. Section 2 introduces the 
problem. Section 3 summarizes the previous results. In 
Section 4, we describe our solution of the problem. In Section 
5, we conclude with outlines for future work. 

II. THE PROBLEM 

The Longest Common Subsequence (LCS) problem is 
defined as finding LCS common to all sequences in a set of 
sequences. The subsequence is a sequence that can be derived 
from another sequence by deleting some elements of the 
original sequence without changing the order of the remaining 
elements. Unlike the subsequences, the substrings cannot be 
derived from another string by deleting some elements.  

Consider a string S = "AACECAACE", then following 
strings: (i) S, (ii) "AACAE", (iii) "CCCE", (iv) "ACECA" and 

(v)  are subsequences of the string S. The subsequence 
"ACECA" is also the substring of the string S but the 
subsequences "AACAE" and "CCCE" are not. Now consider 
strings S1 = ”AEBEEBCCBACA” and S2 = 
”CEACEBEBCBAA”. Then “AEEBCBAA” is the LCS of 
the given strings, which currently preserves the order of 
elements and allows deleting elements from the original 
strings. 

The standard LCS problem is defined for finding a single 
LCS. However, if we need to find all subsequences with at 
least length l, the problem is getting more complex. In general, 
the decision, if a subsequence w, which is common to all 
sequences and has the length at least l, exists over an alphabet 

, is an NP-complete problem [13]. To overcome this 
limitation, we are planning to employ an evolutionary 
computational technique to find LCS. 

Understanding tests as sequences of steps might be more 
beneficial than understanding them as strings. Finding 
common subsequences (CS) might result in longer 
subsequences than finding common substrings.  However, it 
brings the need to define conditions when a subsequence is 
valid when excluding some steps from the test case. 
Otherwise, it might happen that the found CS could not be 
executed independently as the some steps might depend on 
excluded steps. Therefore, the state of the application would 
not be identical for all steps within the common part.  

When finding CS for informational purposes, all steps can 
be excluded. However, if we want to understand CS as 
functions (as we want to get closer to the scripting approach), 
we have to exclude all steps changing the state of the 
application (Fig. 1), i.e., only the passive (validation) steps can 
be interposed between the common sequence. 

III. RELATED WORK 

Searching in structured data like test steps or test scripts 
represent challenges in the current computing. As the machine 
processing becomes more widely used in order to replace the 
human labor, standard approaches [10, 11] for the string 
searching introduced in 70's cannot be often easily employed 
for those data. 

Unlike unstructured data, the structured data are organized 
in elements. However, the elements (tags) are not supposed to 
convey information, e.g., in Extensible Markup Language 
(XML). 
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Figure 1. Two types of inserted steps (in light red)  

Tags define a structure of the document. We talk about hybrid 
data when both types of data are in one document. 

Zhu et al. [17] noticed that the text search on hybrid data 
may result in a bad ranking of the searching results. They 
demonstrated why the text search fails or gives insufficient 
results when used without considering the structured data. 

XML can be seen as a good format for a test case 
representation. However, searching within those structured 
data requires special approaches, which can be divided into 
two categories: (i) information retrieval, and (ii) database-
oriented. The database-oriented approach [12] is based on a 
decomposition of XML documents and their storage in 
relational databases. The drawback is a query processing, 
which may become expensive due to an excessive number of 
joins required to recover information from the fragmented 
data. The information retrieval approaches employ other 
computational techniques like genetic algorithms in several 
ways [16]. 

Srinivasa et al. [15] introduced an approach for an XML 
information retrieval mechanism. Based on keyword queries, 
they explored how to retrieve and rank XML fragments using 
Genetic Algorithms. 

An evolutionary technique for the LCS problem is 
discussed in [7]. The genetic algorithm (GA) encodes 
candidate sequences as binary strings as long as the shortest of 
given string. Authors initialize conventionally random 
genotypes. They demonstrated that the algorithm always 
found an optimum solution, runs in reasonable times even on 
large instances, and achieves better results when compared to 
approaches based on the dynamic programming. 

Julstrom and Hinkemeyer [8] noticed that GA might find 
good solutions more quickly in situations, when a problem is 
one of constrained optimization, and genotypes of the initial 
population are represented by empty solutions. 

Finding longest common subsequences in strings is 
commonly solved by GAs or dynamic programming. The 
recent research shows that GAs achieve the best results in 
comparison to other approaches. Several research teams 
presented approaches finding the LCS in strings. Nevertheless, 
those approaches do not deal with structured and 
parameterized data represented by tests in different input 
alphabets. Since the current research in testing is mostly 
focused on the generation of test cases based on a code 
analysis [4], or on an analysis of regression test selection [14], 
we see a potential in the research of techniques for  
the maintenance of recorded tests to decrease costs for the test 
maintenance. 

IV. PROPOSED SOLUTION 

In this section, we present individual parts of our approach. 

We start with mapping tests to strings. Then we present 

control parameters, outputs, and introduce our proposal of 

LCS solver. Finally, we explain step signatures. 

A. Mapping of Tests to Strings 

Current solutions for the LCS problem are proposed for 
strings (unstructured data). Since test cases are represented, 
e.g., in a domain-specific language (DSL), we need to adapt 
the current solutions to work with the structured data. Strings 
consist of single elements, i.e., characters, which form 
sequences. We plan to represent the test cases internally in the 
DSL (see Listing 1) describing tests, modules, objects, actions, 
etc. The Listing 1 shows the recorded user activity forming the 
sequence in the XML.   

If we consider all child tags of the XML tag Step including 
their parameters and values, we will deal with high number of 
variables. It will result in a difficult mapping of the XML tag 
Step to a single character required by LCS solvers. On the 
other hand, if we consider just Step as one character, we can 
understand the tag as one character of the string. Therefore, 
the string will consist of complex units (Fig. 2). Such a 
representation enables working with structured data using 
conventional LCS solvers. However, this approach would be 
too simplified as the steps might be understood as identical. 
They do not have enough properties for the identification, 
since the tag id or tag name is not enough. Therefore, all steps 
mapped to the same character could not be recognized. To 
identify test steps, we introduce step signatures, which are 
supposed to replace a step description. Otherwise, we would 
have to choose between the full text search not recognizing 
two identical but parameterized steps, and the mapping of 
steps to characters not allowing distinguishing them.  

Unlike test cases in DSL, the use of, for example, Java 
brings new challenges. First of all, steps represented by 
commands or functions of the scripting language have to be 
simplified. Consider the complexity of the comparison when 
counting with language-specific features, parameters etc. 
However, the simplified elements still should have signatures 
to describe them, which results in a need to find either direct 
mapping of commands to steps including signature definitions 
for every proposed language. Another option is to find a 
general mapping of a limited subset of commands to the 
intermediate layer (DSL), and propose one signature based on 
the DSL.  

In our research, we plan to do more investigations in order 
to decide if it is better to work with the source code directly, or 
if it is worth to transform the source code to the DSL and then, 
to process this representation.  

B. Inputs and Outputs 

The LCS solver expects two kinds of input data: (i) raw 
input data intended for processing (test recordings), and (ii) 
control data driving the processing. For the finding LCS, we 
expect to provide the LCS solver, i.e., the GA, with the input 
files either in the DSL, or in direct source codes. 
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Figure 2. Mapping tests to simple strings 

The condition is that the relevant mapping exists from test 
scripts to elements with signature. The output from the LCS 
solver should be a processed package of test recordings with 
identified common subsequences. 

Since the LCS solver should be proposed to find the 
longest common subsequence as well as shorter CS in order to 
detect reusable parts, we need to provide the LCS solver with 
a threshold defining what lengths of common subsequences 
we are interested in. Moreover, we want the LCS solver to 
work with simple test step signatures and/or with the complex 
ones allowing recognizing identical but parameterized steps. 
In other words, the LCS is supposed to work at different level 
of details.  

C. Evolutionary Computations 

We based our solution on the approach presented in [8] 
and tailored the GA used in the LCS solver to fit our needs. 
For the LCS search, candidate sequences are encoded as 
binary strings as long as the shortest mapped given tests or the 
first given test if they are of the same length. If the element is 
present in the candidate sequence (in the chromosome), it is 
encoded by "1". If not, it is encoded by "0". Since [8] 
demonstrated that the GA achieves better results when the 
population is empty, i.e., the population is represented by 
zeros, we have decided not to employ any technique for the 
generation of the population.  

Consider the example of three mapped tests T1 = “A E B E 
E B C C B”, T2 = “C E A E E C B C B”, and T3 = “A E E E 
A B C B E“, and the chromosome c[*] = 1 0 0 1 1 1 0 1 1, 
then it means that T1: c[i] = 1 is in the subsequence T1[i], and 
T1: c[i] = 0 is not in the subsequence T1[i]. T1 represents the 
shortest given test or the first test from tests with identical 
lengths. 

Once GA finds a solution of the LCS problem, the LCS 
will be encoded in the chromosome. However, the found 
solution represents the LCS in one test, but does not define 
where to find the subsequence in other tests. We only know 
the mapping from the chromosome to T1. Since the LCS solver 
is required to build a structure enabling to identify and access 
the subsequence in all tests, the computation of the LCS has to 
be followed up by another stage of computations finding the 
mapping. 

The fitness function v is proposed to remunerate (1) long 
sequences, (2) the genotype whose subsequence is long as T1, 
(3) strongly remunerate the genotype, in which the 
subsequence appears for each given test (4) strongly penalize 
the genotype whose subsequence is not found in any test. The 
fitness function cannot be positive unless the sequence appears 
in all given tests. Based on the assumptions above and the 
research of [8], the initial general fitness function is defined 
for every case as follows: 

 v = l +  * m    (1) 

v = v +    (2) 

v =  * v    (3) 

v =  * v * (K - m)  (4) 

where l is a length of the subsequence, which c[*] represents, 
m is number of tests, which match with the subsequence, and 

K is the number of tests in the instance. The constants , , , 
and  represent the parameters of the genetic algorithm and 
will be experimentally determined. 

We are planning to employ several techniques for driving 
the evolution of the population, which will be divided into 
elite genotypes and the majority population. If the elite 
population does not change for several generations, some of 
the elite genotypes will be replaced by random genotypes to 
avoid local optimums. Remaining genotypes will be evolved 
using either a selective breeding of a position, or a mutation of 
the position. The genotypes to be modified will be selected by 
the tournament selection with the probability 1/l. We are 
intending to carry out additional investigations to decide 
which strategy would bring the best results. 

D. Signatures 

Steps of parameterized tests can be compared only in text 
mode. Therefore, we proposed signatures to help the steps get 
compared, and find common parts. Since the structure of the 
command might be variable (for example, consider commands 
with one, two, or more parameters), the usage of regular 
expressions would require to define regular expressions for all 
possible combinations to compare strings. Otherwise, the 
standard LCS solver could not compare parameterized data. 
Unlike the regular expressions, the signatures allow to define 
simplified ones for rough searches, and also detailed 
signatures for fine-grained searches. Moreover, they make use 
of the opportunity of the clear structure of the DSL (see Figure 
3 representing a sample recorded test), and can be built in a 
simplified way for all commands than regular expressions. 

 
<test case id=1 name="AddBob"> 
  <step id="1"> 
    <object id="Menu" type="Tree"\> 
    <action name="Select" onFailure="">Tools;Login</action> 
  </step> 
  <step id="2"> 
    <object id="Username" type="InputBox"  
      environment="Flex" \> 
    <action name="Set" onFailure="">Alice</action> 
  </step> 
  <step id="4"> 
    <object id="Login" type="Button" environment="Flex" \> 
    <action name="Click" onFailure="" \> 
  </step> 
</test case> 

Figure 3. Recorded test case in the DSL 
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Let us explain the signatures on the example of the 
recorded test case captured in the DSL. The test case 
represents the login to the system. The base signature consists 
of descriptions of two entities (objects and actions). We 
proposed several levels of signatures for different needs. The 
Level 0 signatures are intended to represent subsequences of 
similar objects and actions. It provides the users with a 
possibility to find groups of similar commands independently 
of concrete objects. Level 1 is proposed for the standard LCS 
search. It enables to work with parameterized tests, but it is 
not so strict like Level 2, which finds absolute conformities of 
the subsequences including input values. Level 2 gives the 
user a choice, what attributes and parameters should be in the 
signature.  

TABLE I.  SIGNATURES 

Level Step Signature 

0 2 obj:inputbox&act:set 

1 2 obj:inputbox.username&act:set 

2 2 
obj:inputbox.username+environment=flex

&act:set+val:(hash) 

 
The Table 1 presents the signatures for each level based on 

the sample recording (Figure 3) for the step 2. To simplify the 
signature as much as possible (consider long input data), the 
input parameters are replaced by hashes. The syntax of the 
signature is defined as follows: 

obj:<type>{.<object_name>}{+<attribute>=<value>}& 
act:<action_name>{+<parameter>:<value>} 

where obj stands for the object entity, act represents the action 
entity, the & char links different entities. If more attributes are 
required to describe entities in the signature, they can be 
associated with the entity using the char "+". The entity 
attributes are not mandatory. 

V. CONCLUSIONS AND FUTURE WORK 

We have proposed the approach for finding LCS of test 
steps based on the evolutionary computational approach 
presented in [8]. Moreover, we proposed the method of the 
adaptation of the GA processing strings to process structured 
data represented by test cases. Furthermore, we introduced 
signatures for descriptions of steps, which currently enable 
finding LCS in different equivalence classes. 

Our next goal of the research is to conduct experimental 
verifications of the proposed approach as well as to tune up 
the parameters of the GA. We are planning to compare results 
gained using the signatures to results gained using the regular 
expressions, and to find out the impact of different sizes of the 
input alphabet. One of our goals is also to confirm or disprove 
whether it is better transform inputs into the DSL, or if it is 
worth to work with test recordings directly without 
preprocessing. 

Finally, we are planning to evaluate the results from 
several points of view. Firstly, we will check whether the 
results make sense, and whether found LCS would be similar 
to reusable units designed by human testers. Secondly, we will 
investigate the contribution of such approach with an 

emphasis on the efficiency of test automation and test 
maintenance. 
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