ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

How Exception Handling Constructions are Tested:
An Initial Investigation with Open Source Software

Auri Marcelo Rizzo Vincenzi Joao Carlos da Silva
Instituto de Informatica Instituto de Informatica
Universidade Federal de Goias, UFG Universidade Federal de Goias, UFG
Goiania-GO, Brazil Goiania-GO, Brazil
e-mail: auri@inf.ufg.br e-mail: jes@inf.ufg.br
Plinio de Sa Leitdo-Junior José Carlos Maldonado
Instituto de Informética Inst. de Ciéncias Matematicas e de Computacao
Universidade Federal de Goias, UFG Universidade de Sao Paulo, USP
Goiania-GO, Brazil Sao Carlos-SP, Brazil
e-mail: plinio@inf.ufg.br e-mail: jcmaldon@icmc.usp.br
Marcio Eduardo Delamaro Marcos Lordello Chaim
Inst. de Ciéncias Mateméticas e de Computacao Escola de Artes, Ciéncias e Humanidades
Universidade de Sao Paulo, USP Universidade de Sao Paulo, USP
Sao Carlos-SP, Brazil Sao Paulo-SP, Brazil
e-mail: delamaro@icmc.usp.br e-mail: chaim@usp.br

Abstract—Software testing is one of the most important ac- reliability and the quality of the product. In addition, tieg
tivities in software development to deliver quality to the fnal artifacts can be valuable information to other softwareieng
product. Aiming at high efficacy, high quality and a low-cost neering tasks, like debugging and maintenance.

testing strategy, several testing techniques and criterighave Structural testi det : testi . ts f
been proposed in the last decades. In particular, structurh ructural testing determines testing requirements irom

testing techniques are among the most popular. The authors Program source code. In general, structural testing @iter
have extended traditional structural testing in order to mest use a program representation known as def-use graph that
this requirement, allowing its application to a software with abstracts the flow of control and variable usage of the progra
exception handling structures to assess the coverage measment under testing. This paper describes a set of structurahgest

of such structures. In this paper, we present control- and d&- o
flow criteria to exercise such structures and then evaluateour criteria f.or programmlng. languages with exception hargjlln.
well-known open source software projects according to thes mechanism. The underline control- and data-flow model is
criteria. The results show that test cases for those softwar defined to represent such criteria and a tool which supports

achieved low coverage of exception handling code and normal the model and implements the testing criteria instantifbed
execution code as well. The work also shows that using test 35va is described

criteria which discriminate between exceptional and norma .
testing requirements might be useful to produce a better dege A set of Open Source Software (OSS) projects was eval-

of information about the test set evaluated. uated in a large international project, aiming at encompass
metric definition, measurement practices, data analys#, t
suite definition, performance benchmarking, and indicator
computation [1]. We applied structural testing to such @cty
to assess the quality of the available test sets. Some of thes
projects are employed in this paper to illustrate how OSS
The exception handling mechanism available in a variehave been using exception handling constructions and how
of languages brings improvements on how to deal with erraell their test sets exercise such structures.
handling or special conditions to product implementation. The paper is organized as follows. In Section Ill, the ex-
Instead of using the traditional return value for error gadion, ception handling mechanisms of Java language are desgribed
exceptions provide a more sopbhisticated approach for er@gction IV presents the set of control- and data-flow based
handling. Despite its benefits, the use of exceptions bringsgteria we have extended to deal with exception handling
additional challenges to system verification and validatio constructions. In Section V, we present the data collected
By complementing other verification and validation techfrom four OSS projects, drawing a picture about the usage
nigues, like technical revision and formal methods, softwaof exception handling constructions in those projects and h
testing enhances productivity and provides evidence of ttreir OSS communities develop test cases for covering such

Keywords-software engineering; testing criteria; structural test-
ing; code coverage; testing tools

I. INTRODUCTION

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9 38

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

pieces of code. In Section VI, we offer our conclusions argy considering only the synchronous exception it is possibl

future work. to verify the type of exception to be raised when connecting
nodes, so that no false edges are generated. To collecttidne da
for the experiment, the authors used a tool named JABA, which

Aberdour [2] compares close- and open-source softwagean acronym for Java Architecture for Bytecode Analysis.
quality assurance and quality control, enumerating elev8ABA provides language-dependent analysis for Java pnugjra
differences. In the context of our work, four of them havend is part of the Aristotle Analysis System [10], but JABA
a great impact since, according to Aberdour [2] in the OS&hly performed the static analysis and, as soon as we know,
software development 1) the development methodology oftévere is no tool which implements such criteria.
is not defined or documented; 2) the testing and quality
assurance methodology is unstructured and informal; 3) the !ll- EXCEPTION HANDLING: FEATURES AND
defect discovery occurs from black-box testing late in the REQUIREMENTS INJAVA
development process; and 4) the empirical evidences riggard According to Perryet al. [11], a pervasive exception han-
quality are not collected. In one of the proposed guidelioes dling is required by almost anything that has an algorithmic
improve OSS development process, Aberdour [2] mentionfldw, such as a design process, a workflow or a computer
that the user based system testing should be complement withgram. Exceptions are used not only as an implication of
formal testing techniques and regression testing automati error, but also as an indication of deviations from the ndrma

Considering specifically the testing process on OSS comnagnditions established by the system. The main task of an
nity, Zhao and Elbaum [3] conducted a survey with 200 OSxception handling mechanism in the context of programming
and found that instead of focusing on high quality milestorlanguages is to overcome the problems posed by using the
releases, the “release early, release often” processtitrad usual “return values from a function” as an indication of
ally adopted by the OSS community, results in a continuahexpected conditions. The use of exceptions to indicate er
improvement by a large number of developers contributirgpnditions ease the propagation of the erroneous statelsmd a
iterations, enhancements, and corrections. With respeittet the implementation of the fault tolerance mechanism.
way OSS community test their software, Zhao and Elbaum [3] Programming languages like Java, C++ and Ada have
discovered that: 1) testing effort is concentrated on systesimilar exception handling mechanisms. In the case of Java,
testing; 2) fewer than 20% of OSS developers use test plapsceptions are represented by objects. We focus on Java for
3) only 40% of projects use testing tools, but this percemtagome reasons: 1) it is one of the largest used programming
increases in case of Java, which has several available; totdsguages in this last decade [12]; 2) there are several-open
4) less than 50% of OSS use coverage concepts or toolssaurce Java software with unit testing available; and 3) our
improve test quality. previous effort on developing testing tools for Java [13].

A more recent study from Khanjani and Sulaiman [4] Figure 1 shows part of the exception handling class hier-
corroborates the ones above recognizing that despite the farchy of the Java language. All those classes are part of the
the open source development has seen remarkable succegsira. | ang package. As Figure 1 shows, tfiéar owabl e
recent years, there are a number of product quality issuks &fass, an immediate subclass of Object, is the root class of
challenges facing the OSS development model. Considerifig entire exception hierarchy. It has two direct subckisse
exclusively the testing activities, they highlight the kaof Excepti on andError.
knowledge of participants to understand the OSS system
architecture and to create additional test cases for it. SaTSTTE S

Since we are interested to measure the coverage of excep il
handling code, we evaluated a few papers that discuss noveoe
analysis and testing of programs with exception handlir
structures. For instance, the works of Chatterjee et al. |
and Choi et al. [6] present models to compute control- ar[cassNotFoundException |
data-flow information for dealing with exceptions, but nolto i It |

. . . . | virtuaiMachineError | [LinkageError |
which implements the proposed models is available. I { | |

Sinha and Harrold [7] developed a family of criteria tc i A
deal with exception handling construction instantiatedtfe | \Pentertxception H ArithmeticException !! StackOverflowError HOutOfMemoryError !
Java language. The testing criteria definition use a controi
and a data-flow model known as interprocedural control-flofigure 1. Part of the exception handling class hierarchy of
graph (ICFG) [8], [9], which is used for the identification ofava [14].
testing requirements. Java exceptions, as presentedmayt,
be synchronized (explicitly raised byteéhr ow statement) or ~ Subclasses oExcepti on represent exceptional condi-
unsynchronized (that can be raised at any time implicitlydions that a normal Java program may handle and, except
The main limitation of ICFG is that, unlike our model, it doesor Runt i meExcepti on and its subclasses, all the other
not represent unsynchronized exceptions. On the other, hasubclasses oExcepti on are called “checked exceptions”,

Il. RELATED WORK

1
|

Throwable
—

1

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9 39

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

i.e., exceptions that must be handled since they are vedfied A common representation of the program under testing,
compilation time.Runt i neExcepti on and its subclasses,known as Control-Flow Graph (CFG), is generally used to
also known as “unchecked exceptions”, represent runtimbstract the internal control flow of the tested unit. A peogr
conditions that may generally occur in any Java metho#, can be decomposed in a set of disjoint blocks of statements
but the method is not required to inform that it can raisgo that the execution of the first statement inside a giveckblo
runtime exceptions. Although they can be handled, unchieceads to the execution of all other statements in that block i
exceptions are not identified at compilation time. On thihe order they appear in. All statements in a block, except
other hand, all other standard exceptions a method can thnpessibly the first, have a single predecessor. All statesnant
must be informed by means of ahr ows clause. A Java a block, except possibly the last, have exactly one successo
program should try to handle all standard exceptions, sintais means that there is no external control flow from/to
they represent abnormal conditions that should be antaipastatements in the middle of the block. In a CFG, such basic
and caught to prevent program termination. blocks are represented as vertex and the possible execution

In addition to checked and unchecked exceptions, there mv from one block to another is represented as directed
errors that can never be raised or handled since they ardauseeldges. A CFG has a single entry node that represents the block
show serious problems with the Java virtual machine, thesclavhich contains the entry instruction of the unit. An exit eod
loader or any other error which will abort program executiomas no outgoing edge.

All checked exceptions may have exception handling codea pef.ise graphDUG) is an extension of the Control-Flow

associated Wit_h them. This is done in Java by usmg_é‘raph including sets of variables defined and used on each
try-cat ch-f|_nal_l y construct. There are. three posSizEG podes [16]. Therefore, thBUG contains information
ble valid combinations of these statements:y-catch, ,p4,¢ the data flow of the program under testing, character-

try-catch-finally, and try-finally. The try ;ing associations between statements in which a definition
statement is composed bytay block. Thecat ch block occurs and statements in which a use is present.

is composed by one or morat ch clauses, responsible for) .)

specifying the exception handlers. That ch clause formal It is out of the scope of this paper to discuss the complete

parameter determines the kind of exception it handles amd fRO testing approach and all the models and algorithms used

variable which will be assigned with the exception instanct® @nalyze the programs. It may be seen in [17].

Thef i nal | y block, when present, is always executed, even Two points should be highlighted in the analysis of control-

in the presence of control-flow transfer statements likekye flow characteristics of a Java bytecode program:

continue, and return in the body of the'y block [14]. A

feature of Java's exception handling mechanism is its non-. the use of intra-method subroutine calls. JVM has in-

resumable model, which means that once an exception is structionsj sr, j sr_w andret that allow a piece of

raised, the control flow returns to the first statement after t the method code to be “called” from several points in

t ry statement responsible for handling such an exception. the same method. This is mostly used to implement the
In terms of testing, the exception handling mechanism fi nal | y block of Java.

affects the normal control-flow execution. Moreover, thé se « exception handlers. Each piece of code inserted in a

of instructions that may produce exceptions also has to be cat ch block of a Java program is an exception handler

considered in the creation of basic CFG blocks. The set (EH). The execution of such a code is not performed

of instructions responsible for raising synchronous ckdck by ordinary control-flow, but by the throwing of an

exceptions may be found elsewhere [15]. exception. In the bytecode code the exception handler is

not activated by ordinary instructions either. Each method

has a table that describes where the handlers are located

In this section, we present our approach to the structural in the code and which piece of code they apply to. The

IV. STRUCTURAL TESTING FOR EXCEPTION HANDLING

testing of programs with exception handling constructss It flow of execution that is activated by an exception is
part of a general framework that permits the application of represented in oWPl/G by a different type of edge, called
control- and data-flow criteria to object oriented programs an “exception edge”.

particular those developed using the Java language.

As part of this framework, a control- and a data-flow model To deal with Java's exception-handling mechanism, the
were developed to accommodate our needs. The modeluisderlying representation model, i.e., th&/G, should reflect
based on the analysis of bytecode programs instead of soutee control-flow during normal program execution and also
code. This approach offers some advantages, it is languagering the occurrence of exceptions. To represent regular
independent and reflects the actual structure of a programd exception control-flows, we use two kinds of edges:
under testing. The next subsections summarize our appro&afjular edgesepresent the regular control-flow, i.e., defined
and the way it affects the testing of units with exceptioby the language statements; amdeption edgesepresent the
handling structures. control-flow when an exception is raised. With such distinc-
tion, testing criteria can be defined to assess test covenage

A. Control- and data-flow models . . .
normal execution flow and on exceptional execution flow.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9 40

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

B. Testing criteria nodei € N and for every variabler € def(i), II
includes a def-clear, exception-dependent path wer.t.
from node: to every use ofz. In other words, this
criterion requires that every exception-dependent def-c-

: \ use associatior{i, j,z) and every exception-dependent
(ni,n;) that is reachable through a path which does def-p-use associatiofi, (j, k), z) is exercised at least

not contain any exception edge. once for any given test case,

A path that includes a node, which may only be reached Tne yse of testing criteria which consider exception codes
through a path that contains an exception edge B@eption- \yhen defining testing requirements can improve the testing
dependenpath. activity by offering hints to the tester on how the code is

To address explicitly the coverage of exception ha“dleﬁganized, in terms of a “normal” or “abnormal” flow. Our
code, two non-overlapping testing criteria were definedhad et criteria may help in at least three situations:

the te;ter may concentrate on different aspects of a Program i is well known that much of the exception handling code
at a time. Given the test s&f = {t1,to,...,¢.} and the

: is hard to test and it is left untested intentionally. With
corresponding set of pat_kﬁ = {m,m2,..., 7} executed by the indication of exception-dependent and exception-
the elements of’, we define: independent requirements, the tester may consider only
» all-nodes-exception-independe@ll-Nodes;;): II satis- the latter, with no need to analyze the feasibility of each,

fies the all-nodes-exception-independent criterion ifgve according to his/her goals;

noden € N; is included inll. In other words, this , on the other hand, if the application requires the execution

The basis to define testing criteria for exception handling
structures is the concept ekception-free path

An exception-free patfs a pathr | V(n;,n;) € 7 =

criterion requires that every node of ttel/G graph, of an exception-dependent code, the use of our criteria

reachable through an exception-free path, is executed at can guide the tester indicating which requirements need

least once. an abnormal situation to be covered and suggesting a
« all-nodes-exception-dependeffll-Nodes.,): 11 satisfies possible incremental testing strategy;

the all-nodes-exception-dependent criterion if everyenod , exception dependent testing requirements can be used as

n € Neq is included inll. In other words, this criterion a static code metric. For example, comparing the number

requires that every node of ti/G graph, not reachable of exception independent testing requirements against the
thrOUgh an exceptlon-free path, is executed at least once. number of exception independent requirements may give

Considering edges as testing requirements, we have: an indication of the cost of testing both normal and

. all-edges-exception-independegAll-Edges.): abnormal flow and, in some extent, of the complexity
11 satisfies the all-edges-exception-independent criterion ©f these parts of the program. Other metrics like lines of
if every edgee € E.; is included inIL In other code or cyclomatic complexity could also be used in this
words, this criterion requires that every edge of PgG way if one considers these two types of code.

graph that is reachable through an exception-free pathds aAutomation aspects
executed at least once.

« all-edges-exception-dependefhll-Edges.,): 11 satisfies
the all-edges-exception-dependent criterion if everyeed§

To support the application of the structural testing cidter
resented in the previous sections, we are working on the
evelopment of an Open Source testing tool called JaBUTI.

?eeu%eds I;;rtlcej\ljgredelgli (I)? t%?jgr wroardﬁ ’ntgtlsre(:::tﬁgglz We have worked on this tool since 2003 [13], improving its
9 y €dg grap functionalities and extending its application to a variety

through an exception-free path is executed at least ON&Sttware products. Currently, besides testing Java pragra

As with the all-nodes and all-edges criteria, we split thgt ynjt level, the tool may also be applied for unit testing
all-uses criterion [16], so that two sets of non-overlagpinyg Aspect-Oriented programs [18], Java components [19],
testing requirements are obtained. We named such critfia 8aya micro-edition, and mobile programs [20], among others
uses-exception-independent and all-uses-exceptioerd®mt, | addition, the tool can be easily employed to work with
respectively. any language which generates bytecode as a result of the

« all-uses-exception-independelfAll-Uses.;): 1T satisfies compilation process.

the all-uses-exception-independent criterion if for gver The steps for executing JaBUTi are depicted in Figure 2.
nodei € N and for every variabler € def(i), II The first step is the creation of a test session, which shows
includes a def-clear, exception-free path w.ztfrom the classes that compose the program under testing and those
nodei to every use ofe. In other words, this criterion we want to instrument for the collection of the execution
requires that every exception-independent def-c-use asce. The second step is the generation of testing reqairem
sociation (¢, j,) and every exception-independent defby using the eight testing criteria. Then, it is necessary to
p-use associatiol, (j, k), x) is exercised at least onceinstrument the selected classes. After instrumentatiba, t
for any given test case. program under testing may be executed with one or more

« all-uses-exception-dependenfAll-Uses.;): II satisfies test cases and the coverage information is recorded. Afsér t

the all-uses-exception-dependent criterion if for everset execution, the covered requirements are identified leand t

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9 41

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

current status of the test session is updated and visuadizedsafety critical systems. Regardless of the level of cowerag

testing reports with different levels of detail. With thepogts obtained, the importance of coverage testing does not lie on

the tester may decide whether to continue or stop the testidgntifying which parts of the product were exercised dgrin

activity based on his/her previously defined stopping idte test set execution, but on identifying the ones which have no
yet been executed.

Create Test Create Test Instrument Cornett [23] discusses the minimum acceptable code cov-
start | Session (1) Requirements (2) Classes (3) erage and argues that a coverage level between 70-80% is

a reasonable goal for system testing for the majority of
software products. Moreover, Cornett [23] also defends$ tha

unit, integration, and system testing levels demand a dsere
Test Case Coverage Report ing coverage level since, in general, it is easier to achieve
Execution (4) Evaluation (5) Generation (6) | stop . . . i
a higher coverage of a single unit than that of an entire

improve test set system. An importan_t point that has not been mentio_ned is
how exception handling structures affect coverage levest |
Figure 2. Steps of a test session execution. not clear whether the 70-80% mentioned by Cornett considers

normal and exception handling codes or only normal code.

We have successfully used JaBUTi on several projects aig using the testing criteria presented in Section IV, a more
the tool has been released as an open source software t@iegise assessment of code coverage may be obtained.
used in the context of the QualiPSo project. The interestedAs an initial investigation, we analyzed four traditional
reader may consult [17], for further information. OSS: HSQLDB (version 1.9 Alpha 2), JMeter (version 2.3.2),
JUnit (version 4.6), and PMD (version 5.0). The evaluat®n i
performed via a testing tool that implements all the mergébn

In this section, we present the results obtained from thgiteria, but we concentrate the analysis on the exception
application of the exception-dependent criteria to a S@88. gependent ones. In this way, the restriction imposed by the
This initiative is part of our objectives in an attempt tontiey selection of a OSS is the need that its unit test set run suc-
the usual behavior of the OSS community while developingssfully, enabling the coverage information to be codiéct
test sets for OSS. The OSS are implemented in Java and correspond to the

Our first task was to make a static evaluation of somgst release available at the time the data was collected. We
open source projects, namely HSQLDB, JUnit, JMeter, PMRgncentrate our effort on evaluating the impact of exceptio

Weka, ServiceMix, Talend Open Studio, SpagoBl, Cimer@andiing in these projects and how test sets were developed
Jboss Application Server, Mondrian, Pentaho, and Spago. Weprder to cover exception code.

them and, as they are integrated with automated tools (A”tp?r'bjects and the number of methods which employ exception
Maven), it can be assumed that they are often run. Howevgindling constructions. The smallest OSS analyzed (JUnit)
despite this testing culture, the testing techniques egdlly has 2,614 lines of code (LOC), and the biggest (HSQLDB)
the OSS development community could not be identified witgg 63,592 LOC. On average, at method level, the use of
accuracy. Considering the current state of testing cawigtd exception handlers construction is present on 8% of thé tota
by OSS communities, it can be observed that: number of methods, percentage close to the average obtained
« in general, the only testing criterion applied is functibnaby Sinha and Harrold [9] for a different set of programs. Afte
There is no clear evidence of structural (control, datgerforming the static analysis, we started the dynamicysisal
flow) or fault based testing; We created an instrumented version of the programs under
« there is no clear distinction between unit, integratiord anesting and executed the available test set against thase ve
system testing. Although there are test suites integrat§idns, so that dynamic trace information could be collected
into the build process (most projects use Ant or Mavesnd confronted with the structural testing criteria. Table
to manage software compilation and packaging), thene and 11l show the data obtained.
are no clearly defined test plans and strategies after therables | and Il show the coverage after the execution of
execution of the test suite. For example, how to proceedl available test sets developed by the OSS community for
when failed test cases are found (e.g., if more than 108&ach program, considering the exception-independenttand t
of the test cases failed, the developers must be notifiedception-dependent testing criteria, respectivelyiffgance,
and the software package cannot be released). the JMeter test set was the one which determined the highest
A question which regards these test suites is: “Atehoc coverage with respect to all testing criteria. For All-Nede
test suites sufficient to assign trustworthiness to OSS?” Tiee test set covered 7,845 out of 20,462 required elements,
answer this question we use an approach which comprigs34% of coverage. As for the other testing criteria with
structural testing criteria for test set evaluation. higher complexity, the coverage percentage of the required
Formal standards like DO-178B [21] and ANSI/IEEE 1008elements were 28.27%, 26.55%, and 25.75%. In general, a
1987 [22] demand 100% statement and branch coverage lforel of coverage below 40% for these programs is very low

V. EXPERIMENTAL APPLICATION

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9 42

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

TABLE |. REQUIREMENT COVERAGE EXCEPTION-INDEPENDENT CRITERIA

Criterion

0SS All-Nodes,; All-Edges.; All-Uses.; All-Pot-Uses.;

Coverage (%) Coverage (%) Coverage (%) Coverage (%)

HSQLDB 8,029 / 40,703 (19.73%) | 7,476 / 45,098 (16.58%)| 19,720 / 126,246 (15.62%)| 67,847 / 458,843 (14.79%,
JMeter 7,845/ 20,462 (38.34%) | 5,461 /19,317 (28.27%)| 10,935 /41,180 (26.55%)| 33,615 /130,547(25.75%,
JUnit 608 / 1,951 (31.16%) 380 / 1,436 (26.46%) 631 / 2,624 (24.05%) 1,475 | 6,243 (23.63%)
PMD 7,938 /21,184 (37.47%)| 6,858 / 23,249 (29.50%)| 13,331 /57,552 (23.16%)| 38,404 / 252,261 (15.22%,

TABLE |l. REQUIREMENT COVERAGE EXCEPTION-DEPENDENT CRITERIA

Criterion
0SS All-Nodes, 4 All-Edges.q All-Uses.4 All-Pot-Uses.4
Coverage (%) Coverage (%) Coverage (%) Coverage (%)
HSQLDB 141 /1,942 (7.26%)|| 49 /6,513 (0.75%)|| 256 /2,750 (9.31%)|| 3,591 / 38,032 (9,44%)
JMeter 51 /1,541 (3.31%)|| 39 /4,863 (0.80%) 52 /2,093 (2.48%) 276 / 15,301 (1.80%)
JUnit 12 / 156 (7.69%) 9/ 184 (4.89%) 13/ 183 (7.10%) 29 / 632 (4.59%)
PMD 325 /2,039 (15.94%)|| 121 /3,814 (3.17%)|| 388 / 3590 (10.81%) 1689 / 20285 (8.33%)

TABLE Ill. EXCEPTION HANDLERS DATA AT METHOD LEVEL. ALL-NODES.4 CRITERION

Oss Number of methods|| Number of requirementg| Average || Number of methods with no coveragH Total coverage
HSQLDB || 683 1,942 2.84% 669 (97.95%) 7.26%
JMeter 625 1,541 2.47% 595 (95.20)% 3.31%
JUnit 63 156 2.48% 57 (90.48%) 7.69%
PMD 374 2,039 5.45% 299 (79.95%) 15.94%

and demonstrates that much of the code is only executedayhigh percentage of methods with zero coverage against
the users and that their test cases are probably not inéegrat any exception-dependent criterion. For three programsemo
the official test set. In the case of HSQLDB, the percentage thfan 90% of their methods have no test case to execute their
coverage of the All-Nodes criterion is 19.73%, which meansexception handling constructions. The best program is PMD,
that more than 80% of source code is not executed by afoy which the current test set is able to exercise 75 (20.05%)
official test case in the test set. out of 374 methods with exception handlers, but still 79.95%
Table 1l shows the coverage obtained with respect to tQé the methods are not executed by any test case.

exception-dependent criteria, i.e., those criteria widemand — Another point that might be inferred from Table 1l is that
an exception to be raised for covering the testing requirgie exception handlers have normally few nodes, i.e., they
ments. Considering_the most basic structural tesf[ingrimte are less complex in terms of logical structure. In fact, by
(All-Nodes.q), the highest coverage was determined by the, v 7ing such products, it is possible to observe that the

test set of the PMD project, which executed 325 out of 2,03Rajority of exception handlers have emptat ch blocks,

testing requirements (15.94%). This is a clearly very IOY\ﬁst avoiding the exception propagation but with no coivect

coverage and additional test sets should be developedsit l1€a.+1 associated with it. The most complex exception hesd|

to confirm that most of the exception handling construction e found in PMD, which has on average 5.45 requirements

the program could be executed at least once. per method, followed by HSQLDB with 2.84 requirements per
When comparing such a coverage against the exceptighethod, considering the All-Nodgscriterion.

independent criteria (Table 1), one can see that even for the i
All-Nodes., criterion, the level of coverage for all programs These numbers show that all the analyzed projects reveal a

ranges from 19.73% for HSQLDB and 38.34% for IMetelow level of code coverage for code unrelated to exception ha

This implies that the provided test set for such programs h3ing structures. This is disturbing because it revealsiak
a very low coverage in terms of structural testing critegieen of concern from OSS communities on constructing a reference

for the criteria not related with exception handling. test set for their products. The tests are in fact perforackd

. . . hoc by the user and test cases are not incorporated in the
In Table lll, we present more detailed information abo y P

. . Yficial test set.
the total number of methods with exception handlers, tha tot

number of testing requirements generated by the All-Ngdes For exception handling criteria the situation is even worse
criterion, the average number of requirements per methaddthough the complexity of exception handlers is not highs— a
the number of methods which do not have exception handirown by the number of testing requirements — the coverage
construction executed by any test case, and the total ogeeraf such testing requirements is very low. Many of the methods
obtained for such a criterion. As Table Il shows, there iwith this kind of code are not even executed once. In addition

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9 43

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

there is no indication of test cases specifically designed t@] M. Aberdour, “Achieving quality in open source SoftwadréEEE Soft-
address exception handling. ware, vol. 24, no. 1, pp. 58-64, 2007.

. . - P . . [3] L. Zhao and S. Elbaum, “A survey on quality related atigs
In this scenario, the testing criteria presented in thisepap ™ ;1 oen source” SIGSOFT Sofw. Eng. Notesol. 25, no. 3

may be of great help for developers, as they guide the tester pp. 54-57, May 2000, [retrieved: Oct., 2013]. [Online]. Hable:
through the process of selecting test cases that are or &re ng http:/doi.acm.org/10.1145/505863.505878

. . . - 4] A. Khanjani and R. Sulaiman, “The process of quality aasge under
related to exception handl'ng' Even if the adOpted pO|I0}OS open source software development,” @omputers Informatics (ISCI),

to execute exception handlers because they may be difficult 2011 IEEE Symposium p@011, pp. 548-552.

to reach, our approach reveals which requirements could @ R. K. Chatterjee, B. G. Ryder, and W. A. Landi, “Complexiof
lected and which should be covered concrete type-inference in the presence of exceptiond,eaiure Notes
neglec : in Computer Sciengevol. 1381. Springer, Apr. 1998, pp. 57-74.

[6] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar, “Efficient crprecise
VI. CONCLUSIONS AND FUTURE WORK modeling of exceptions for the analysis of java progran®GSOFT
To support the control- and data-flow model and the defined Software Engeneering Notegol. 24, no. 5, pp. 21-31, 1999.

testing criteria, we implemented a tool and presented d}Xpelm S. Sinha and M. J. Harrold," Criteria for testing excepthandling
constructs in Java programs,” International Conference on Software

mental data collected from a set of four OSS. The experiment maintenance Oxford, England: IEEE Computer Society Press, Aug.
intended to assess the adequacy of pre-existent test setstag 1999, pp. 265-274. _ . . .
the set of exception-dependent structural testing caiteri [8] — ‘Analysis of programs with exception-handling comsts,
; . in ICSM'98 — International Conference on Software Maintere&anc
Our observations reveal that, for all the evaluated preject gethesda, MD, Nov. 1998, pp. 348-357.
the coverage of exception handling constructions was coi8] —— "Analysis and testing of programs with exceptiombiing con-

siderable low. For instance, the maximum coverage of the Structs,IEEE Transactions on Software Engineeringl. 26, no. 9, pp.
: 849-871, Sep. 2000.

All-Nodes.q Crit_erion was below 16%, which shows that, iN1g] M. J. Harrold, L. Larsen, J. Lioyd, D. Nedved, M. Page, Rathermel,
general, there is no concern for the development of tesiscase M. Singh, and M. Smith, “Aristotle: a system for developmenit

; ; it ; ; program analysis based tools,” ACM-SE 33: Proceedings of the 33rd
to exercise e)_(ceptlonal Cor_1d|t|0ns in the projects. Moeeov annual on Southeast regional conferencblew York, NY, USA: ACM,
ma_ny exception Construct|0n§ have emmgt ch blocks, 1995, pp. 110-119.
which reveals that the exception handler, though present,[il] D. E. Perry, A. Romanovsky, and A. Tripathi, “Currenends in

; ; exception handling,leeesevol. 26, no. 10, pp. 921-922, Oct. 2000.
used Only to avoid the spread of the exception, not to I’ECO\fﬂ’] TIOBE Software BV, “TIOBE Index,” Web site, Sep. 2013efrieved:

from an erroneous Coﬂdition- _ _ Oct., 2013]. [Online]. Available: http://www.tiobe.com/
Even when evaluating the quality of the pre-existent te] A. M. R. Vincenzi, W. E. Wong, M. E. Delamaro, and J. C. Biahado,
sets against the exception-independent criteria, the rmaxi JaBUTI A coverage analysis tool for Java programs,Xill SBES —

L R Brazilian Symposium on Software EngineerindMlanaus, AM, Brazil:
coverage for the All-Nodesg criterion was below 39%, which Brazilian C)(l)m?Juter Society (SBC), 03_ zoog%p. 79-84.

is generally regarded as a low level of coverage and &d] J. Gosling, B. Joy, G. Steele, and G. Bracfidie Java Language
indicator that the test set should be improved. New versioiig] Specification 3rd ed. Addison Wesley, Jun. 2005.

. L. T. Lindholm and F. Yellin,The Java Virtual Machine Specification
of the analyzed software products may include additiorsil t ond ed. Addison-Wesley, 1999.

cases to improve the coverage with respect to the propogeal S. Rapps and E. J. Weyuker, “Selecting software test datng data
testing criteria. This is an issue to be investigated; harev 22W L{“fg’gmgg;’fé;gEAEpIri’;SBaS"“O”S on Software Engineeringl. 11,
what this initial investigation indicates is that the opgurce [17] A M. R. Vincenzi, M. E. Delamaro, W. E. Wong, and J. C. Miahado,
community should pursue more thorough test suites, edpjecia “Establishing structural testing criteria for Java byted Software
; ; Practice and Experiengevol. 36, no. 14, pp. 1513-1541, Nov. 2006.
addr(?ssmg excep'ﬂon re_lated COde'I h . £18] O. A. L. Lemos, A. M. R. Vincenzi, J. C. Maldonado, and PMasiero,
In l_Jture' We_ W'_ continue to e_Va uate other O_SS Projects. ~ «control and data flow structural testing criteria for adpedented
Our aim is to finalize the evaluations of the previously devel programs,”The Journal of Systems and Softwavel. 80, no. 6, pp.

oped test sets, to improve some of them based on the cover[ag]e%z‘m' Jun. 2007.
L. . . L. 19] A. M. R. Vincenzi, J. C. Maldonado, W. E. Wong, and M. E.l&w®aro,
criteria, to identify the contribution of the new added tesses “Coverage testing of Java programs and componedtsitnal of Science

in terms of their fault detection capability — considerirug t of Computer Programmingvol. 56, no. 1-2, pp. 211-230, Apr. 2005.

recorded faults in the bua tracker svstems of these proi Ctg’ZO] M. E. Delamaro and A. M. R. Vincenzi, “Structural tegjimf mobile
9 Y prose agents,” inlll International Workshop on Scientific Engineering of dav

and, ﬁna”y’ to define an incremental approach for testin@OS Distributed Applications (FIDJI'2003)ser. Lecture Notes on Computer

so that a minimal trustworthiness might be determined. Science, E. A. Nicolas Guelfi and G. Reggio, Eds. Springev, R003,
pp. 73-85.
ACKNOWLEDGMENT [21] RTCA/EUROCAE, “Software considerations in airborngstems and

. . £ equipment certification,” Radio Technical Commission fagrénautics
The authors would like to thank the Instituto de Informatica “Troa g European Organization for Civil Aviation EquipmentEU-

— INF/UFG, Coordenacdo de Aperfeicoamento de Pessoal de ROCAE, Washington, D.C., EUA, Relatéro Técnico DO-178B12B,
Nivel Superior — CAPES - Brasil, and Fundagédo de Amparo a Dec. 1992.

. .2 . . |IEEE, “IEEE standard for software unit testing,” IEEB@puter Society
Pesquisa do Estado de Goias — FAPEG — Brasil, which supp%ﬂ Press, Standard ANSI/IEEE Std 1008-1987. 1987.

this work. [23] S. Cornett, “Minimum acceptable code coverage” Qeli
article, 2007, [retrieved: Oct.,, 2013]. [Online]. Availab
REFERENCES http://www.bullseye.com/minimum.html

[1] QualiPSo, “Qualipso project (quality platform for opesource
software),” Project Homepage — Europe Comission — Grant iérm
IST-FP6-1P-034763, 2007, [retrieved: Oct., 2013]. [Oe]inAvailable:
http://www.qualipso.org/

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9 44

http://www.qualipso.org/
http://doi.acm.org/10.1145/505863.505878
http://www.tiobe.com/
http://www.bullseye.com/minimum.html

	Introduction
	Related Work
	Exception handling: features and requirements in Java
	Structural testing for exception handling
	Control- and data-flow models
	Testing criteria
	Automation aspects

	Experimental application
	Conclusions and future work
	References

