
How Exception Handling Constructions are Tested:
An Initial Investigation with Open Source Software

Auri Marcelo Rizzo Vincenzi
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: auri@inf.ufg.br

João Carlos da Silva
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: jcs@inf.ufg.br

Plínio de Sá Leitão-Júnior
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: plinio@inf.ufg.br

José Carlos Maldonado
Inst. de Ciências Matemáticas e de Computação

Universidade de São Paulo, USP
São Carlos-SP, Brazil

e-mail: jcmaldon@icmc.usp.br

Márcio Eduardo Delamaro
Inst. de Ciências Matemáticas e de Computação

Universidade de São Paulo, USP
São Carlos-SP, Brazil

e-mail: delamaro@icmc.usp.br

Marcos Lordello Chaim
Escola de Artes, Ciências e Humanidades

Universidade de São Paulo, USP
São Paulo-SP, Brazil
e-mail: chaim@usp.br

Abstract—Software testing is one of the most important ac-
tivities in software development to deliver quality to the final
product. Aiming at high efficacy, high quality and a low-cost
testing strategy, several testing techniques and criteriahave
been proposed in the last decades. In particular, structural
testing techniques are among the most popular. The authors
have extended traditional structural testing in order to meet
this requirement, allowing its application to a software with
exception handling structures to assess the coverage measurement
of such structures. In this paper, we present control- and data-
flow criteria to exercise such structures and then evaluate four
well-known open source software projects according to these
criteria. The results show that test cases for those software
achieved low coverage of exception handling code and normal
execution code as well. The work also shows that using test
criteria which discriminate between exceptional and normal
testing requirements might be useful to produce a better degree
of information about the test set evaluated.

Keywords-software engineering; testing criteria; structural test-
ing; code coverage; testing tools

I. I NTRODUCTION

The exception handling mechanism available in a variety
of languages brings improvements on how to deal with error
handling or special conditions to product implementation.
Instead of using the traditional return value for error indication,
exceptions provide a more sophisticated approach for error
handling. Despite its benefits, the use of exceptions brings
additional challenges to system verification and validation.

By complementing other verification and validation tech-
niques, like technical revision and formal methods, software
testing enhances productivity and provides evidence of the

reliability and the quality of the product. In addition, testing
artifacts can be valuable information to other software engi-
neering tasks, like debugging and maintenance.

Structural testing determines testing requirements from
program source code. In general, structural testing criteria
use a program representation known as def-use graph that
abstracts the flow of control and variable usage of the program
under testing. This paper describes a set of structural testing
criteria for programming languages with exception handling
mechanism. The underline control- and data-flow model is
defined to represent such criteria and a tool which supports
the model and implements the testing criteria instantiatedfor
Java is described.

A set of Open Source Software (OSS) projects was eval-
uated in a large international project, aiming at encompass
metric definition, measurement practices, data analysis, test
suite definition, performance benchmarking, and indicator
computation [1]. We applied structural testing to such projects
to assess the quality of the available test sets. Some of these
projects are employed in this paper to illustrate how OSS
have been using exception handling constructions and how
well their test sets exercise such structures.

The paper is organized as follows. In Section III, the ex-
ception handling mechanisms of Java language are described;
Section IV presents the set of control- and data-flow based
criteria we have extended to deal with exception handling
constructions. In Section V, we present the data collected
from four OSS projects, drawing a picture about the usage
of exception handling constructions in those projects and how
their OSS communities develop test cases for covering such

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

pieces of code. In Section VI, we offer our conclusions and
future work.

II. RELATED WORK

Aberdour [2] compares close- and open-source software
quality assurance and quality control, enumerating eleven
differences. In the context of our work, four of them have
a great impact since, according to Aberdour [2] in the OSS
software development 1) the development methodology often
is not defined or documented; 2) the testing and quality
assurance methodology is unstructured and informal; 3) the
defect discovery occurs from black-box testing late in the
development process; and 4) the empirical evidences regarding
quality are not collected. In one of the proposed guidelinesto
improve OSS development process, Aberdour [2] mentioned
that the user based system testing should be complement with
formal testing techniques and regression testing automation.

Considering specifically the testing process on OSS commu-
nity, Zhao and Elbaum [3] conducted a survey with 200 OSS
and found that instead of focusing on high quality milestone
releases, the “release early, release often” process, tradition-
ally adopted by the OSS community, results in a continual
improvement by a large number of developers contributing
iterations, enhancements, and corrections. With respect to the
way OSS community test their software, Zhao and Elbaum [3]
discovered that: 1) testing effort is concentrated on system
testing; 2) fewer than 20% of OSS developers use test plans;
3) only 40% of projects use testing tools, but this percentage
increases in case of Java, which has several available tools;
4) less than 50% of OSS use coverage concepts or tools to
improve test quality.

A more recent study from Khanjani and Sulaiman [4]
corroborates the ones above recognizing that despite the fact
the open source development has seen remarkable success in
recent years, there are a number of product quality issues and
challenges facing the OSS development model. Considering
exclusively the testing activities, they highlight the lack of
knowledge of participants to understand the OSS system
architecture and to create additional test cases for it.

Since we are interested to measure the coverage of exception
handling code, we evaluated a few papers that discuss the
analysis and testing of programs with exception handling
structures. For instance, the works of Chatterjee et al. [5]
and Choi et al. [6] present models to compute control- and
data-flow information for dealing with exceptions, but no tool
which implements the proposed models is available.

Sinha and Harrold [7] developed a family of criteria to
deal with exception handling construction instantiated for the
Java language. The testing criteria definition use a control-
and a data-flow model known as interprocedural control-flow
graph (ICFG) [8], [9], which is used for the identification of
testing requirements. Java exceptions, as presented next,may
be synchronized (explicitly raised by athrow statement) or
unsynchronized (that can be raised at any time implicitly).
The main limitation of ICFG is that, unlike our model, it does
not represent unsynchronized exceptions. On the other hand,

by considering only the synchronous exception it is possible
to verify the type of exception to be raised when connecting
nodes, so that no false edges are generated. To collect the data
for the experiment, the authors used a tool named JABA, which
is an acronym for Java Architecture for Bytecode Analysis.
JABA provides language-dependent analysis for Java programs
and is part of the Aristotle Analysis System [10], but JABA
only performed the static analysis and, as soon as we know,
there is no tool which implements such criteria.

III. E XCEPTION HANDLING: FEATURES AND

REQUIREMENTS INJAVA

According to Perryet al. [11], a pervasive exception han-
dling is required by almost anything that has an algorithmic
flow, such as a design process, a workflow or a computer
program. Exceptions are used not only as an implication of
error, but also as an indication of deviations from the normal
conditions established by the system. The main task of an
exception handling mechanism in the context of programming
languages is to overcome the problems posed by using the
usual “return values from a function” as an indication of
unexpected conditions. The use of exceptions to indicate error
conditions ease the propagation of the erroneous state and also
the implementation of the fault tolerance mechanism.

Programming languages like Java, C++ and Ada have
similar exception handling mechanisms. In the case of Java,
exceptions are represented by objects. We focus on Java for
some reasons: 1) it is one of the largest used programming
languages in this last decade [12]; 2) there are several open-
source Java software with unit testing available; and 3) our
previous effort on developing testing tools for Java [13].

Figure 1 shows part of the exception handling class hier-
archy of the Java language. All those classes are part of the
java.lang package. As Figure 1 shows, theThrowable
class, an immediate subclass of Object, is the root class of
the entire exception hierarchy. It has two direct subclasses:
Exception andError.

Figure 1. Part of the exception handling class hierarchy of
Java [14].

Subclasses ofException represent exceptional condi-
tions that a normal Java program may handle and, except
for RuntimeException and its subclasses, all the other
subclasses ofException are called “checked exceptions”,

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

i.e., exceptions that must be handled since they are verifiedat
compilation time.RuntimeException and its subclasses,
also known as “unchecked exceptions”, represent runtime
conditions that may generally occur in any Java method,
but the method is not required to inform that it can raise
runtime exceptions. Although they can be handled, unchecked
exceptions are not identified at compilation time. On the
other hand, all other standard exceptions a method can throw
must be informed by means of athrows clause. A Java
program should try to handle all standard exceptions, since
they represent abnormal conditions that should be anticipated
and caught to prevent program termination.

In addition to checked and unchecked exceptions, there are
errors that can never be raised or handled since they are usedto
show serious problems with the Java virtual machine, the class
loader or any other error which will abort program execution.

All checked exceptions may have exception handling code
associated with them. This is done in Java by using a
try-catch-finally construct. There are three possi-
ble valid combinations of these statements:try-catch,
try-catch-finally, and try-finally. The try
statement is composed by atry block. Thecatch block
is composed by one or morecatch clauses, responsible for
specifying the exception handlers. Thecatch clause formal
parameter determines the kind of exception it handles and the
variable which will be assigned with the exception instance.
Thefinally block, when present, is always executed, even
in the presence of control-flow transfer statements like break,
continue, and return in the body of thetry block [14]. A
feature of Java’s exception handling mechanism is its non-
resumable model, which means that once an exception is
raised, the control flow returns to the first statement after the
try statement responsible for handling such an exception.

In terms of testing, the exception handling mechanism
affects the normal control-flow execution. Moreover, the set
of instructions that may produce exceptions also has to be
considered in the creation of basic CFG blocks. The set
of instructions responsible for raising synchronous checked
exceptions may be found elsewhere [15].

IV. STRUCTURAL TESTING FOR EXCEPTION HANDLING

In this section, we present our approach to the structural
testing of programs with exception handling constructs. Itis
part of a general framework that permits the application of
control- and data-flow criteria to object oriented programs, in
particular those developed using the Java language.

As part of this framework, a control- and a data-flow model
were developed to accommodate our needs. The model is
based on the analysis of bytecode programs instead of source
code. This approach offers some advantages, it is language-
independent and reflects the actual structure of a program
under testing. The next subsections summarize our approach
and the way it affects the testing of units with exception
handling structures.

A. Control- and data-flow models

A common representation of the program under testing,
known as Control-Flow Graph (CFG), is generally used to
abstract the internal control flow of the tested unit. A program
P can be decomposed in a set of disjoint blocks of statements
so that the execution of the first statement inside a given block
leads to the execution of all other statements in that block in
the order they appear in. All statements in a block, except
possibly the first, have a single predecessor. All statements in
a block, except possibly the last, have exactly one successor.
This means that there is no external control flow from/to
statements in the middle of the block. In a CFG, such basic
blocks are represented as vertex and the possible execution
flow from one block to another is represented as directed
edges. A CFG has a single entry node that represents the block
which contains the entry instruction of the unit. An exit node
has no outgoing edge.

A Def-use graph (DUG) is an extension of the Control-Flow
Graph including sets of variables defined and used on each
CFG nodes [16]. Therefore, theDUG contains information
about the data flow of the program under testing, character-
izing associations between statements in which a definition
occurs and statements in which a use is present.

It is out of the scope of this paper to discuss the complete
OO testing approach and all the models and algorithms used
to analyze the programs. It may be seen in [17].

Two points should be highlighted in the analysis of control-
flow characteristics of a Java bytecode program:

• the use of intra-method subroutine calls. JVM has in-
structionsjsr, jsr_w and ret that allow a piece of
the method code to be “called” from several points in
the same method. This is mostly used to implement the
finally block of Java.

• exception handlers. Each piece of code inserted in a
catch block of a Java program is an exception handler
(EH). The execution of such a code is not performed
by ordinary control-flow, but by the throwing of an
exception. In the bytecode code the exception handler is
not activated by ordinary instructions either. Each method
has a table that describes where the handlers are located
in the code and which piece of code they apply to. The
flow of execution that is activated by an exception is
represented in ourDUG by a different type of edge, called
an “exception edge”.

To deal with Java’s exception-handling mechanism, the
underlying representation model, i.e., theDUG, should reflect
the control-flow during normal program execution and also
during the occurrence of exceptions. To represent regular
and exception control-flows, we use two kinds of edges:
regular edgesrepresent the regular control-flow, i.e., defined
by the language statements; andexception edgesrepresent the
control-flow when an exception is raised. With such distinc-
tion, testing criteria can be defined to assess test coverageon
normal execution flow and on exceptional execution flow.

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

B. Testing criteria

The basis to define testing criteria for exception handling
structures is the concept ofexception-free path:

An exception-free pathis a pathπ | ∀(ni, nj) ∈ π ⇒
(ni, nj) that is reachable through a path which does
not contain any exception edge.

A path that includes a noden, which may only be reached
through a path that contains an exception edge is anexception-
dependentpath.

To address explicitly the coverage of exception handlers
code, two non-overlapping testing criteria were defined, sothat
the tester may concentrate on different aspects of a program
at a time. Given the test setT = {t1, t2, ..., tr} and the
corresponding set of pathsΠ = {π1, π2, ..., πr} executed by
the elements ofT , we define:

• all-nodes-exception-independent(All-Nodesei): Π satis-
fies the all-nodes-exception-independent criterion if every
node n ∈ Nei is included inΠ. In other words, this
criterion requires that every node of theDUG graph,
reachable through an exception-free path, is executed at
least once.

• all-nodes-exception-dependent(All-Nodesed): Π satisfies
the all-nodes-exception-dependent criterion if every node
n ∈ Ned is included inΠ. In other words, this criterion
requires that every node of theDUG graph, not reachable
through an exception-free path, is executed at least once.

Considering edges as testing requirements, we have:

• all-edges-exception-independent(All-Edgesei):
Π satisfies the all-edges-exception-independent criterion
if every edge e ∈ Eei is included in Π. In other
words, this criterion requires that every edge of theDUG
graph that is reachable through an exception-free path is
executed at least once.

• all-edges-exception-dependent(All-Edgesed): Π satisfies
the all-edges-exception-dependent criterion if every edge
e ∈ Eed is included inΠ. In other words, this criterion
requires that every edge of theDUG graph not reachable
through an exception-free path is executed at least once.

As with the all-nodes and all-edges criteria, we split the
all-uses criterion [16], so that two sets of non-overlapping
testing requirements are obtained. We named such criteria all-
uses-exception-independent and all-uses-exception-dependent,
respectively.

• all-uses-exception-independent(All-Usesei): Π satisfies
the all-uses-exception-independent criterion if for every
node i ∈ N and for every variablex ∈ def(i), Π
includes a def-clear, exception-free path w.r.t.x from
node i to every use ofx. In other words, this criterion
requires that every exception-independent def-c-use as-
sociation(i, j, x) and every exception-independent def-
p-use association(i, (j, k), x) is exercised at least once
for any given test case.

• all-uses-exception-dependent(All-Usesed): Π satisfies
the all-uses-exception-dependent criterion if for every

node i ∈ N and for every variablex ∈ def(i), Π
includes a def-clear, exception-dependent path w.r.t.x

from node i to every use ofx. In other words, this
criterion requires that every exception-dependent def-c-
use association(i, j, x) and every exception-dependent
def-p-use association(i, (j, k), x) is exercised at least
once for any given test case.

The use of testing criteria which consider exception codes
when defining testing requirements can improve the testing
activity by offering hints to the tester on how the code is
organized, in terms of a “normal” or “abnormal” flow. Our
test criteria may help in at least three situations:

• it is well known that much of the exception handling code
is hard to test and it is left untested intentionally. With
the indication of exception-dependent and exception-
independent requirements, the tester may consider only
the latter, with no need to analyze the feasibility of each,
according to his/her goals;

• on the other hand, if the application requires the execution
of an exception-dependent code, the use of our criteria
can guide the tester indicating which requirements need
an abnormal situation to be covered and suggesting a
possible incremental testing strategy;

• exception dependent testing requirements can be used as
a static code metric. For example, comparing the number
of exception independent testing requirements against the
number of exception independent requirements may give
an indication of the cost of testing both normal and
abnormal flow and, in some extent, of the complexity
of these parts of the program. Other metrics like lines of
code or cyclomatic complexity could also be used in this
way if one considers these two types of code.

C. Automation aspects

To support the application of the structural testing criteria
presented in the previous sections, we are working on the
development of an Open Source testing tool called JaBUTi.
We have worked on this tool since 2003 [13], improving its
functionalities and extending its application to a varietyof
software products. Currently, besides testing Java programs
at unit level, the tool may also be applied for unit testing
of Aspect-Oriented programs [18], Java components [19],
Java micro-edition, and mobile programs [20], among others.
In addition, the tool can be easily employed to work with
any language which generates bytecode as a result of the
compilation process.

The steps for executing JaBUTi are depicted in Figure 2.
The first step is the creation of a test session, which shows
the classes that compose the program under testing and those
we want to instrument for the collection of the execution
trace. The second step is the generation of testing requirements
by using the eight testing criteria. Then, it is necessary to
instrument the selected classes. After instrumentation, the
program under testing may be executed with one or more
test cases and the coverage information is recorded. After test
set execution, the covered requirements are identified and the

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

current status of the test session is updated and visualizedon
testing reports with different levels of detail. With the reports
the tester may decide whether to continue or stop the testing
activity based on his/her previously defined stopping criterion.

Figure 2. Steps of a test session execution.

We have successfully used JaBUTi on several projects and
the tool has been released as an open source software to be
used in the context of the QualiPSo project. The interested
reader may consult [17], for further information.

V. EXPERIMENTAL APPLICATION

In this section, we present the results obtained from the
application of the exception-dependent criteria to a set ofOSS.
This initiative is part of our objectives in an attempt to identify
the usual behavior of the OSS community while developing
test sets for OSS.

Our first task was to make a static evaluation of some
open source projects, namely HSQLDB, JUnit, JMeter, PMD,
Weka, ServiceMix, Talend Open Studio, SpagoBI, Cimero,
Jboss Application Server, Mondrian, Pentaho, and Spago. We
have concluded that all of them have test sets associated with
them and, as they are integrated with automated tools (Ant or
Maven), it can be assumed that they are often run. However,
despite this testing culture, the testing techniques applied by
the OSS development community could not be identified with
accuracy. Considering the current state of testing carriedout
by OSS communities, it can be observed that:

• in general, the only testing criterion applied is functional.
There is no clear evidence of structural (control, data-
flow) or fault based testing;

• there is no clear distinction between unit, integration, and
system testing. Although there are test suites integrated
into the build process (most projects use Ant or Maven
to manage software compilation and packaging), there
are no clearly defined test plans and strategies after the
execution of the test suite. For example, how to proceed
when failed test cases are found (e.g., if more than 10%
of the test cases failed, the developers must be notified
and the software package cannot be released).

A question which regards these test suites is: “Aread hoc
test suites sufficient to assign trustworthiness to OSS?” To
answer this question we use an approach which comprises
structural testing criteria for test set evaluation.

Formal standards like DO-178B [21] and ANSI/IEEE 1008-
1987 [22] demand 100% statement and branch coverage for

safety critical systems. Regardless of the level of coverage
obtained, the importance of coverage testing does not lie on
identifying which parts of the product were exercised during
test set execution, but on identifying the ones which have not
yet been executed.

Cornett [23] discusses the minimum acceptable code cov-
erage and argues that a coverage level between 70-80% is
a reasonable goal for system testing for the majority of
software products. Moreover, Cornett [23] also defends that
unit, integration, and system testing levels demand a decreas-
ing coverage level since, in general, it is easier to achieve
a higher coverage of a single unit than that of an entire
system. An important point that has not been mentioned is
how exception handling structures affect coverage level. It is
not clear whether the 70-80% mentioned by Cornett considers
normal and exception handling codes or only normal code.
By using the testing criteria presented in Section IV, a more
precise assessment of code coverage may be obtained.

As an initial investigation, we analyzed four traditional
OSS: HSQLDB (version 1.9 Alpha 2), JMeter (version 2.3.2),
JUnit (version 4.6), and PMD (version 5.0). The evaluation is
performed via a testing tool that implements all the mentioned
criteria, but we concentrate the analysis on the exception
dependent ones. In this way, the restriction imposed by the
selection of a OSS is the need that its unit test set run suc-
cessfully, enabling the coverage information to be collected.

The OSS are implemented in Java and correspond to the
last release available at the time the data was collected. We
concentrate our effort on evaluating the impact of exception
handling in these projects and how test sets were developed
in order to cover exception code.

Our first evaluation consisted in identifying the size of the
projects and the number of methods which employ exception
handling constructions. The smallest OSS analyzed (JUnit)
has 2,614 lines of code (LOC), and the biggest (HSQLDB)
has 63,592 LOC. On average, at method level, the use of
exception handlers construction is present on 8% of the total
number of methods, percentage close to the average obtained
by Sinha and Harrold [9] for a different set of programs. After
performing the static analysis, we started the dynamic analysis.

We created an instrumented version of the programs under
testing and executed the available test set against those ver-
sions, so that dynamic trace information could be collected
and confronted with the structural testing criteria. Tables I,
II, and III show the data obtained.

Tables I and II show the coverage after the execution of
all available test sets developed by the OSS community for
each program, considering the exception-independent and the
exception-dependent testing criteria, respectively. Forinstance,
the JMeter test set was the one which determined the highest
coverage with respect to all testing criteria. For All-Nodesei,
the test set covered 7,845 out of 20,462 required elements,
38.34% of coverage. As for the other testing criteria with
higher complexity, the coverage percentage of the required
elements were 28.27%, 26.55%, and 25.75%. In general, a
level of coverage below 40% for these programs is very low

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

TABLE I. REQUIREMENT COVERAGE: EXCEPTION-INDEPENDENT CRITERIA

OSS
Criterion

All-Nodesei All-Edgesei All-Usesei All-Pot-Usesei
Coverage (%) Coverage (%) Coverage (%) Coverage (%)

HSQLDB 8,029 / 40,703 (19.73%) 7,476 / 45,098 (16.58%) 19,720 / 126,246 (15.62%) 67,847 / 458,843 (14.79%)

JMeter 7,845 / 20,462 (38.34%) 5,461 / 19,317 (28.27%) 10,935 / 41,180 (26.55%) 33,615 / 130,547(25.75%)

JUnit 608 / 1,951 (31.16%) 380 / 1,436 (26.46%) 631 / 2,624 (24.05%) 1,475 / 6,243 (23.63%)

PMD 7,938 / 21,184 (37.47%) 6,858 / 23,249 (29.50%) 13,331 / 57,552 (23.16%) 38,404 / 252,261 (15.22%)

TABLE II. REQUIREMENT COVERAGE: EXCEPTION-DEPENDENT CRITERIA

OSS
Criterion

All-Nodesed All-Edgesed All-Usesed All-Pot-Usesed
Coverage (%) Coverage (%) Coverage (%) Coverage (%)

HSQLDB 141 / 1,942 (7.26%) 49 / 6,513 (0.75%) 256 / 2,750 (9.31%) 3,591 / 38,032 (9,44%)

JMeter 51 / 1,541 (3.31%) 39 / 4,863 (0.80%) 52 / 2,093 (2.48%) 276 / 15,301 (1.80%)

JUnit 12 / 156 (7.69%) 9 / 184 (4.89%) 13 / 183 (7.10%) 29 / 632 (4.59%)

PMD 325 / 2,039 (15.94%) 121 / 3,814 (3.17%) 388 / 3590 (10.81%) 1689 / 20285 (8.33%)

TABLE III. E XCEPTION HANDLERS DATA AT METHOD LEVEL: ALL -NODESed CRITERION

OSS Number of methods Number of requirements Average Number of methods with no coverage Total coverage

HSQLDB 683 1,942 2.84% 669 (97.95%) 7.26%

JMeter 625 1,541 2.47% 595 (95.20)% 3.31%

JUnit 63 156 2.48% 57 (90.48%) 7.69%

PMD 374 2,039 5.45% 299 (79.95%) 15.94%

and demonstrates that much of the code is only executed by
the users and that their test cases are probably not integrated in
the official test set. In the case of HSQLDB, the percentage of
coverage of the All-Nodesei criterion is 19.73%, which means
that more than 80% of source code is not executed by any
official test case in the test set.

Table II shows the coverage obtained with respect to the
exception-dependent criteria, i.e., those criteria whichdemand
an exception to be raised for covering the testing require-
ments. Considering the most basic structural testing criterion
(All-Nodesed), the highest coverage was determined by the
test set of the PMD project, which executed 325 out of 2,039
testing requirements (15.94%). This is a clearly very low
coverage and additional test sets should be developed at least
to confirm that most of the exception handling construction in
the program could be executed at least once.

When comparing such a coverage against the exception-
independent criteria (Table I), one can see that even for the
All-Nodesed criterion, the level of coverage for all programs
ranges from 19.73% for HSQLDB and 38.34% for JMeter.
This implies that the provided test set for such programs has
a very low coverage in terms of structural testing criteria,even
for the criteria not related with exception handling.

In Table III, we present more detailed information about
the total number of methods with exception handlers, the total
number of testing requirements generated by the All-Nodesed

criterion, the average number of requirements per method,
the number of methods which do not have exception handler
construction executed by any test case, and the total coverage
obtained for such a criterion. As Table III shows, there is

a high percentage of methods with zero coverage against
any exception-dependent criterion. For three programs, more
than 90% of their methods have no test case to execute their
exception handling constructions. The best program is PMD,
for which the current test set is able to exercise 75 (20.05%)
out of 374 methods with exception handlers, but still 79.95%
of the methods are not executed by any test case.

Another point that might be inferred from Table III is that
the exception handlers have normally few nodes, i.e., they
are less complex in terms of logical structure. In fact, by
analyzing such products, it is possible to observe that the
majority of exception handlers have emptycatch blocks,
just avoiding the exception propagation but with no corrective
action associated with it. The most complex exception handlers
are found in PMD, which has on average 5.45 requirements
per method, followed by HSQLDB with 2.84 requirements per
method, considering the All-Nodesed criterion.

These numbers show that all the analyzed projects reveal a
low level of code coverage for code unrelated to exception han-
dling structures. This is disturbing because it reveals thelack
of concern from OSS communities on constructing a reference
test set for their products. The tests are in fact performedad
hoc by the user and test cases are not incorporated in the
official test set.

For exception handling criteria the situation is even worse.
Although the complexity of exception handlers is not high – as
shown by the number of testing requirements – the coverage
of such testing requirements is very low. Many of the methods
with this kind of code are not even executed once. In addition,

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

there is no indication of test cases specifically designed to
address exception handling.

In this scenario, the testing criteria presented in this paper
may be of great help for developers, as they guide the tester
through the process of selecting test cases that are or are not
related to exception handling. Even if the adopted policy isnot
to execute exception handlers because they may be difficult
to reach, our approach reveals which requirements could be
neglected and which should be covered.

VI. CONCLUSIONS AND FUTURE WORK

To support the control- and data-flow model and the defined
testing criteria, we implemented a tool and presented experi-
mental data collected from a set of four OSS. The experiment
intended to assess the adequacy of pre-existent test sets against
the set of exception-dependent structural testing criteria.

Our observations reveal that, for all the evaluated projects,
the coverage of exception handling constructions was con-
siderable low. For instance, the maximum coverage of the
All-Nodesed criterion was below 16%, which shows that, in
general, there is no concern for the development of test cases
to exercise exceptional conditions in the projects. Moreover,
many exception constructions have emptycatch blocks,
which reveals that the exception handler, though present, is
used only to avoid the spread of the exception, not to recover
from an erroneous condition.

Even when evaluating the quality of the pre-existent test
sets against the exception-independent criteria, the maximum
coverage for the All-Nodesei criterion was below 39%, which
is generally regarded as a low level of coverage and an
indicator that the test set should be improved. New versions
of the analyzed software products may include additional test
cases to improve the coverage with respect to the proposed
testing criteria. This is an issue to be investigated; however,
what this initial investigation indicates is that the open-source
community should pursue more thorough test suites, especially
addressing exception related code.

In future, we will continue to evaluate other OSS projects.
Our aim is to finalize the evaluations of the previously devel-
oped test sets, to improve some of them based on the coverage
criteria, to identify the contribution of the new added testcases
in terms of their fault detection capability – considering the
recorded faults in the bug tracker systems of these projects–
and, finally, to define an incremental approach for testing OSS
so that a minimal trustworthiness might be determined.

ACKNOWLEDGMENT

The authors would like to thank the Instituto de Informática
– INF/UFG, Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior – CAPES – Brasil, and Fundação de Amparo à
Pesquisa do Estado de Goiás – FAPEG – Brasil, which support
this work.

REFERENCES

[1] QualiPSo, “Qualipso project (quality platform for opensource
software),” Project Homepage – Europe Comission – Grant Number
IST-FP6-IP-034763, 2007, [retrieved: Oct., 2013]. [Online]. Available:
http://www.qualipso.org/

[2] M. Aberdour, “Achieving quality in open source software,” IEEE Soft-
ware, vol. 24, no. 1, pp. 58–64, 2007.

[3] L. Zhao and S. Elbaum, “A survey on quality related activities
in open source,” SIGSOFT Softw. Eng. Notes, vol. 25, no. 3,
pp. 54–57, May 2000, [retrieved: Oct., 2013]. [Online]. Available:
http://doi.acm.org/10.1145/505863.505878

[4] A. Khanjani and R. Sulaiman, “The process of quality assurance under
open source software development,” inComputers Informatics (ISCI),
2011 IEEE Symposium on, 2011, pp. 548–552.

[5] R. K. Chatterjee, B. G. Ryder, and W. A. Landi, “Complexity of
concrete type-inference in the presence of exceptions,” inLecture Notes
in Computer Science, vol. 1381. Springer, Apr. 1998, pp. 57–74.

[6] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar, “Efficient and precise
modeling of exceptions for the analysis of java programs,”SIGSOFT
Software Engeneering Notes, vol. 24, no. 5, pp. 21–31, 1999.

[7] S. Sinha and M. J. Harrold, “Criteria for testing exception-handling
constructs in Java programs,” inInternational Conference on Software
Maintenance. Oxford, England: IEEE Computer Society Press, Aug.
1999, pp. 265–274.

[8] ——, “Analysis of programs with exception-handling constructs,”
in ICSM’98 – International Conference on Software Maintenance,
Bethesda, MD, Nov. 1998, pp. 348–357.

[9] ——, “Analysis and testing of programs with exception-handling con-
structs,”IEEE Transactions on Software Engineering, vol. 26, no. 9, pp.
849–871, Sep. 2000.

[10] M. J. Harrold, L. Larsen, J. Lloyd, D. Nedved, M. Page, G.Rothermel,
M. Singh, and M. Smith, “Aristotle: a system for developmentof
program analysis based tools,” inACM-SE 33: Proceedings of the 33rd
annual on Southeast regional conference. New York, NY, USA: ACM,
1995, pp. 110–119.

[11] D. E. Perry, A. Romanovsky, and A. Tripathi, “Current trends in
exception handling,”ieeese, vol. 26, no. 10, pp. 921–922, Oct. 2000.

[12] TIOBE Software BV, “TIOBE Index,” Web site, Sep. 2013, [retrieved:
Oct., 2013]. [Online]. Available: http://www.tiobe.com/

[13] A. M. R. Vincenzi, W. E. Wong, M. E. Delamaro, and J. C. Maldonado,
“JaBUTi: A coverage analysis tool for Java programs,” inXVII SBES –
Brazilian Symposium on Software Engineering. Manaus, AM, Brazil:
Brazilian Computer Society (SBC), Oct. 2003, pp. 79–84.

[14] J. Gosling, B. Joy, G. Steele, and G. Bracha,The Java Language
Specification, 3rd ed. Addison Wesley, Jun. 2005.

[15] T. Lindholm and F. Yellin,The Java Virtual Machine Specification,
2nd ed. Addison-Wesley, 1999.

[16] S. Rapps and E. J. Weyuker, “Selecting software test data using data
flow information,” IEEE Transactions on Software Engineering, vol. 11,
no. 4, pp. 367–375, Apr. 1985.

[17] A. M. R. Vincenzi, M. E. Delamaro, W. E. Wong, and J. C. Maldonado,
“Establishing structural testing criteria for Java bytecode,” Software
Practice and Experience, vol. 36, no. 14, pp. 1513–1541, Nov. 2006.

[18] O. A. L. Lemos, A. M. R. Vincenzi, J. C. Maldonado, and P. C. Masiero,
“Control and data flow structural testing criteria for aspect-oriented
programs,”The Journal of Systems and Software, vol. 80, no. 6, pp.
862–882, Jun. 2007.

[19] A. M. R. Vincenzi, J. C. Maldonado, W. E. Wong, and M. E. Delamaro,
“Coverage testing of Java programs and components,”Journal of Science
of Computer Programming, vol. 56, no. 1-2, pp. 211–230, Apr. 2005.

[20] M. E. Delamaro and A. M. R. Vincenzi, “Structural testing of mobile
agents,” inIII International Workshop on Scientific Engineering of Java
Distributed Applications (FIDJI’2003), ser. Lecture Notes on Computer
Science, E. A. Nicolas Guelfi and G. Reggio, Eds. Springer, Nov. 2003,
pp. 73–85.

[21] RTCA/EUROCAE, “Software considerations in airborne systems and
equipment certification,” Radio Technical Commission for Aeronautics
– RTCA & European Organization for Civil Aviation Equipment– EU-
ROCAE, Washington, D.C., EUA, Relatóro Técnico DO-178B/ED12B,
Dec. 1992.

[22] IEEE, “IEEE standard for software unit testing,” IEEE Computer Society
Press, Standard ANSI/IEEE Std 1008-1987, 1987.

[23] S. Cornett, “Minimum acceptable code coverage,” On-line
article, 2007, [retrieved: Oct., 2013]. [Online]. Available:
http://www.bullseye.com/minimum.html

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

http://www.qualipso.org/
http://doi.acm.org/10.1145/505863.505878
http://www.tiobe.com/
http://www.bullseye.com/minimum.html

	Introduction
	Related Work
	Exception handling: features and requirements in Java
	Structural testing for exception handling
	Control- and data-flow models
	Testing criteria
	Automation aspects

	Experimental application
	Conclusions and future work
	References

