
Confirming Design Guidelines for Evolvable
Business Processes Based on the Concept of Entropy

Peter De Bruyn, Dieter Van Nuffel, Philip Huysmans and Herwig Mannaert
Normalized Systems Institute (NSI)

Department of Management Information Systems
University of Antwerp

Antwerp, Belgium
{peter.debruyn, dieter.vannuffel, philip.huysmans, herwig.mannaert}@uantwerpen.be

Abstract—Contemporary organizations need to be agile at
both their IT systems and organizational structures (such as
business processes). Normalized Systems theory has recently
proposed an approach to build evolvable IT systems, based on the
systems theoretic concept of stability. However, its applicability to
the organizational level, including business processes, has proven
to be relevant in the past and resulted a.o. in a set of 25
guidelines for designing business processes. In subsequent work,
the Normalized Systems theory was confirmed and extended
based on the concept of entropy from thermodynamics. Therefore,
this paper explores whether the guidelines which have been
proposed for business processes from an evolvability point of
view can be confirmed or extended from the entropy reasoning
as well. More specifically, the validity of 9 business process design
guidelines is investigated for this purpose. Our results indicate
that the investigated guidelines are rather consistent among both
approaches: guidelines required to attain evolvability seem to
enable low entropy (i.e., complexity) and vice versa.

Keywords—Business Processes; Complexity; Entropy; Nor-
malized Systems.

I. INTRODUCTION

Lack of organizational agility is often attributed to a lack
of IT agility [1] as IT systems ensure the support or even au-
tomation of business processes. Consequently, organizational
changes need to be reflected in both the business processes and
their supporting information systems. This means that, instead
of focusing solely on IT systems, attention for the design and
agility of the business processes is needed as well. The explicit
attention for the design of business processes emerged when
the implicit work practices were automated using ERP systems
[2]. It was recognized that the hard coding of the business
processes in software packages resulted in a lack of adapt-
ability of the processes [3]. As a result, the design of business
processes gained a central role in organizations, separated from
the design of information systems [2]. However, integration of
business processes and information systems still needs to be
achieved, and agility (or “evolvability”) needs to be ensured
on both levels.

Normalized Systems (NS) theory offers a theoretically
founded way to design software systems which exhibit evolv-
ability based on the systems theory’s concept of stability, by
proposing a limited set of design theorems [4], [5]. Applying
the theory’s rationale to the business process level has been
shown feasible and resulted a.o. in a set of 25 guidelines for de-
signing evolvable business processes [6]. In subsequent work,

NS theory was confirmed and extended based on the concept
of entropy from thermodynamics [7]. This extension resulted
in additional theorems, while confirming the existing theorems.
Therefore, it might be interesting to verify whether the guide-
lines which have been proposed for business processes can
be confirmed or extended from the entropy reasoning as well.
This paper explores this research area by applying the entropy
reasoning to a set of business process guidelines (which were
originally proposed to design evolvable business processes).
First, we provide some theoretical background (Section II).
Afterwards, the guidelines (Section III) and discussion (Sec-
tion IV) are presented. Finally, our conclusions are offered in
Section V).

II. THEORETICAL BACKGROUND

NS was introduced as a theoretically founded way for
deterministically designing software architectures exhibiting
a proven amount of evolvability. For this end, the systems
theoretic concept of stability is applied [4], [5]. This implies
that a bounded input function (e.g., “add data attribute”) should
result in bounded output values, even as time T → ∞ . It has
been proven that at least four theorems should be consistently
applied in order to obtain such evolvable software architecture
[4], [5]. Violations against these theorems can be observed at
compile-time [5].

Later on, the theory has been proven to be applicable to
the design of evolvable business processes [6]. Here, business
processes are considered at their most elementary level (i.e.,
the “elementary tasks and elementary sequencing and design
of these tasks”). To obtain stability, it is required that changes
to individual processes or tasks do not impact other processes
or tasks [6]. In order to achieve such Normalized Business
Processes (NSBPs), a set of 25 guidelines was developed,
based on the four NS theorems [6].

In order to position this research, a clear distinction be-
tween the concepts evolvability and flexibility is necessary.
Although flexibility also denotes a desired characteristic of
business processes, as defined by e.g., [8]: ‘the capability to
implement changes in the business process type and instances
by changing only those parts that need to be changed and
keeping other parts stable”; it differs from evolvability defined
as the capability of a modular business process design to adapt
to identified change drivers [6]. It also differs from the change
patterns research, as that research focuses on how (opera-
tionally) processes should be changed to be flexible, whereas

420Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

this research focuses on why and how processes should be
(structurally) designed in order to support change. Matching
the flexibility types of Schonenberg [9], evolvability can be
situated within the Flexibility by Design type. Nevertheless,
designing evolvable business processes actually precedes flex-
ibility as run-time (flexible) design decisions should comply
with the requirements of evolvable business processes at design
time.

In subsequent research, NS was extended based on the
thermodynamic concept of entropy, initially focusing on soft-
ware architectures again [7]. As entropy is generally associated
with concepts as complexity, amount of disorder or available
information, it enables the study of the diagnostability of a
(software) system. In statistical thermodynamics, entropy is
considered proportional to the number of microstates con-
sistent with one macrostate (i.e., its multiplicity) [10]. The
macrostate refers to the whole of externally observable and
measurable (macroscopic) properties of a system, correspond-
ing to visible output of a software system (e.g., loggings).
The microstate depicts the whole of microscopic properties
of the constituent parts of the system, such as binary values
representing the correct of erroneous outcome of a task (i.e., a
unit of processing of which we are interested in independent
information about whether it has been executed properly). The
higher the multiplicity, the more difficult it becomes to identify
the precise origin of an observed error. This approach requires
a run-time view of the system [7]. To design information
systems exhibiting low entropy, two NS theorems have been
confirmed, while two additional theorems were proposed as
well [7].

This entropy viewpoint can be applied to business pro-
cesses as well [11], [12]. Again, a business process is consid-
ered to be a flow (i.e., including sequences, selections and
iterations) of tasks which perform actions on one or more
information objects. Considering their execution allows us to
define macrostates and microstates on this level as well. The in-
dividual values of, for example, the throughput times of all task
instantiations correspond to a microstate. The macrostate of a
business process is the (aggregated) information available for
an observer (e.g., the total troughput time). Multiple microstate
configurations consistent with one macrostate (i.e., multiplicity
> 1), makes entropy (and the experienced complexity during
diagnostics) increase, and typical management questions more
difficult to answer. For instance, it becomes unclear which task
or tasks in the business process was (were) responsible for the
extremely slow (fast) completion (of this particular instance)
ofthe business process

No specific guidelines on how to reduce entropy on this
level have been formulated yet. Similar to the software level,
it is hypothesized that guidelines to achieve stable business
processes might reduce entropy as well. As a first step, we
assess in this paper the entropy-reducing capability of the first
nine available guidelines of Van Nuffel [6]. More specifically,
we investigate whether a violation of each guideline increases
the multiplicity (and hence, entropy) of business processes.

III. COMPARISON OF GUIDELINES RATIONALES

In this section, we will systematically investigate the first 9
guidelines as proposed by the work of Van Nuffel [6]. For each

guideline, we will first provide a brief description. Next, we
explore whether not adhering to this guideline would imply an
increase in entropy as we defined it earlier. Guidelines of which
violations result in additional entropy are then considered to
be suitable for entropy control as well.

The first guideline, “Elementary Business Process”, re-
quires that a business process should be operating on one and
only one Information Life Cycle Object (ILCO) [6, p. 107].
Not adhering to this guideline would imply a design in which
a business process could be operating on multiple ILCOs.
For instance, consider both invoicing and manufacturing steps
which are mixed up and interacting in one process, and a
problem with the total throughput time of finishing invoices is
present. At least two situations in which multiplicity > 1 (and
entropy arises), can now occur. First, as the business process is
concerned with operations on multiple ILCOs, the problematic
throughput time of the invoicing steps can be “compensated”
by “normal” throughput times of the manufacturing steps.
Consequently, the problematic total throughput time of the
invoicing activities would not necessarily raise an “alert”, even
after for instance hypothesis testing on the overall observed
mean versus expected mean. Therefore, multiplicity > 1 (and
entropy increases): the status reflected by the macrostate (e.g.,
no problems are reported (“OK”)), is conform to multiple
microstates (e.g., both “OK” or “Not OK” for the throughput
time of the invoicing steps). Further, not demanding that
business processes operate on a single information object, also
implies that multiple business processes can be operating (un-
consciously) on identical information objects (i.e., duplication
and copy/paste might occur). Therefore, chances that the prob-
lematic total throughput time of the invoicing activities would
raise an “alert” become even smaller, as the information on this
concern is not properly separated. This situation correlates with
our (reduced) observability interpretation of entropy as pointed
out in Section II. Second, in case a problem is observed (i.e.,
the macrostate signals “Not OK”), multiplicity > 1 as well.
Indeed, the macrostate conforms to multiple microstates: the
“Not OK” result of the total throughput time might be related
to the manufacturing steps, the invoicing steps or both. In order
to diagnose the problem unambiguously, the process owner
should disentangle all steps in the business process, determine
the ILCO they belong to, and analyze to which ILCO the
overall problem is actually related. Further, we already noted
that not demanding a business process to operate on a single
information object might result in multiple business processes
operating (unconsciously) on identical information objects
(i.e., duplication and copy/paste might occur). If the macrostate
of multiple business processes (each implementing (duplicate)
invoicing steps) goes to “Not OK”, chances of identifying
“the invoice” as the problematic concern become even smaller,
as the information on this issue is not properly separated.
This situation correlates with our (reduced) diagnostability
interpretation of entropy as pointed out in Section II. Based
on these two situations, we can conclude that not adhering to
this guideline implies an increased amount of entropy in the
business process instantiation space. Therefore, we state that
the guideline is suitable for entropy control as well.

The second guideline, “Elementary Life Cycle Infor-
mation Object”, defines a LCIO as an information object
not exhibiting state transparency [6, p. 114]. Combined with
guideline 1 this implies that a business process is related to

421Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

one information object not exhibiting state transparency. In this
context, an information object is considered state transparent
if it adheres to the NS Separation of States principle and the
object has no proper state transitions which should be made
explicit [6, p. 118]. Not adhering to this guideline would imply
two possible situations: (1) the identification of an information
object as a LCIO when it already exhibits state transparency,
or (2) not recognizing a non-state transparent information
object as a LCIO. Regarding the first situation, the creation
of an additional LCIO (and a corresponding business process)
for an information object of which the states are already
fully reflected by another LCIO, does neither increase of
decrease entropy. Indeed, no additional information regarding
the microstate configuration is retained or lost (the information
regarding the states of one particular LCIO instance is simply
duplicated) by identifying this additional LCIO. Regarding the
second situation however, an information object not exhibiting
state transparency which does not get recognized as a LCIO,
will generate an increase in the degree of entropy (i.e., mul-
tiplicity > 1). Indeed, as in such case no state transparency
regarding the concerning information object is attained, infor-
mation about its state transitions (and hence, the microstate
configuration) is lost. Expressed differently, a multiplicity > 1
will arise during and after execution-time as the macroscopic
observations regarding this information object cannot be traced
to individual tasks represented by states (i.e., a myriad of
microstates are possible). This situation correlates with both
our (reduced) observability and diagnostability interpretations
of entropy as pointed out in Section II. Consequently, this
guideline is not strictly necessary to control entropy in the
context of the first situation: theoretically speaking, a state
transparent information object can be identified as a LCIO
without increasing entropy (albeit without any thinkable bene-
fit). However, the second situation shows that not adhering to
this guideline can imply an increased amount of entropy in the
business process instantiation space when a non-transparent
information object is not recognized as a LCIO. Therefore,
we state that the guideline is largely suitable for entropy
control and advice its application for this purpose as well.
We would further like to add that this guideline actually quite
nicely illustrates the core reasoning of designing business
processes based on the entropy rationale: for every task of
which separate information might be valuable (constituting
a so-called “information unit”), a separate state should be
defined and related to the information object it is operating
on. Therefore, each information object not exhibiting state
transparency should be considered as a LCIO, thereby storing
information of each individual task performed on it, at its most
fine-grained level.

The third guideline, “Aggregated Business Process”,
states that in order to represent an aggregated business process,
an aggregated LCIO has to be introduced (p. 121). This
guideline relates to the fact that certain aggregated business
processes might be necessary to several reasons. First, the or-
chestration of different business processes (each operating on a
single LCIO) by a distinct business process might be necessary.
For instance, consider an Order-to-Cash process in which sev-
eral sub-processes —such as “order entry process”, “procure-
ment process”, “production process”, etcetera— are each indi-
vidually and successively called, waiting for completion, upon
which the next (set of) sub-process(es) is called, completed,

etcetera. Second, different (both internal or external) stakehold-
ers might require different perspectives (such as aggregations)
due to, for instance, their own functional domain. For instance,
in case of very complex business processes, one can imagine
that clients or certain actors at a higher management level
might be primarily interested in the mere “milestones” (e.g.,
“order received”, “order produced”, “order shipped”) of a
business process, instead of the possible hundreds of more fine-
grained states the product might be in during its lifecycle. The
guideline under consideration prescribes that such aggregated
processes may only be introduced for orchestrating purposes
and in case the business processes under consideration are
not able to be designed solely based on guidelines 1 and
2. Once more, not adhering to this guideline would imply
two possible situations: (1) designing an aggregated business
process while a redesign based on guidelines 1 and 2 would
be possible, or (2) not recognizing a business process for
orchestrating purposes while a redesign based on guidelines
1 and 2 is not possible. The first situation would clearly imply
an unnecessary combination of two concerns and therefore a
violation of guidelines 1 and 2 (as a redesign based on them
is still possible). Given the fact that both guidelines were
proven to mostly result in an increase of entropy when not
adhered to, this situation would equally result in an increase
of entropy. The second situation would lead to not recognizing
a “combined concern”: while each of the underlying concerns
have their own LCIO and corresponding business process, the
orchestration or “interfacing” between them might constitute
a genuine concern as well. This orchestration might entail
a relevant information unit and therefore necessary to keep
track of when one’s aim is to minimize entropy. Imagine
an Order-to-Cash process tracking the Order Entry Process,
(possibly multiple) Procurement Processes, Production Pro-
cesses, Delivery Processes, etcetera. While each of these
processes clearly designate their own LCIO and therefore,
business process, the orchestration between them is crucial
to be monitored as well. Indeed, tracking interfacing issues
in this Order-to-Cash Process constitutes relevant information
(macroscopically) and in case a customer complains about
a lately delivered order (i.e., the macrostate), the specific
business process (instance) which is causing this delay (Order
Entry, Procurement, etcetera) should be identifiable (i.e., the
specific microstate) Not identifying the necessary aggregated
process would therefore lead to multiple microstates consistent
with one macrostate. This situation correlates with both our
(reduced) observability and diagnostability interpretations of
entropy as pointed out in Section II. We can therefore conclude
that not adhering to this guideline implies an increased amount
of entropy in the business process instantiation space and state
that the guideline is suitable for entropy control as well.

Guideline 4, ”Aggregation Level”, requires that tasks
performed on a different aggregation level should denote a
separate business process (p. 124). An “aggregation level” in
this particular guideline is mainly to be understood as focusing
on the multiplicities of different information objects (i.e., the
different perceived aggregations). For instance, a typical Order
within a company might be conceived as being associated
with several Product processes, where this Product process
at its turn might then again be associated with multiple Part
processes. Not adhering to this guideline would imply that
it is possible for a business process to execute sequences of

422Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

tasks situated at different “aggregation levels”. Suppose one
business process performing a sequence of tasks on a “parent”
information object (e.g., “Product”) and sequences of tasks on
its “child” information objects (e.g., different “Part” instances).
As one could argue that such business process is operating on
multiple LCIOs, our first two arguments are highly parallel to
those of guideline 1. First, such business process design would
not guarantee that systematic problems regarding, for instance,
the overall throughput time of the sequence of tasks performed
on the “child” information object are observed. Indeed, they
might become “compensated” by “normal” throughput times
of the other tasks, therefore not necessarily raising an “alert” to
the observer. Hence, multiplicity > 1 (and entropy increases):
multiple microstates (“throughput times OK” and “throughput
times Not OK”) are consistent with one macrostate (“no
problems are reported”). This situation correlates with our
(reduced) observability interpretation of entropy as pointed
out in Section II. Second, in case a problem is observed (i.e.,
the macrostate signals “Not OK”), multiplicity > 1 as well.
Indeed, the macrostate conforms to multiple microstates: the
“Not OK” result of the overall process might be related to
the sequence of tasks performed on the “parent” information
object, the “child” information object or both. This situation
correlates with our (reduced) diagnostability interpretation
of entropy as pointed out in Section II. Third, no instance
traceability regarding the multiple processed Parts within the
single business process seems feasible in such design. There-
fore, the same states regarding the “child” information object
sequence are activated several times during the execution of
the business process. This makes adequate state-tracking (cf.
guideline 2) impossible. As a result, the business process
owner cannot make the distinction between situations in which
the problematic throughput time might be associated with
all Part instances in general (i.e., a “systematic” recurring
problem) or with one Part instance in particular (and in such
case, which specific Product instance). Also in this third
situation, this implies multiplicity > 1: one macrostate (i.e.,
a problem is observed) is consistent with multiple microstate
(i.e., the problem is due to Part instance 1, or 2, . . . , or all
Part instances): certain parts of the microstate configuration
are simply not captured during process execution. Based on
these two situations, we can conclude that not adhering to
this guideline implies an increased amount of entropy in the
business process instantiation space. Therefore, we state that
the guideline is suitable for entropy control as well.

Guideline 5, “Value Chain Phase”, states that the follow-
up of an organizational artifact resulting from a value chain
phase should denote a different business process (p. 132). A
value chain phase refers to the rather generic, often recurring
structure and parts within aggregated business processes in
manufacturing organizations (e.g., Order Entry, Procurement,
Production, etcetera), such as for instance described by the
SCOR reference model. Not adhering to the above described
guideline could lead to the following two situations: (1) the
steps related to these value chains are incorporated into the
aggregated (i.e., orchestrating) business process, or (2) no more
grained steps related to each of these value chain phases are
discerned and no states regarding them is kept. In the first
situation, this would imply a violation of guidelines 1 as
multiple LCIOs (e.g., Order Entry, Procurement, Procurement)
are combined into one business process. Further, guideline 4

would be violated as well because most often, these value chain
phases have one-to-many or many-to-many relations. Indeed, a
Customer Order can typically be related to multiple Purchase
Orders and/or Production Orders. The second situation would
imply violations regarding guidelines 2 (i.e., no LCIO is iden-
tified for several non-state transparent information objects) and
3 (i.e., an aggregated business process is designed when there
are still some opportunities for redesign based on guidelines
1 and 2). A situation in which no relevant states regarding
the tasks constituting a value chain phase should be identified,
seems rather unlikely as this would allow to model almost all
necessary activities of a typical manufacturing company within
one business process having 5 to 8 tasks. Consequently, as
we should earlier how violations regarding guidelines 1 to 4
result in multiple microstates consistent with one macrostate,
we can conclude that violating this guideline would generate a
multiplicity > 1 as well. Therefore, we state that the guideline
is suitable for entropy control as well.

Guideline 6, “Attribute Update Request”, states that a
task sequence to update an attribute of a particular LCIO that
is not part of its business process scenarios, is represented by
an Attribute Update Request business process (p. 135). This
guideline is subject to two specific conditions. First, it has to
concern an update operation for which one single functional
task is not sufficient to complete the update request, but rather
a sequence (i.e., “process”) of activities is required. Second,
it concerns update requests which are not part of a branch
within the regular business process scenarios. Consequently
such procedures can be instantiated several times and during
several different “states” of the lifecycle of the information
object regarding which the update request is actually aimed at.
Additionally, such process (verifying for instance the validity
of updating a certain information object attribute with a certain
new value) will typically differ for each individual attribute.
Not adhering to this guideline would imply that tasks for
handling an attribute update request, not part of the regular
business process scenario, becomes incorporated into the flow
of the LCIO of which the attribute is requested to be update.
Again, such situation can be seen as a violation regarding sev-
eral of the above mentioned guidelines. Indeed, not separating
such task sequences would lead to a business process operating
on multiple ILCOs and —at the same time— one concern
being dispersed over several places within one business process
(i.e., all the life cycle states in which the update request is
allowed), thereby violating guideline 1. Second, the design
would make the proper tracking of states impossible as at any
point of the business process execution (thereby indirectly vi-
olating guideline 2) as each time an update request is initiated,
the state of the regular business process is suddenly (possibly
repeatedly) changed to states regarding this update request.
Third, as attribute update requests can be performed several
times during one instance of the “parent” business process,
both concerns relate in a one-to-many multiplicity, thereby
violating guideline 4. Consequently, as we showed earlier how
violations regarding guidelines 1, 2 and 4 result in multiple
microstates consistent with one macrostate, we can conclude
that violating this guideline would generate a multiplicity >
1 as well. Therefore, we state that the guideline is suitable
for entropy control as well. Indeed, from an organization
diagnostics (i.e., entropy) viewpoint, it clearly makes sense
to separate such sequence of tasks for future reference. For

423Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

instance, the calculation of certain measures and the solution
for certain managerial questions such as: “how often are such
requests accepted/denied and for which reason” or “can we
see any relation between the outcome of the update requests
and its input values” are only able to be solved in an efficient
way when this task sequence is properly separated in its own
business process module and not unconsciously repeated in
other places throughout the business process repository.

Guideline 7, Actor Business Process Responsibility,
states that tasks, of which the task allocation genuinely belongs
to a different business process owner, should be designed into a
separate business process (p. 139). This guideline only applies
in very stringent cases. For example, in case legislation or
internal audit rules prescribe that different owners should be
responsible for other (parts of) task sequences, this guideline
applies. Mostly, the guideline is applicable when different parts
of a task sequence are performed by different organizations.
In such cases, the respective task allocations are logically
situated at one of these different organizations as well. From
an entropy viewpoint, let us consider the case in which the
mentioned guideline is not adhered to. In such case, a business
process could consist of a combination tasks which belong to
genuinely different business process owners. Each task still
has an attribute regarding which actor is allowed or required
to perform the task. However, no information is available
regarding who is doing the task allocation (e.g., the manager
of organization who determines who is doing what). If such
information should be retained, the appropriate level seems
to be the business process level, as it concerns a sequence of
multiple tasks. In case this information is relevant but however
no distinct business process would be designed, a multiplicity
> 1 (and hence, entropy) arises as one macrostate (e.g., a
problem regarding the overall process) complies with multiple
microstates (was the task allocation responsibility situated
at person A, B, or C?). This situation correlates with our
(reduced) diagnostability interpretation of entropy as pointed
out in Section II. Therefore, in case the information regarding
task allocation responsibility is relevant, a different business
process should be identified from an entropy viewpoint to
allow for this task allocation responsibility to be traceable.
Indeed, this guideline calls to create an additional level of
“process responsibility” (i.e., who allocates tasks among dif-
ferent actors and takes responsibility that they are carried out
adequately), in addition to the responsibility for one or multiple
tasks. Therefore, we state that the guideline might be suitable
for entropy control as well. However, in line with the work of
Van Nuffel [6] we stress that identifying additional business
processes based on this guideline should be done with extreme
precaution to avoid unnecessary additional business processes
and, hence, only in cases where a different task allocation
responsibility is relevant for diagnostability purposes.

Guidelines 8 and 9 as proposed by Van Nuffel [6], propose
two specific business process types to be identified. Guideline
8, “Notifying Stakeholders” states that the communication of
a message to stakeholders (in the correct format, incorporating
fault handling, etcetera) constitutes a distinct business process
(p. 143). Guideline 9, “Payment” states that the payment of a
particular amount of money to a particular beneficiary should
equally constitute a distinct business process (p. 146). Not
recognizing these two concerns as distinct business processes
could again create two possible situations: (1) integrating

the tasks for the notification and payment in other business
processes or (2) not specifying their constituting tasks at all.
It is clear that the first situation would violate guideline 1
(multiple ILCOs operating within one business process) and
4 (for example, multiple notifications can be sent within the
scope of one “parent” business process instantiation). The
second situation would violate guideline 2 as a non-state
transparent information object is not identified as a separate
LCIO. Consequently, as we showed earlier how violations
regarding guidelines 1, 2 and 4 result in multiple microstates
consistent with one macrostate, we can conclude that vio-
lating this guideline would generate a multiplicity > 1 as
well. Therefore, we state that guideline 8 and 9 are suitable
for entropy control as well. Obviously, designing these task
sequences as separate business processes is useful from an
organizational diagnostics (i.e., entropy) viewpoint as. Indeed,
both the payment of a particular amount in a particular
format to a particular beneficiary at the right time, as well as
communicating a certain message in a particular format at the
right time while maintaining integrity, are often recurring func-
tionalities within typical business processes. As a consequence,
due to their frequently occurring nature, a business process
owner would typically be interested in certain characteristics
of each of these separately recurring tasks sequences: how long
do they take to execute, how many times do they result in
an error, etcetera. Focusing on these aspects might generate
considerable efficiency gains as, for instance, improving the
quality metrics or throughput time of the payment process with
5% might entail huge organizational effects as the changes
are “expanded” throughout the whole organization. However,
these analyses and improvements can only be performed when
“payments” and “notifications” are designed into separate
business processes. Otherwise, systematic problems regarding
one of the concerns might not be noticed (cf. the observability
issue of Section II) or might not be unambiguously traced to
the right concern (cf. the diagnostability issue of Section II)

IV. DISCUSSION, LIMITATIONS AND FUTURE RESEARCH

This paper aims to contribute to our research line on how
to prescriptively design business processes regarding certain
criteria (such as low complexity and high evolvability). In
earlier work, a set of prescriptive guidelines has been pro-
posed from the stability perspective, and the applicability of
entropy to study process complexity has been reported. The
main focus in this paper was to verify whether the already
existing guidelines from the stability viewpoint align with
this entropy reasoning [12], [11]. Due to page limitations, we
were only able to investigate a small subset of the guidelines
of Van Nuffel for this purpose [6]. We found that most of
the investigated guidelines are rather consistent among both
approaches: guidelines required to attain evolvability seem to
enable low complexity and vice versa. A small exception was
noticed for guidelines 2 and 7. Regarding the former, it was
observed that —theoretically— entropy does not increase when
a state transparent information object is identified as a LCIO.
Regarding the latter, it was argued that the application of the
specific guideline should be performed even more thoughtfully
and exceptionally from an entropy viewpoint as its necessity
in many situation seems not really compelling.

This consistency might seem surprising, since the evolv-
ability analysis focuses on the mere design-time of business

424Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

processes, which means that the harmful effects its aims to
resolve (the so-called “combinatorial effects”) are situated on
this perspective: a functional change which causes N changes
in the business process design. In contrast, the complexity anal-
ysis focuses on avoiding harmful effects during execution-time:
a multiplicity > 1 (which we could coin as an “uncertainty
effect”) only manifests itself when the business processes are
executed. While these effects are caused by choices made at
design-time, this distinction illustrates the need for more in-
sight at the execution-time of business processes. Current busi-
ness process modeling notations (e.g., BPMN) focus primarily
on design-time models. Moreover, the criteria both approaches
use to delineate and identify the different business processes
and their constituting tasks, differ. The evolvability approach
employs the concept of “change drivers” (i.e., parts within
the business process design which are assumed to change
independently) to identify and isolate concerns, whereas the
complexity approach employs the concept of “information
units” (i.e., these parts within the business process design of
which independently traceable information is assumed to be
needed later on). Since most of the stability-related guidelines
largely align with our entropy reasoning, we might conclude
that the concerns which should be used to delineate and
identify business processes or tasks are determined by the
union of “change drivers” and “information units”. Given the
additional, more in-depth analysis of the entropy approach
by incorporating the execution-time perspective (e.g., the im-
portance of traceability), additional concerns which do not
seem to be necessary from the evolvability perspective, might
indeed be potentially identified in future research. Moreover,
this preliminary analysis is limited to the first nine guidelines
of Van Nuffel [6], and future research should elaborate on the
consistency of other guidelines.

Notwithstanding the limitations and need for future re-
search, this paper can claim a number of contributions. First,
we further contributed to the enterprise and business process
engineering field by elaborating on the usefulness to take an
entropy perspective for studying the complexity of business
processes. Second, we validated the suitability of a set of
(already existing) business process design guidelines in this
context as a first step towards a Design Theory [13]. In
literature, it is generally acknowledged and even encouraged
that such design efforts are guided by principles from related
scientific fields (i.e., “kernel theories”) [14], such as the con-
cept of entropy from thermodynamics. Third, Design Science
research acknowledges logical reasoning as one the possible
evaluation methods in design science [15]. Therefore, next to
our efforts performed in earlier work, this paper constitutes an
additional validation base for the applicability of (a part of)
the guidelines of Van Nuffel [6].

V. CONCLUSION

Contemporary organizations need to be agile regarding
both their IT systems and organizational structures (such as
business processes). Normalized Systems theory has recently
proposed an approach to build evolvable IT systems, based
on the systems theoretic concept of stability. However, its
applicability to the organizational level, including business
processes, has proven to be relevant in the past and resulted a.o.
in a set of 25 guidelines for designing business processes. This
paper investigated the validity of 9 of these guidelines from

another theoretical perspective, more specifically, entropy from
thermodynamics. We concluded that the investigated guide-
lines are rather consistent among both approaches: guidelines
required to attain evolvability seem to enable low complexity
(i.e., entropy) and vice versa. However, future research is
definitely needed in this domain: for instance, 14 guidelines
are still to be investigated and additional guidelines might
potentially be investigated from the entropy perspective as
well.

ACKNOWLEDGMENT

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] E. Overby, A. Bharadwaj, and V. Sambamurthy, “Enterprise agility
and the enabling role of information technology,” European Journal
of Information Systems, vol. 15, no. 2, pp. 120–131, 2006.

[2] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst, “Seven process
modeling guidelines (7pmg),” Inf. Softw. Technol., vol. 52, no. 2, pp.
127–136, Feb. 2010.

[3] L. Brehm, A. Heinzl, and M. Markus, “Tailoring erp systems: a
spectrum of choices and their implications,” in Proceedings of the 34th
Annual Hawaii International Conference on System Sciences, 2001.

[4] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
pp. 1210–1222, 2011.

[5] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
pp. 89–116, January 2012.

[6] D. Van Nuffel, “Towards designing modular and evolvable business
processes,” Ph.D. dissertation, University of Antwerp, 2011.

[7] H. Mannaert, P. De Bruyn, and J. Verelst, “Exploring entropy in
software systems : towards a precise definition and design rules,” in The
Seventh International Conference of Software Engineering Advances
(ICSEA), 2012, pp. 84–89.

[8] S. P. Regev, G. and R. Schmidt, “Taxonomy of flexibility in business
processes,” in Proceedings of the 7th Workshop on Business Process
Modelling, Development and Support (BPMDS’06), 2006.

[9] M. R. R. N. M. N. Schonenberg, H. and W. van der Aalst, “Process
flexibility: A survey of contemporary approaches,” in Advances in
Enterprise Engineering I, 2008, pp. 16–30.

[10] L. Boltzmann, Lectures on gas theory. Dover Publications, 1995.
[11] P. De Bruyn, P. Huysmans, H. Mannaert, and J. Verelst, “Understanding

entropy generation during the execution of business process instantia-
tions: An illustration from cost accounting,” in Advances in Enterprise
Engineering VII, ser. Lecture Notes in Business Information Processing,
H. Proper, D. Aveiro, and K. Gaaloul, Eds. Springer Berlin Heidelberg,
2013, vol. 146, pp. 103–117.

[12] P. De Bruyn, P. Huysmans, G. Oorts, and H. Mannaert, “On the
applicability of the notion of entropy for business process analysis,”
in Proceedings of the second international symposium on Business
Modeling and Software Desgin (BMSD2012), B. Shishkov, Ed., 2012,
pp. 128–137.

[13] S. Gregor and D. Jones, “The anatomy of a design theory,” Journal of
the Association for Information Systems, vol. 8, no. 5, pp. 312–335,
2007.

[14] J. Walls, G. Widmeyer, and O. El Saway, “Building an information
system design theory for vigilant eis,” Information Systems Research,
vol. 3, no. 1, pp. 36–59, 1992.

[15] F. Müller-Wienbergen, O. Müller, S. Seidel, and J. Becker, “Leaving
the beaten tracks in creative work - a design theory for systems that
support convergent and divergent thinking,” Journal of the Association
for Information Systems, vol. 12, no. 11, pp. 714–740, 2011.

425Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

