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Abstract—In the context of feedback-directed optimization 
solutions, the component responsible for collecting application 
behaviour data cannot afford to introduce any performance 
overheads, otherwise it undermines any optimization that is to 
be carried out. This work presents a new online solution for 
profiling object-oriented applications. The solution collects 
detailed information about accesses over domain instances and 
their fields, while introducing approximately zero overheads. 
This is accomplished by making assumptions about the 
stationary and ergodic properties of applications' run-time 
behaviour. The work has been validated with the TPC-W 
benchmark. 

Keywords-profiling; real-time monitoring; feedback-directed 
optimizations; performance; ergodic; stationary. 

I.  INTRODUCTION 

The importance of profiling tools has been steadily 
increasing over the last decade. Profilers are essential for 
understanding the dynamic behaviour of programs. In the 
past, one of the most common use-case scenarios was to use 
a profiler for obtaining information about the resource usage 
of a given application, to identify performance bottlenecks. 
While the nature of the information supplied by profiling 
tools has not changed much over time, the spectrum of their 
possible applications has observed a significant widening. 
These applications include dynamic slicing, program 
invariants detection, program correctness and security 
checking, predicting data locality and just-in-time compiler 
optimizations, among others. 

The widespread adoption of programming languages 
designed to execute on top of virtual machines played a 
major role in valorising profiling tools. Virtual machine 
architectures offer several properties that make them more 
desirable, from a software engineering point of view, than 
environments with statically compiled binaries. Some of 
these features include program portability, safety assurances, 
automatic memory and thread management, as well as 
dynamic class loading. As it can be seen from the work of 
Cierniak et al. [1], while these properties empower the 
programming model offered to users, they also cause 
overheads and contribute to obstruct many static program 
optimization techniques, making it harder to achieve good 
performance. 

To counter these difficulties, a lot of research has been 
carried out, focusing on online feedback-directed 
optimization systems. These systems make use of techniques 

that seek to improve the performance of target programs by 
monitoring their run-time behaviour and, subsequently, by 
using this information for identifying and applying 
appropriate optimization measures. It is frequently the case 
to employ profiling tools for obtaining the necessary 
program behaviour information. 

The main issue of profiling tools is that they are subject 
to two requirements that are practically impossible to satisfy 
simultaneously. The first requirement is that the profiler 
should provide as in-depth and detailed information as 
possible about the behavioural patterns exhibited by the 
program being monitored. The second requirement is that the 
monitoring should be carried out in a transparent, efficient 
and devoid of overheads manner that does not compromise 
program performance (or at least not significantly). 

Independently of the way that a profiler operates (event 
or sampling-based), it invariably ends up disrupting the 
execution of its target programs, while data is being 
collected. These interruptions translate directly into 
overheads that penalize application performance. 
Furthermore, the fact that many profilers employ code 
instrumentation (the injection of additional code into the 
target) for achieving their goals not only slows down the 
execution of the program but can also change the way it 
operates, leading to scenarios where the application displays 
behaviour that would be otherwise impossible to observe, 
were it executing normally. 

All of these factors contribute to make the task of striking 
an acceptable balance between performance overheads and 
information depth hard to achieve in practice. This is 
particularly true for online feedback-directed optimization 
systems, where the profiling is expected to be carried out in 
real-time, while the program is executing normally, so any 
"noticeable" performance overheads are not acceptable. On 
the other hand, the profiling information has to be 
sufficiently detailed to guide appropriately the optimization 
decisions that need to be made for improving the target 
system's performance.  

While accounting for these considerations, the solution 
presented with this work consists in a system capable of 
monitoring the access patterns of object-oriented 
applications. The patterns are expressed in terms of the 
manipulations (read and write access operations) performed 
over domain instances and their fields in the execution 
contexts of the application methods/services that define the 
set of functionality offered to end-users. The novelty of the 
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approach consists in the employment of stochastic and 
ergodic assumptions for the behaviour of target programs 
within their methods/services, making it possible to collect 
the access pattern information in an online fashion with 
minimal performance overheads while providing very high 
accuracy and data depth. 

The article is organized as follows. Section II discusses 
related work. Section III describes the motivation behind our 
new proposal, followed by some assumptions that were 
necessary to be made in Section IV. Section V covers the 
implementation of the solution presented here. Section VI 
presents the benchmark that we used to evaluate the new 
proposal and discusses the results obtained. Finally, Section 
VII presents some concluding remarks. 

II. RELATED WORK 

The current trends in application development, software 
engineering, and hardware technology (such as the wide 
acceptance of programming languages operating in 
automatically managed virtual machine environments and 
the expansion of cloud computing, among many others) have 
contributed to create a great demand for solutions capable of 
continuously tracking the behaviour of dynamic systems and 
of applying performance optimization measures based on the 
gathered information. Adaptive optimization solutions such 
as these have been designated in the literature as online 
feedback-directed optimization (FDO) systems. As can be 
seen from the work of Arnold et al. [2], where an analysis of 
over 150 references related to online feedback-directed 
optimization solutions has been performed, there is a wealth 
of work done in this research area. Unfortunately, the great 
majority of these solutions have been developed to act as 
support for compilation and dynamic code generation 
optimizations, while non-compiler related literature is 
somehow scarce. Without intending to perform an in-depth 
and exhaustive analysis of the existing literature, some works 
on the topic of continuously tracking the behaviour of 
software systems shall be discussed next. 

Smith [3] discussed the motivation and history of FDO 
techniques. The author presented three factors responsible 
for the importance of FDO, namely: 

 FDO bypasses the restrictions imposed on static 
optimization approaches by making use of dynamic 
run-time behaviour information that is impossible to 
obtain statically; 

 FDO makes it possible to adapt the optimization 
measures continuously, according to the observed 
changes in target application behaviour. 

 Software systems can be made more flexible and 
easier to change through run-time binding. 

From the analysis and discussion in [3], Smith argues in 
favour of performing optimizations based on run-time 
monitoring as well as accepting the notion of executables as 
mutable objects. Smith [3] and Arnold et al. [4] pointed out 
that the obstacles that need to be overcome to achieve an 
effective FDO are: 

 Minimize or otherwise deal with the overhead 
introduced in the process of collecting behaviour 

information as well as when applying the necessary 
transformations over the target application for 
optimizing its performance; 

 Being able to make informed decisions even when 
there is incomplete profiling data or that same 
information is subject to constant evolution. 

In the context of virtual machine environments, it is 
possible to group the profiling-data collection mechanisms 
for FDO purposes into the following categories: run-time 
service monitoring, hardware performance monitors, 
sampling, and program instrumentation. The solution 
developed here belongs to the program instrumentation class 
of approaches. As such, the other categories shall be only 
referred to briefly. 

Run-time service monitoring approaches track the state 
of the run-time services offered by the subjacent virtual 
machine. This is usually done for identifying temporal 
locality usage patterns that can be exploited for 
optimizations. Several applications of these techniques 
include dynamic dispatching, hash-codes, and 
synchronization. It is noteworthy that the memory 
management systems are particularly rich sources of data for 
FDO, covering information about allocation trends, heap 
usage and garbage collection. 

Hardware performance monitoring collects data provided 
by specialized microprocessor hardware for guiding 
optimizations. There has been a multitude of FDO 
approaches developed to use such information but their 
integration into production-ready VMs has been limited. 

With sampling approaches, the profiler seeks to collect a 
representative (as opposed to exhaustive) sub-set of 
observations for a given category of events. By varying the 
portion of events that get observed, sampling approaches can 
control the amount of overhead being introduced into the 
application that is being monitored. Nevertheless, as in all 
monitoring approaches, sampling techniques need to strike a 
balance between low overhead and collecting enough 
behaviour information to be considered useful. 

The injection of extra instructions for collecting 
behaviour information into the target system is the basis for 
program instrumentation profiling approaches. These 
techniques are very flexible in their usage and can provide a 
wide range of behaviour data. Their main issue consists in 
the performance overhead caused by the need to execute the 
instrumented code. As such, most existing solutions attempt 
to minimize the overheads without compromising too much 
the depth of the profiled information. 

Arnold and Ryder [5] developed a framework for low 
overhead instrumentation sampling supporting multiple types 
of profiling. The framework employs code duplication and 
compiler-inserted counter-based sampling to enable changes 
between the instrumented and original version of the target 
code at run-time. The amount of overhead to be introduced is 
adjustable at run-time, by varying the ratio of execution 
between instrumented and non-instrumented versions of the 
code. The authors achieve this by keeping in memory two 
versions of all methods that have been modified for profiling 
purposes. One of them is the instrumented version that 
performs the monitoring measurements while the other 
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contains the original code version with a small preamble that 
determines if the fast or slow version of the method should 
be executed, depending on the current conditions. 

Another software instrumentation system, called Pin, is 
the one developed by Luk et al. [6]. The tools offered by the 
system are written in C/C++ and support portable, 
transparent and efficient instrumentation. While the tools are 
mostly architecture independent, they can provide 
architecture specific information when required. The systems 
uses dynamic compilation for instrumenting applications at 
run-time. Pin employs several techniques for achieving high 
operation efficiency while collecting data. These include 
register re-allocation, inlining, liveness analysis and 
instruction scheduling. The authors evaluate their systems 
against other similar purpose solutions, such as Valgrind [7] 
and DynamoRIO [8] and demonstrate it is capable of 
offering better performance while providing similarly 
detailed levels of information. 

III. MOTIVATION 

The solution presented here was developed for the 
purpose of supplying the input data necessary for the access 
pattern analysis and prediction techniques developed in [9-
12]. These techniques use stochastic models for analysing 
and predicting, with a high degree of confidence, the domain 
data access patterns performed by target object-oriented 
applications. The models employed for this purpose are 
Bayesian Inference, Criticality Analysis and Markov Chains. 
The issue that was detected with these techniques resides in 
the performance overheads introduced by the process of 
collecting the input data necessary for the stochastic models. 
While the overhead is not very significant when evaluated in 
a single-threaded environment, where the average 
performance loss is in the order of 3% to 8%, when 
considered in a multi threaded environment, the performance 
loss observed is about 50%, which is absolutely unacceptable 
for any sort of real-time continuous application behaviour 
monitoring. Since the above techniques had been developed 
with the intent of supplying with information online 
feedback-directed performance optimization solutions, it is 
mandatory that they do not incur any noticeable performance 
overhead, otherwise their usefulness is compromised. 

The new monitoring solution presented here was 
designed to deal with this issue. The reasoning behind the 
solution is as follows. It is very hard, if not impossible, to 
model and predict accurately the behaviour of an application 
as a whole, over long periods of time. The workload of 
(most) applications evolves continuously, as a function of 
external stimuli (such as client requests) and, apart from very 
specific scenarios or relatively short periods of time, it is 
impossible to know, a priori, the sequence of inputs/client-
requests that will be issued at a given moment. This is what 
makes programs behave as non-stationary processes. 

The stationarity of a process can be pictured intuitively as 
the absence of any drift in the set of realisations that defines 
its behaviour as time proceeds. From a mathematical point of 
view, this means that the probability distribution and density 
functions that describe such a process are unchanged by a 
shift in the time scale. They are applicable now and will 

remain so for all time. 
The constantly evolving workload of applications makes 

it necessary to monitor them continuously, if a precise view 
of their behaviour is to be had. Furthermore, the monitoring 
has to be performed in a lightweight manner, otherwise it 
will introduce inadmissible performance overheads. The 
combination of these two factors demands an access-pattern 
analysis solution capable of delivering detailed information 
about application behaviour, which is expressed in terms of 
domain data manipulations being performed, without 
compromising program performance. 

IV. ASSUMPTIONS 

Several assumptions had to be made to reach a viable 
solution that achieves these goals. The first assumption is 
that the workload of an application can be described entirely 
by the ratio of the invocation frequencies of the 
methods/services that define the functionality offered by that 
particular application to end-users. 

The second assumption is that programs behave as 
stationary processes [13] within the execution contexts of 
their methods/services. The nature of the behaviour 
displayed when executing a particular method should not 
change significantly over time, as long as its implementation 
remains the same. There are several factors that make this 
reasonable to assume. The encapsulation and modularity 
properties observed in (well-designed and implemented) 
object-oriented applications allow their methods to display 
functionality that is well defined and contained. This makes 
it highly unlikely to observe a broad range of different 
access-pattern behaviours when executing a particular 
method, independently of small shifts and variations that can 
occur when operating over different arguments. 

The third and last assumption is that the operation of 
application methods displays ergodic properties. A process is 
ergodic [14] if it is stationary and, furthermore, if it is 
possible to extract its statistical descriptors from realizations 
that cover a single finite period of time. Intuitively, it may be 
said that the realisations obtained from this time period are 
"typical" of all the possible realisations, if the process is to 
be ergodic. In practice, it is not necessary for the methods to 
be strongly ergodic. It is enough to be able to extract the 
behaviour descriptors from a finite number of observations. 
This translates into being able to extract the typical access-
pattern behaviour of a method from a limited number of 
invocations. 

V. IMPLEMENTATION 

A. Compile-time 

There are two main components of the solution presented 
here - a code injection module and a data acquisition module. 
The first module employs the ASM byte-code manipulation 
toolkit [15] for injecting, at compile-time, code into target 
applications. This code invokes functionality in the data 
acquisition module. In particular, the injected code serves 
two purposes. The first consists in updating the information 
about changes in the execution context within which 
operations are taking place. By manipulating byte-code, the 
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first instruction of all application methods or services (of 
interest) is defined to invoke a method responsible for 
updating the profiler state information that a new execution 
context has been initiated. Similarly, the last instruction 
before returning (or otherwise terminating the current 
execution context) calls functionality that clears up the 
profiler state information about the no-longer-active context. 

The second task of the code injection module is to 
replace all accesses to domain instances (and their fields) 
with the invocation of a distinct method, depending on the 
type of access being replaced (read or write operation). This 
method is responsible for resolving the surrounding 
execution context as well as for updating the statistical 
information about the domain data access that is to be 
performed within the context that has been identified. 

B. Run-time 

The second module is responsible for collecting the 
behaviour data displayed by the target application, in terms 
of the domain data access patterns performed while it is 
executing. To obtain high-precision data without introducing 
performance overheads, the gathering is performed in two 
stages - a learning period and a steady-state period.  

The first stage defines a period during which the 
monitoring system builds a detailed profile for all methods 
and/or services (of interest) of the target application. Each of 
the profiles assembled in this stage contains the typical 
access-patterns that are performed, per invocation of the 
corresponding method or service. The patterns are described 
in terms of the frequency of accesses performed over domain 
instances and their fields. Consequently, at the end of this 
stage, the information collected within the profiles indicates 
the number of read and write operations that are usually 
observed to be performed over domain data types when 
executing the associated methods/services (e.g. MethodY 
{DomainDataA.Field2 = 54 reads; DomainDataC.Field7 = 
17 writes}, MethodX {DataD.Field3 = 7 reads}, etc.). 

While the target application is executing in profile-
building mode, it operates with an enriched version of its 
byte-code that contains the calls to the context updating 
functionality, as well as statistical behaviour collection. The 
necessity to execute all this extra code leads to significant 
performance overheads. That is why the learning stage 
proceeds only until a representative profile has been built for 
all the noteworthy methods. Once this has been 
accomplished, the application can move on to the next stage. 

In the second stage, the only injected code that is kept in 
the target application is the one responsible for keeping track 
of the changes in execution contexts. Behaviour data is no 
longer collected about the access patterns that are effectively 
being practiced by the application. This allows the target 
system to operate with practically unperturbed performance, 
when compared to its original version, as shall be seen and 
demonstrated in the results and evaluation section. The 
extremely low overhead makes it possible for the application 
to operate normally, while the monitoring system solution 
keeps its profiling data up-to-date. 

The question that remains is how does the profiler system 
update the overall access-pattern behaviour information, if 

the only application aspect that it keeps track of is the change 
in execution contexts. If the program behaviour, at method 
level, is stationary (and does not drift significantly over time) 
then the method profiles built during the learning stage 
continue to provide a precise view of the behaviour 
displayed when executing those methods, as long as their 
implementation does not change. As such, whenever an 
updated overall view of the domain-data access patterns is 
necessary, the profiler determines the composition of the 
workload, based on the observed ratios of method/service 
invocations (e.g. MethodX = 1045 invocations, MethodY = 
703 invocations, etc). The interval for which the workload is 
determined corresponds to the period of time from the 
previous update up to the moment when the new update is 
requested.  

Once the workload has been identified, this information 
is used along with the individual method/service profiles for 
building an application-level view of the domain access 
patterns performed during that period. Simply put, the 
individual profiles are weighted by the workload ratio that 
their respective methods assumed in the workload, for that 
particular period of time. 

It should be noted that if the implementation of a method 
does change, at some point in time, then it is necessary to 
revert the application back to stage one so that new and 
updated profiles can be built. Otherwise, there would be no 
guarantee as to the correctness of the access-pattern 
information generated by the profiler. 

VI. RESULTS AND EVALUATION 

The TPC-W benchmark [16] was used to evaluate the 
performance of the profiling solution presented here. The 
benchmark specifies an e-commerce workload that simulates 
the activities of an online retail store, where emulated clients 
can browse and order products from the site.  

The TPC-W evaluation metric is the number of web 
interactions per second (WIPS) that the system can sustain. 
The benchmark execution is characterized by a series of 
input parameters. One of these defines the type of workload, 
which specifies the percentage of read and write operations 
that is to be simulated by the emulated browser (EB) clients. 
The workloads considered were Mix1 (95% read and 5% 
write); Mix2 (80% read and 20% write) and Mix3 (50% read 
and 50% write). The remaining configuration parameters 
were 10 emulated browsers; 300 seconds of ramp-up time; 
1200 seconds for measurement interval, after the ramp-up 
time; 120 seconds of ramp-down time; 1k, 10k, and 100k 
book items in the database and think time of 0 seconds, 
ensuring that EBs do not pause in between requests. 

All results were obtained as the average of 10 
independent executions of the benchmark, for identical 
configurations. The EBs, database and the benchmark server 
were run on the same physical machine. The measurements 
were carried out with the benchmark running on a machine 
equipped with 2x Intel Xeon E5520 (a total of 8 physical 
cores with hyper-threading running at 2.26 GHz) and 24 GB 
of RAM. Its operating system was Ubuntu 10.04.3, and the 
JVM used was Java (TM) SE Runtime Environment (build 
1.6.0 22-b04), Java HotSpot (TM) 64-Bit ServerVM (build 
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17.1-b03, mixed mode). The benchmark was run on top of 
Apache Tomcat 6.0.24, with the options set to "-server -
Xms64m -Xmx$(heapSize)m -Xshare:off -XX: 
+UseConcMarkSweep GC -XX:+AggressiveOpts". 

The throughput of the benchmark was evaluated for 14 
different modes of monitoring. The operation mode 
designated as BaseLine corresponds to the TPC-W operating 
in pristine conditions, with its original implementation, 
without any byte-code manipulations. The newly developed 
profiler shall be referred to as the Stationary solution, while 
the old monitoring solution, that keeps track of domain 
access pattern occurrences continuously, shall be referred to 
as NonStationary.  

Two different approaches (orthogonal to the profiling 
solution in use) for storing data about changes in execution 
context shall be considered as well. The first of these 
approaches, which shall be called Deep, maintains 
information about the sequence of context changes that led to 
the currently active one. Such an approach makes it possible 
to know the exact sequence of method invocations that 
preceded any given point in the execution of the program. 
The alternative approach, called Flat, only keeps track of the 
currently active execution context, independently of the 
execution flow that might have been displayed by the 
program to reach it. 

To get a better grasp of how the Stationary and 
NonStationary solutions behave, three further variants are 
taken into account, based on the types of accesses over 
domain data that are tracked. These are read-write, write-
only and read-only modes. The list of the 14 different modes 
of monitoring evaluated here is: 

 BaseLine - vanilla version of TPC-W 
 S_CTX - Stationary solution in context-only mode; 
 RW/WO/RO_NSD - NonStationary solution with 

Deep context tracking in Read-Write, Write-Only 
and Read-Only modes; 

 RW/WO/RO_NSF - NonStationary solution with 
Flat context tracking in Read-Write, Write-Only and 
Read-Only modes; 

 RW/WO/RO_SD - Stationary solution under profile-
building mode, with Deep context tracking in Read-
Write, Write-Only and Read-Only modes; 

 RW/WO/RO_SF - Stationary solution under profile-
building mode, with Flat context tracking in Read-
Write, Write-Only and Read-Only modes. 

A total of 126 distinct benchmark configurations were 
evaluated (14 operation modes, 3 workload types and 3 data-
base sizes). Additionally, every configuration was executed 
10 times, independently of previous runs, to provide a more 
comprehensive view of the behaviour displayed by the 
system. Taking this into account, along with the fact that a 
single execution of the benchmark takes approximately 
15min (14min benchmark execution and 1min for Tomcat 
reboot, benchmark redeploy and database refresh), the results 
presented in this section took a total of 315h to generate. 

The WIPS achieved by the BaseLine, Stationary in 
context-only mode and the Read-Write of the Stationary and 
NonStationary can be seen in Figure 1 (top), while the Write-

Only and Read-Only variants Figure 1 (bottom). Every group 
of bars corresponds to a particular benchmark configuration 
in terms of workload (mix1, mix2 and mix3) and database 
size (1k, 10k and 100k book instances).  
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Figure 1. WIPS - baseline, stationary and non-stationary monitoring 

From the analysis of these results, several remarks can be 
made. The throughput displayed when TPC-W is operating 
with Stationary in context-only mode appears to be very 
similar to the one when the benchmark is operating in its 
original version. When the benchmark is operating with 
Stationary (ReadWrite and ReadOnly) in profile-building 
mode as well as with NonStationary (ReadWrite and 
ReadOnly), the throughput observed is significantly lower 
than the one of BaseLine. The throughput displayed by the 
benchmark when the monitoring solutions are only tracking 
write-access operations over domain data is very similar to 
the BaseLine. The last two observations confirm what was 
already to be expected, namely that the factor that 
contributes most for the performance overheads observed 
when profiling a program is the tracking of read-access 
operations. Adding a fixed overhead to many short duration 
operations is bound to cause a greater impact than adding the 
same overhead to few long-duration operations. 

It is interesting to note that for both Stationary and 
NonStationary approaches, whenever they are operating with 
Flat context-tracking mode, the WIPS achieved are slightly 
but consistently better than their counterparts with Deep 
context-tracking mode. 

A thorough comparison of the relative throughput 
difference between all 14 monitoring modes and the 
BaseLine can be seen in Table I and II. The relative 
throughput difference has been calculated as 
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   100A BaseLine BaseLineT T T  , in %, where TA indicates the 

throughput achieved when TPC-W is operating with 
monitoring approach A. The average throughput difference, 
per approach, is displayed with a shaded background. 

TABLE I. THROUGHPUT DIFFERENCE (%), ALL VS. BASELINE (R&W) 

BaseLine S_CTX RW_NSD RW_NSF RW_SD RW_SF

mix1_b1k 0.00 0.51 -12.36 -8.06 -13.15 -8.57
mix1_b10k 0.00 0.63 -69.01 -69.12 -69.53 -68.95
mix1_b100k 0.00 -0.01 -81.45 -80.99 -81.50 -81.26
mix2_b1k 0.00 -2.49 -42.11 -37.75 -39.28 -38.70
mix2_b10k 0.00 -0.22 -66.85 -66.91 -67.44 -67.10
mix2_b100k 0.00 -0.34 -82.10 -81.73 -82.13 -81.53
mix3_b1k 0.00 5.16 -32.85 -25.43 -30.87 -27.70
mix3_b10k 0.00 -1.46 -36.17 -28.74 -40.24 -29.25
mix3_b100k 0.00 3.45 -73.08 -72.71 -72.81 -72.04
avg 0.00 0.58 -55.11 -52.38 -55.22 -52.79  

 

The analysis of these results indicates that the 
performance of the benchmark, when the Stationary 
approach is operating in context-only mode (S_CTX) is 
practically identical (0.58% difference) to the one of the 
original version of TPC-W (BaseLine). While it would be 
logical to expect that the S_CTX should display throughput 
that is strictly less than the one of the BaseLine, the few 
configurations where the opposite is observed can be 
(eventually) explained by the fact that the byte-code 
manipulations performed over the benchmark, for keeping 
track of the changes in execution contexts, allowed the just-
in-time compiler of the JVM to perform some further 
optimizations that would be otherwise unable to apply. 
Another (possibly more likely) explanation for this 
phenomenon would relate to the intermediate-to-high 
measurement uncertainty observed for the two 
configurations where the S_CTX performs better than 
BaseLine (Mix3 with b1k and b100k).  

TABLE II. THROUGHPUT DIFFERENCE (%), ALL VS. BASELINE (READ-ONLY 
AND WRITE-ONLY) 

WO_NSD WO_NSF WO_SD WO_SF RO_NSD RO_NSF RO_SD RO_SF

mix1_b1k 0.47 0.25 0.22 -0.03 -12.33 -9.75 -12.47 -8.59
mix1_b10k 1.69 1.29 0.68 0.52 -69.06 -68.57 -69.18 -68.92
mix1_b100k -0.08 -0.01 0.25 -0.24 -81.63 -81.49 -81.73 -81.06
mix2_b1k -2.19 -11.88 -4.08 1.00 -38.27 -39.82 -40.94 -40.48
mix2_b10k -0.52 0.44 -2.20 -0.10 -67.86 -67.18 -67.17 -67.07
mix2_b100k -0.66 -0.17 -0.15 -0.55 -82.18 -81.61 -82.02 -81.90
mix3_b1k -4.01 5.61 -3.42 4.02 -33.10 -23.13 -45.84 -14.76
mix3_b10k -5.32 -0.26 -1.76 -1.40 -38.98 -30.35 -33.02 -24.80
mix3_b100k -9.60 -3.25 0.53 -15.55 -73.18 -72.57 -72.70 -72.71
avg -2.25 -0.89 -1.10 -1.37 -55.18 -52.72 -56.12 -51.14  

 

The throughput displayed by the Stationary solution in 
profiling-mode is very similar to the NonStationary 
approach, across all evaluated configurations. This was to be 
expected since both approaches perform very similar tasks, 
in those operation modes. On the average, the throughput 
that the TPC-W can maintain while operating with 
Stationary profile-mode or any of the NonStationary variants 
is from 51% to 56% lower than the throughput of the 
unmodified benchmark.  

The last performance aspect that can be appreciated, 
based on these results is the effect of the Deep and Flat 
context-tracking modes. As could be seen from Figure 1 and 
can now be confirmed numerically, the Flat context-tracking 

mode allows for small but consistent performance 
improvements. These are most noticeable for the Read-Write 
and Read-Only variants of the monitoring solutions and 
range from 3% to 5%. 

VII. CONCLUSION 

This work presented a new solution for profiling the 
behaviour of object-oriented applications, in terms of the 
access-patterns performed at run-time over domain data. By 
making certain assumptions about the stationary and ergodic 
properties of the run-time behaviour of object-oriented 
applications, the new solution can provide detailed and 
continuously updated information about the effectively 
practiced domain-data access-patterns, by the target 
application, without introducing any noteworthy 
performance overheads. This feature allows the newly 
developed solution to monitor any application in real-time, 
while the target system is operating in steady-state.  

The solution was evaluated on the TPC-W benchmark, 
against multiple variants of previously existing solutions. It 
was possible to demonstrate that the new approach reduces 
the performance overheads of previous alternatives from an 
average of 55% down to approximately zero, while 
providing the same degree of information. 
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