
Low-Overhead Profiling based on Stationary and Ergodic Assumptions

Stoyan Garbatov and João Cachopo
Software Engineering Group

INESC-ID Lisboa / Instituto Superior Técnico, Universidade Técnica de Lisboa
Lisbon, Portugal

stoyangarbatov@gmail.com and joao.cachopo@ist.utl.pt

Abstract—In the context of feedback-directed optimization
solutions, the component responsible for collecting application
behaviour data cannot afford to introduce any performance
overheads, otherwise it undermines any optimization that is to
be carried out. This work presents a new online solution for
profiling object-oriented applications. The solution collects
detailed information about accesses over domain instances and
their fields, while introducing approximately zero overheads.
This is accomplished by making assumptions about the
stationary and ergodic properties of applications' run-time
behaviour. The work has been validated with the TPC-W
benchmark.

Keywords-profiling; real-time monitoring; feedback-directed
optimizations; performance; ergodic; stationary.

I. INTRODUCTION

The importance of profiling tools has been steadily
increasing over the last decade. Profilers are essential for
understanding the dynamic behaviour of programs. In the
past, one of the most common use-case scenarios was to use
a profiler for obtaining information about the resource usage
of a given application, to identify performance bottlenecks.
While the nature of the information supplied by profiling
tools has not changed much over time, the spectrum of their
possible applications has observed a significant widening.
These applications include dynamic slicing, program
invariants detection, program correctness and security
checking, predicting data locality and just-in-time compiler
optimizations, among others.

The widespread adoption of programming languages
designed to execute on top of virtual machines played a
major role in valorising profiling tools. Virtual machine
architectures offer several properties that make them more
desirable, from a software engineering point of view, than
environments with statically compiled binaries. Some of
these features include program portability, safety assurances,
automatic memory and thread management, as well as
dynamic class loading. As it can be seen from the work of
Cierniak et al. [1], while these properties empower the
programming model offered to users, they also cause
overheads and contribute to obstruct many static program
optimization techniques, making it harder to achieve good
performance.

To counter these difficulties, a lot of research has been
carried out, focusing on online feedback-directed
optimization systems. These systems make use of techniques

that seek to improve the performance of target programs by
monitoring their run-time behaviour and, subsequently, by
using this information for identifying and applying
appropriate optimization measures. It is frequently the case
to employ profiling tools for obtaining the necessary
program behaviour information.

The main issue of profiling tools is that they are subject
to two requirements that are practically impossible to satisfy
simultaneously. The first requirement is that the profiler
should provide as in-depth and detailed information as
possible about the behavioural patterns exhibited by the
program being monitored. The second requirement is that the
monitoring should be carried out in a transparent, efficient
and devoid of overheads manner that does not compromise
program performance (or at least not significantly).

Independently of the way that a profiler operates (event
or sampling-based), it invariably ends up disrupting the
execution of its target programs, while data is being
collected. These interruptions translate directly into
overheads that penalize application performance.
Furthermore, the fact that many profilers employ code
instrumentation (the injection of additional code into the
target) for achieving their goals not only slows down the
execution of the program but can also change the way it
operates, leading to scenarios where the application displays
behaviour that would be otherwise impossible to observe,
were it executing normally.

All of these factors contribute to make the task of striking
an acceptable balance between performance overheads and
information depth hard to achieve in practice. This is
particularly true for online feedback-directed optimization
systems, where the profiling is expected to be carried out in
real-time, while the program is executing normally, so any
"noticeable" performance overheads are not acceptable. On
the other hand, the profiling information has to be
sufficiently detailed to guide appropriately the optimization
decisions that need to be made for improving the target
system's performance.

While accounting for these considerations, the solution
presented with this work consists in a system capable of
monitoring the access patterns of object-oriented
applications. The patterns are expressed in terms of the
manipulations (read and write access operations) performed
over domain instances and their fields in the execution
contexts of the application methods/services that define the
set of functionality offered to end-users. The novelty of the

380Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

approach consists in the employment of stochastic and
ergodic assumptions for the behaviour of target programs
within their methods/services, making it possible to collect
the access pattern information in an online fashion with
minimal performance overheads while providing very high
accuracy and data depth.

The article is organized as follows. Section II discusses
related work. Section III describes the motivation behind our
new proposal, followed by some assumptions that were
necessary to be made in Section IV. Section V covers the
implementation of the solution presented here. Section VI
presents the benchmark that we used to evaluate the new
proposal and discusses the results obtained. Finally, Section
VII presents some concluding remarks.

II. RELATED WORK

The current trends in application development, software
engineering, and hardware technology (such as the wide
acceptance of programming languages operating in
automatically managed virtual machine environments and
the expansion of cloud computing, among many others) have
contributed to create a great demand for solutions capable of
continuously tracking the behaviour of dynamic systems and
of applying performance optimization measures based on the
gathered information. Adaptive optimization solutions such
as these have been designated in the literature as online
feedback-directed optimization (FDO) systems. As can be
seen from the work of Arnold et al. [2], where an analysis of
over 150 references related to online feedback-directed
optimization solutions has been performed, there is a wealth
of work done in this research area. Unfortunately, the great
majority of these solutions have been developed to act as
support for compilation and dynamic code generation
optimizations, while non-compiler related literature is
somehow scarce. Without intending to perform an in-depth
and exhaustive analysis of the existing literature, some works
on the topic of continuously tracking the behaviour of
software systems shall be discussed next.

Smith [3] discussed the motivation and history of FDO
techniques. The author presented three factors responsible
for the importance of FDO, namely:

 FDO bypasses the restrictions imposed on static
optimization approaches by making use of dynamic
run-time behaviour information that is impossible to
obtain statically;

 FDO makes it possible to adapt the optimization
measures continuously, according to the observed
changes in target application behaviour.

 Software systems can be made more flexible and
easier to change through run-time binding.

From the analysis and discussion in [3], Smith argues in
favour of performing optimizations based on run-time
monitoring as well as accepting the notion of executables as
mutable objects. Smith [3] and Arnold et al. [4] pointed out
that the obstacles that need to be overcome to achieve an
effective FDO are:

 Minimize or otherwise deal with the overhead
introduced in the process of collecting behaviour

information as well as when applying the necessary
transformations over the target application for
optimizing its performance;

 Being able to make informed decisions even when
there is incomplete profiling data or that same
information is subject to constant evolution.

In the context of virtual machine environments, it is
possible to group the profiling-data collection mechanisms
for FDO purposes into the following categories: run-time
service monitoring, hardware performance monitors,
sampling, and program instrumentation. The solution
developed here belongs to the program instrumentation class
of approaches. As such, the other categories shall be only
referred to briefly.

Run-time service monitoring approaches track the state
of the run-time services offered by the subjacent virtual
machine. This is usually done for identifying temporal
locality usage patterns that can be exploited for
optimizations. Several applications of these techniques
include dynamic dispatching, hash-codes, and
synchronization. It is noteworthy that the memory
management systems are particularly rich sources of data for
FDO, covering information about allocation trends, heap
usage and garbage collection.

Hardware performance monitoring collects data provided
by specialized microprocessor hardware for guiding
optimizations. There has been a multitude of FDO
approaches developed to use such information but their
integration into production-ready VMs has been limited.

With sampling approaches, the profiler seeks to collect a
representative (as opposed to exhaustive) sub-set of
observations for a given category of events. By varying the
portion of events that get observed, sampling approaches can
control the amount of overhead being introduced into the
application that is being monitored. Nevertheless, as in all
monitoring approaches, sampling techniques need to strike a
balance between low overhead and collecting enough
behaviour information to be considered useful.

The injection of extra instructions for collecting
behaviour information into the target system is the basis for
program instrumentation profiling approaches. These
techniques are very flexible in their usage and can provide a
wide range of behaviour data. Their main issue consists in
the performance overhead caused by the need to execute the
instrumented code. As such, most existing solutions attempt
to minimize the overheads without compromising too much
the depth of the profiled information.

Arnold and Ryder [5] developed a framework for low
overhead instrumentation sampling supporting multiple types
of profiling. The framework employs code duplication and
compiler-inserted counter-based sampling to enable changes
between the instrumented and original version of the target
code at run-time. The amount of overhead to be introduced is
adjustable at run-time, by varying the ratio of execution
between instrumented and non-instrumented versions of the
code. The authors achieve this by keeping in memory two
versions of all methods that have been modified for profiling
purposes. One of them is the instrumented version that
performs the monitoring measurements while the other

381Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

contains the original code version with a small preamble that
determines if the fast or slow version of the method should
be executed, depending on the current conditions.

Another software instrumentation system, called Pin, is
the one developed by Luk et al. [6]. The tools offered by the
system are written in C/C++ and support portable,
transparent and efficient instrumentation. While the tools are
mostly architecture independent, they can provide
architecture specific information when required. The systems
uses dynamic compilation for instrumenting applications at
run-time. Pin employs several techniques for achieving high
operation efficiency while collecting data. These include
register re-allocation, inlining, liveness analysis and
instruction scheduling. The authors evaluate their systems
against other similar purpose solutions, such as Valgrind [7]
and DynamoRIO [8] and demonstrate it is capable of
offering better performance while providing similarly
detailed levels of information.

III. MOTIVATION

The solution presented here was developed for the
purpose of supplying the input data necessary for the access
pattern analysis and prediction techniques developed in [9-
12]. These techniques use stochastic models for analysing
and predicting, with a high degree of confidence, the domain
data access patterns performed by target object-oriented
applications. The models employed for this purpose are
Bayesian Inference, Criticality Analysis and Markov Chains.
The issue that was detected with these techniques resides in
the performance overheads introduced by the process of
collecting the input data necessary for the stochastic models.
While the overhead is not very significant when evaluated in
a single-threaded environment, where the average
performance loss is in the order of 3% to 8%, when
considered in a multi threaded environment, the performance
loss observed is about 50%, which is absolutely unacceptable
for any sort of real-time continuous application behaviour
monitoring. Since the above techniques had been developed
with the intent of supplying with information online
feedback-directed performance optimization solutions, it is
mandatory that they do not incur any noticeable performance
overhead, otherwise their usefulness is compromised.

The new monitoring solution presented here was
designed to deal with this issue. The reasoning behind the
solution is as follows. It is very hard, if not impossible, to
model and predict accurately the behaviour of an application
as a whole, over long periods of time. The workload of
(most) applications evolves continuously, as a function of
external stimuli (such as client requests) and, apart from very
specific scenarios or relatively short periods of time, it is
impossible to know, a priori, the sequence of inputs/client-
requests that will be issued at a given moment. This is what
makes programs behave as non-stationary processes.

The stationarity of a process can be pictured intuitively as
the absence of any drift in the set of realisations that defines
its behaviour as time proceeds. From a mathematical point of
view, this means that the probability distribution and density
functions that describe such a process are unchanged by a
shift in the time scale. They are applicable now and will

remain so for all time.
The constantly evolving workload of applications makes

it necessary to monitor them continuously, if a precise view
of their behaviour is to be had. Furthermore, the monitoring
has to be performed in a lightweight manner, otherwise it
will introduce inadmissible performance overheads. The
combination of these two factors demands an access-pattern
analysis solution capable of delivering detailed information
about application behaviour, which is expressed in terms of
domain data manipulations being performed, without
compromising program performance.

IV. ASSUMPTIONS

Several assumptions had to be made to reach a viable
solution that achieves these goals. The first assumption is
that the workload of an application can be described entirely
by the ratio of the invocation frequencies of the
methods/services that define the functionality offered by that
particular application to end-users.

The second assumption is that programs behave as
stationary processes [13] within the execution contexts of
their methods/services. The nature of the behaviour
displayed when executing a particular method should not
change significantly over time, as long as its implementation
remains the same. There are several factors that make this
reasonable to assume. The encapsulation and modularity
properties observed in (well-designed and implemented)
object-oriented applications allow their methods to display
functionality that is well defined and contained. This makes
it highly unlikely to observe a broad range of different
access-pattern behaviours when executing a particular
method, independently of small shifts and variations that can
occur when operating over different arguments.

The third and last assumption is that the operation of
application methods displays ergodic properties. A process is
ergodic [14] if it is stationary and, furthermore, if it is
possible to extract its statistical descriptors from realizations
that cover a single finite period of time. Intuitively, it may be
said that the realisations obtained from this time period are
"typical" of all the possible realisations, if the process is to
be ergodic. In practice, it is not necessary for the methods to
be strongly ergodic. It is enough to be able to extract the
behaviour descriptors from a finite number of observations.
This translates into being able to extract the typical access-
pattern behaviour of a method from a limited number of
invocations.

V. IMPLEMENTATION

A. Compile-time

There are two main components of the solution presented
here - a code injection module and a data acquisition module.
The first module employs the ASM byte-code manipulation
toolkit [15] for injecting, at compile-time, code into target
applications. This code invokes functionality in the data
acquisition module. In particular, the injected code serves
two purposes. The first consists in updating the information
about changes in the execution context within which
operations are taking place. By manipulating byte-code, the

382Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

first instruction of all application methods or services (of
interest) is defined to invoke a method responsible for
updating the profiler state information that a new execution
context has been initiated. Similarly, the last instruction
before returning (or otherwise terminating the current
execution context) calls functionality that clears up the
profiler state information about the no-longer-active context.

The second task of the code injection module is to
replace all accesses to domain instances (and their fields)
with the invocation of a distinct method, depending on the
type of access being replaced (read or write operation). This
method is responsible for resolving the surrounding
execution context as well as for updating the statistical
information about the domain data access that is to be
performed within the context that has been identified.

B. Run-time

The second module is responsible for collecting the
behaviour data displayed by the target application, in terms
of the domain data access patterns performed while it is
executing. To obtain high-precision data without introducing
performance overheads, the gathering is performed in two
stages - a learning period and a steady-state period.

The first stage defines a period during which the
monitoring system builds a detailed profile for all methods
and/or services (of interest) of the target application. Each of
the profiles assembled in this stage contains the typical
access-patterns that are performed, per invocation of the
corresponding method or service. The patterns are described
in terms of the frequency of accesses performed over domain
instances and their fields. Consequently, at the end of this
stage, the information collected within the profiles indicates
the number of read and write operations that are usually
observed to be performed over domain data types when
executing the associated methods/services (e.g. MethodY
{DomainDataA.Field2 = 54 reads; DomainDataC.Field7 =
17 writes}, MethodX {DataD.Field3 = 7 reads}, etc.).

While the target application is executing in profile-
building mode, it operates with an enriched version of its
byte-code that contains the calls to the context updating
functionality, as well as statistical behaviour collection. The
necessity to execute all this extra code leads to significant
performance overheads. That is why the learning stage
proceeds only until a representative profile has been built for
all the noteworthy methods. Once this has been
accomplished, the application can move on to the next stage.

In the second stage, the only injected code that is kept in
the target application is the one responsible for keeping track
of the changes in execution contexts. Behaviour data is no
longer collected about the access patterns that are effectively
being practiced by the application. This allows the target
system to operate with practically unperturbed performance,
when compared to its original version, as shall be seen and
demonstrated in the results and evaluation section. The
extremely low overhead makes it possible for the application
to operate normally, while the monitoring system solution
keeps its profiling data up-to-date.

The question that remains is how does the profiler system
update the overall access-pattern behaviour information, if

the only application aspect that it keeps track of is the change
in execution contexts. If the program behaviour, at method
level, is stationary (and does not drift significantly over time)
then the method profiles built during the learning stage
continue to provide a precise view of the behaviour
displayed when executing those methods, as long as their
implementation does not change. As such, whenever an
updated overall view of the domain-data access patterns is
necessary, the profiler determines the composition of the
workload, based on the observed ratios of method/service
invocations (e.g. MethodX = 1045 invocations, MethodY =
703 invocations, etc). The interval for which the workload is
determined corresponds to the period of time from the
previous update up to the moment when the new update is
requested.

Once the workload has been identified, this information
is used along with the individual method/service profiles for
building an application-level view of the domain access
patterns performed during that period. Simply put, the
individual profiles are weighted by the workload ratio that
their respective methods assumed in the workload, for that
particular period of time.

It should be noted that if the implementation of a method
does change, at some point in time, then it is necessary to
revert the application back to stage one so that new and
updated profiles can be built. Otherwise, there would be no
guarantee as to the correctness of the access-pattern
information generated by the profiler.

VI. RESULTS AND EVALUATION

The TPC-W benchmark [16] was used to evaluate the
performance of the profiling solution presented here. The
benchmark specifies an e-commerce workload that simulates
the activities of an online retail store, where emulated clients
can browse and order products from the site.

The TPC-W evaluation metric is the number of web
interactions per second (WIPS) that the system can sustain.
The benchmark execution is characterized by a series of
input parameters. One of these defines the type of workload,
which specifies the percentage of read and write operations
that is to be simulated by the emulated browser (EB) clients.
The workloads considered were Mix1 (95% read and 5%
write); Mix2 (80% read and 20% write) and Mix3 (50% read
and 50% write). The remaining configuration parameters
were 10 emulated browsers; 300 seconds of ramp-up time;
1200 seconds for measurement interval, after the ramp-up
time; 120 seconds of ramp-down time; 1k, 10k, and 100k
book items in the database and think time of 0 seconds,
ensuring that EBs do not pause in between requests.

All results were obtained as the average of 10
independent executions of the benchmark, for identical
configurations. The EBs, database and the benchmark server
were run on the same physical machine. The measurements
were carried out with the benchmark running on a machine
equipped with 2x Intel Xeon E5520 (a total of 8 physical
cores with hyper-threading running at 2.26 GHz) and 24 GB
of RAM. Its operating system was Ubuntu 10.04.3, and the
JVM used was Java (TM) SE Runtime Environment (build
1.6.0 22-b04), Java HotSpot (TM) 64-Bit ServerVM (build

383Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

17.1-b03, mixed mode). The benchmark was run on top of
Apache Tomcat 6.0.24, with the options set to "-server -
Xms64m -Xmx$(heapSize)m -Xshare:off -XX:
+UseConcMarkSweep GC -XX:+AggressiveOpts".

The throughput of the benchmark was evaluated for 14
different modes of monitoring. The operation mode
designated as BaseLine corresponds to the TPC-W operating
in pristine conditions, with its original implementation,
without any byte-code manipulations. The newly developed
profiler shall be referred to as the Stationary solution, while
the old monitoring solution, that keeps track of domain
access pattern occurrences continuously, shall be referred to
as NonStationary.

Two different approaches (orthogonal to the profiling
solution in use) for storing data about changes in execution
context shall be considered as well. The first of these
approaches, which shall be called Deep, maintains
information about the sequence of context changes that led to
the currently active one. Such an approach makes it possible
to know the exact sequence of method invocations that
preceded any given point in the execution of the program.
The alternative approach, called Flat, only keeps track of the
currently active execution context, independently of the
execution flow that might have been displayed by the
program to reach it.

To get a better grasp of how the Stationary and
NonStationary solutions behave, three further variants are
taken into account, based on the types of accesses over
domain data that are tracked. These are read-write, write-
only and read-only modes. The list of the 14 different modes
of monitoring evaluated here is:

 BaseLine - vanilla version of TPC-W
 S_CTX - Stationary solution in context-only mode;
 RW/WO/RO_NSD - NonStationary solution with

Deep context tracking in Read-Write, Write-Only
and Read-Only modes;

 RW/WO/RO_NSF - NonStationary solution with
Flat context tracking in Read-Write, Write-Only and
Read-Only modes;

 RW/WO/RO_SD - Stationary solution under profile-
building mode, with Deep context tracking in Read-
Write, Write-Only and Read-Only modes;

 RW/WO/RO_SF - Stationary solution under profile-
building mode, with Flat context tracking in Read-
Write, Write-Only and Read-Only modes.

A total of 126 distinct benchmark configurations were
evaluated (14 operation modes, 3 workload types and 3 data-
base sizes). Additionally, every configuration was executed
10 times, independently of previous runs, to provide a more
comprehensive view of the behaviour displayed by the
system. Taking this into account, along with the fact that a
single execution of the benchmark takes approximately
15min (14min benchmark execution and 1min for Tomcat
reboot, benchmark redeploy and database refresh), the results
presented in this section took a total of 315h to generate.

The WIPS achieved by the BaseLine, Stationary in
context-only mode and the Read-Write of the Stationary and
NonStationary can be seen in Figure 1 (top), while the Write-

Only and Read-Only variants Figure 1 (bottom). Every group
of bars corresponds to a particular benchmark configuration
in terms of workload (mix1, mix2 and mix3) and database
size (1k, 10k and 100k book instances).

0

400

800

1200

1600

m
ix

1_
b1

k

m
ix

1_
b1

0k

m
ix

1_
b1

00
k

m
ix

2_
b1

k

m
ix

2_
b1

0k

m
ix

2_
b1

00
k

m
ix

3_
b1

k

m
ix

3_
b1

0k

m
ix

3_
b1

00
k

(wips)

BaseLine
S_CTX
RW_NSD
RW_NSF
RW_SD
RW_SF

0

400

800

1200

1600

m
ix

1_
b1

k

m
ix

1_
b1

0k

m
ix

1_
b1

00
k

m
ix

2_
b1

k

m
ix

2_
b1

0k

m
ix

2_
b1

00
k

m
ix

3_
b1

k

m
ix

3_
b1

0k

m
ix

3_
b1

00
k

(wips)

BaseLine
WO_NSD
WO_NSF
WO_SD
WO_SF
RO_NSD
RO_NSF
RO_SD
RO_SF

Figure 1. WIPS - baseline, stationary and non-stationary monitoring

From the analysis of these results, several remarks can be
made. The throughput displayed when TPC-W is operating
with Stationary in context-only mode appears to be very
similar to the one when the benchmark is operating in its
original version. When the benchmark is operating with
Stationary (ReadWrite and ReadOnly) in profile-building
mode as well as with NonStationary (ReadWrite and
ReadOnly), the throughput observed is significantly lower
than the one of BaseLine. The throughput displayed by the
benchmark when the monitoring solutions are only tracking
write-access operations over domain data is very similar to
the BaseLine. The last two observations confirm what was
already to be expected, namely that the factor that
contributes most for the performance overheads observed
when profiling a program is the tracking of read-access
operations. Adding a fixed overhead to many short duration
operations is bound to cause a greater impact than adding the
same overhead to few long-duration operations.

It is interesting to note that for both Stationary and
NonStationary approaches, whenever they are operating with
Flat context-tracking mode, the WIPS achieved are slightly
but consistently better than their counterparts with Deep
context-tracking mode.

A thorough comparison of the relative throughput
difference between all 14 monitoring modes and the
BaseLine can be seen in Table I and II. The relative
throughput difference has been calculated as

384Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

   100A BaseLine BaseLineT T T  , in %, where TA indicates the

throughput achieved when TPC-W is operating with
monitoring approach A. The average throughput difference,
per approach, is displayed with a shaded background.

TABLE I. THROUGHPUT DIFFERENCE (%), ALL VS. BASELINE (R&W)

BaseLine S_CTX RW_NSD RW_NSF RW_SD RW_SF

mix1_b1k 0.00 0.51 -12.36 -8.06 -13.15 -8.57
mix1_b10k 0.00 0.63 -69.01 -69.12 -69.53 -68.95
mix1_b100k 0.00 -0.01 -81.45 -80.99 -81.50 -81.26
mix2_b1k 0.00 -2.49 -42.11 -37.75 -39.28 -38.70
mix2_b10k 0.00 -0.22 -66.85 -66.91 -67.44 -67.10
mix2_b100k 0.00 -0.34 -82.10 -81.73 -82.13 -81.53
mix3_b1k 0.00 5.16 -32.85 -25.43 -30.87 -27.70
mix3_b10k 0.00 -1.46 -36.17 -28.74 -40.24 -29.25
mix3_b100k 0.00 3.45 -73.08 -72.71 -72.81 -72.04
avg 0.00 0.58 -55.11 -52.38 -55.22 -52.79

The analysis of these results indicates that the
performance of the benchmark, when the Stationary
approach is operating in context-only mode (S_CTX) is
practically identical (0.58% difference) to the one of the
original version of TPC-W (BaseLine). While it would be
logical to expect that the S_CTX should display throughput
that is strictly less than the one of the BaseLine, the few
configurations where the opposite is observed can be
(eventually) explained by the fact that the byte-code
manipulations performed over the benchmark, for keeping
track of the changes in execution contexts, allowed the just-
in-time compiler of the JVM to perform some further
optimizations that would be otherwise unable to apply.
Another (possibly more likely) explanation for this
phenomenon would relate to the intermediate-to-high
measurement uncertainty observed for the two
configurations where the S_CTX performs better than
BaseLine (Mix3 with b1k and b100k).

TABLE II. THROUGHPUT DIFFERENCE (%), ALL VS. BASELINE (READ-ONLY
AND WRITE-ONLY)

WO_NSD WO_NSF WO_SD WO_SF RO_NSD RO_NSF RO_SD RO_SF

mix1_b1k 0.47 0.25 0.22 -0.03 -12.33 -9.75 -12.47 -8.59
mix1_b10k 1.69 1.29 0.68 0.52 -69.06 -68.57 -69.18 -68.92
mix1_b100k -0.08 -0.01 0.25 -0.24 -81.63 -81.49 -81.73 -81.06
mix2_b1k -2.19 -11.88 -4.08 1.00 -38.27 -39.82 -40.94 -40.48
mix2_b10k -0.52 0.44 -2.20 -0.10 -67.86 -67.18 -67.17 -67.07
mix2_b100k -0.66 -0.17 -0.15 -0.55 -82.18 -81.61 -82.02 -81.90
mix3_b1k -4.01 5.61 -3.42 4.02 -33.10 -23.13 -45.84 -14.76
mix3_b10k -5.32 -0.26 -1.76 -1.40 -38.98 -30.35 -33.02 -24.80
mix3_b100k -9.60 -3.25 0.53 -15.55 -73.18 -72.57 -72.70 -72.71
avg -2.25 -0.89 -1.10 -1.37 -55.18 -52.72 -56.12 -51.14

The throughput displayed by the Stationary solution in
profiling-mode is very similar to the NonStationary
approach, across all evaluated configurations. This was to be
expected since both approaches perform very similar tasks,
in those operation modes. On the average, the throughput
that the TPC-W can maintain while operating with
Stationary profile-mode or any of the NonStationary variants
is from 51% to 56% lower than the throughput of the
unmodified benchmark.

The last performance aspect that can be appreciated,
based on these results is the effect of the Deep and Flat
context-tracking modes. As could be seen from Figure 1 and
can now be confirmed numerically, the Flat context-tracking

mode allows for small but consistent performance
improvements. These are most noticeable for the Read-Write
and Read-Only variants of the monitoring solutions and
range from 3% to 5%.

VII. CONCLUSION

This work presented a new solution for profiling the
behaviour of object-oriented applications, in terms of the
access-patterns performed at run-time over domain data. By
making certain assumptions about the stationary and ergodic
properties of the run-time behaviour of object-oriented
applications, the new solution can provide detailed and
continuously updated information about the effectively
practiced domain-data access-patterns, by the target
application, without introducing any noteworthy
performance overheads. This feature allows the newly
developed solution to monitor any application in real-time,
while the target system is operating in steady-state.

The solution was evaluated on the TPC-W benchmark,
against multiple variants of previously existing solutions. It
was possible to demonstrate that the new approach reduces
the performance overheads of previous alternatives from an
average of 55% down to approximately zero, while
providing the same degree of information.

ACKNOWLEDGMENT

This work was partially supported by national funds
through FCT – Fundação para a Ciência e a Tecnologia,
under project PEst-OE/EEI/LA0021/2013, as well as by FCT
(INESC-ID multiannual funding) PIDDAC Program funds
and by the Specific Targeted Research Project (STReP)
Cloud-TM, which is co-financed by the European
Commission through the contract no. 257784. The first
author has been funded by the Portuguese FCT under
contract SFRH/BD/64379/2009.

REFERENCES
[1] M. Cierniak, M. Eng, N. Glew, B. Lewis and J. Stichnoth, 2003, The

Open Runtime Platform: A Flexible High-Performance Managed
Runtime Environment, Intel Technology Journal, 7, (1), pp. 5-18.

[2] M. Arnold, S. Fink, D. Grove, M. Hind and P. Sweeney, 2005, A
survey of adaptive optimization in virtual machines, Proceedings of
the IEEE, 93, (2), pp. 449-466.

[3] M. Smith, 2000, Overcoming the challenges to feedback-directed
optimization, ACM SIGPLAN Notices, ACM, Vol. 35, pp. 1-11.

[4] M. Arnold, M. Hind and B. Ryder, 2002, Online feedback-directed
optimization of Java, ACM SIGPLAN Notices, ACM, Vol. 37, pp.
111-129.

[5] M. Arnold and B. Ryder, 2001, A framework for reducing the cost of
instrumented code, ACM SIGPLAN Notices, ACM, Vol. 36, pp. 168-
179.

[6] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. Reddi and K. Hazelwood, 2005, Pin: building customized
program analysis tools with dynamic instrumentation, ACM
SIGPLAN Notices, ACM, Vol. 40, pp. 190-200.

[7] Valgrind, http://valgrind.org/ [accessed 10 May 2013].

[8] DynamoRIO, http://www.dynamorio.org/ [accessed 10 May 2013].

[9] S. Garbatov, J. Cachopo and J. Pereira, 2009, Data Access Pattern
Analysis based on Bayesian Updating, Proceedings of the First
Symposium of Informatics (INForum 2009), Lisbon, p. Paper 23.

385Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

[10] S. Garbatov and J. Cachopo, 2010, Importance Analysis for
Predicting Data Access Behaviour in Object-Oriented Applications,
Journal of Computer Science and Technologies, 14, (1), pp. 37-43.

[11] S. Garbatov and J. Cachopo, 2010, Predicting Data Access Patterns in
Object-Oriented Applications Based on Markov Chains, Proceedings
of the Fifth International Conference on Software Engineering
Advances (ICSEA 2010), Nice, France, pp. 465-470.

[12] S. Garbatov and J. Cachopo, 2011, Data Access Pattern Analysis and
Prediction for Object-Oriented Applications, INFOCOMP Journal of
Computer Science, 10, (4), pp. 1-14.

[13] G. Lindgren, 2012, Stationary Stochastic Processes: Theory and
Applications: Chapman and Hall/CRC.

[14] P. Walters, 1982, An Introduction to Ergodic Theory: Springer.

[15] ASM, http://asm.ow2.org/, [accessed 10 May 2013].

[16] W. Smith. TPC-W: Benchmarking An Ecommerce Solution. Intel
Corporation, 2000.

386Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

