
Orchestration Definition from Business

Specification

Charif Mahmoudi

Logics, Algorithm, Complexity Laboratory

LACL, Paris 12 University

Creteil, France

charif.mahmoudi@lacl.fr

Fabrice Mourlin

Logics, Algorithm, Complexity Laboratory

LACL, Paris 12 University

Creteil, France

fabrice.mourlin@wanadoo.fr

Abstract—The implementation of service orchestration is often

seen as a convoluted process for business analysts, lead

developers and architects. In this document, we propose a new

approach based on a continuous process starting from the

analysis phase to the architecture phase as an attempt to

standardize the implementation of service orchestration. Our

ultimate goal is to have a BPEL (Business Process Execution

Language) script which will be interpreted by an engine

residing inside a middleware generating a composition of

elements where each element can be considered as an

independent component equipped with a Web service.

Orchestration definition contains several facets such as logical,

pragmatic and architectural aspects; each of them is

complementary and the interaction between them usually

raises conflicts. In our approach, these issues are addressed

and solved by adaptation rules and the problem of adapting

the software architecture onto a physical architecture is solved

by the pragmatism method.

Keywords-SOA; Architecture; Web service orchestration;

business process design and specification

I. INTRODUCTION

The component-oriented approach has emerged and has
become widespread in the industry to meet the scalability of
information systems [1]. It reduces software costs and allows
rapid adaptation to changing business and technological
developments. It also enables software components to create
highly modular and integrated. The development of certain
parts of the information system may be too independent.

This component-oriented approach allows governing the
evolution of technical and functional information system
based on standard software. In addition, it covers all aspects
of development and life cycle of the software. With the
emergence of the component-based modeling paradigm, the
OMG (Object Management Group) did not remain inactive
and has proposed a new architecture based on MDA rules
[2]. The development has facilitated UML modeling
components. In 2001, the OMG defined the MDA approach
with the aim to facilitate the integration of applications and
make the specification of independent application
development technologies. It also sets rules for mapping the
standard specifications of different technologies [3].

UML Modeling tools generate the code source structure
of applications. There is a transformation of a logic model to

design model to the platform on the basis of design pattern
templates and code [4].

The SOA is not far away removed from the component-
oriented approach; see Peter Herzum [5]. He is one of the
first authors having clearly defined the concept of
components and component architecture. From his point of
view, there are three types of components: Components
"business process", components "business entity" that
implement a core business concept, and finally, the
component "business tool" used in various system
components. He proposed to build a system specification
based on four models. A business process model is used to
identify components known as "business process" that
manage one or more use cases. A model of "business
entities" supports one or more business processes. A model
is created to define business events. Another model is created
for the definition of business rules.

The component-oriented approach has been developed
within companies, but the purpose of sharing common
components is often wishful thinking. Projects are organized
into business lines. The application needs vary greatly over
time. The services are requested too often, and the code of
common components is duplicated and modified directly in
new applications as alternatives. Reuse requires the
establishment of specific resources such as the development
of cataloging tools, dissemination of information about the
components, creating a team to administer the transverse
components. It also requires the definition of a target
upstream of urbanization of the information system. We
present in this contribution our approach to defining
orchestration from business specification, and to mix it with
other reused components. In the next section, we explain our
design process for SOA architecture. Then, we give details
about the semantic model of our approach and pragmatic
model also. The following section is about logical model and
how we declare it. The last part is about architecture and
implementation of orchestration. Finally, we provide a case
study of our approach.

II. DESIGN PROCESS FOR SOA ARCHITECTURE

The concept of enterprise architecture management was
gradually adopted in enterprises to address the problems of
organization and urban information system. Different
methodological approaches have been developed or

197Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

framework to build and maintain this architecture such as
Zachman [6], [7] and TOGAF [8], [9] or EUP (Enterprise
Unified Process) [10], [11]. Our approach provides a method
for developing SOA and managing the complexity of the
enterprise by integrating the evolution of new technologies.
It is based on modeling different aspects of the system and a
process of construction and derivation of the models.
Basically, there are two views. An external view for
describing the company level: business data manipulation,
organization and business processes. An internal view can
gradually develop the system: logic model and technique to
build the software deployed on the hardware. The physical
model describes the implementation and deployment. It
extends to the logical architecture with the definition of
service components and the technical architecture design.
Our approach is providing a comprehensive urbanization of
information systems by using a semantic model and a
pragmatic model. We add to this a logical architecture with a
design of the technical architecture.

A. Several models for a given project

We start our approach by a first pre-model, which is used
to define a common vision to the various players in the
enterprise. The description languages used are UML [12] and
Business Process Modeling Notation (BPMN) [13]. The pre-
model provides a dictionary of terms in the application field,
an analysis of objectives and business needs. We identify
high-level processes and key use cases and the fundamental
business rules.

Our semantic model is intended to describe the basic
business concepts of the company. This model can be
established at two levels: The overall level contains the
definition phase of urbanization. The local business domain
contains the definition of business service. The purpose of
the construction of these models is to achieve stability of
business concepts. We build mostly by diagrams such as
UML class diagram semantics, OCL constraints. For
instance, Figure 1 provides a semantic model about bank
operations:

Figure 1. External view - business class diagram as semantics model.

Behind this kind of diagram, vocabulary is bound and a

first set of constraints is taken into account. This business
model is the knowledge of the company. This business
model acts as a common language between all company
projects. It can be built by successive iterations. In that
diagram, Semantic classes and main attributes are defined.
The life cycle of the business classes is also described.
Relations between business classes are also provided clearly.
Relations could be evolved with precise detailed information.
For instance association between Deal class and
PreClassificationCashflow class can change into a
composition under business conditions.

The different projects feed into the common semantic
repository. The difficulty of this analysis involves the
construction of an observation with no prerequisites. The aim
is to describe the business concept and not handled the
technical which has been used in existing projects. The
management of business objects needs a workflow
description. Also, we have added such diagram attached to
the fundamental business class. As an example, we give a
description of the Order Fulfillment Process of a bank
product (OFP) (Figure 2). The diagram shows that secondary
business classes can be added for describing the process. It
also focuses on the responsibilities of each step of the
workflow.

Figure 2. Workflow with partitions showing who does what work.

This global diagram provides main collaborations into
business process and precisely causality between main
events in the process. It also highlights synchronization
between processes. This automaton is generally
deterministic. Controls can be done with other workflows
and conflicts are then detected which improve our models.

Business modeling is to improve the abstract concepts.
The diagram should be simple and generic. It can anticipate
the consideration of future developments.

The repository contains semantic early different business
areas and key objects. It is enriched in with new projects. A
review of models is to perform when they are stable.

198Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

B. Architecture and semantics

Then, the specification of services is driven by the
business analysis. It involves business managers and
technical managers. It requires defining relationships
between the UML diagrams that were constructed. Then, all
descriptions can be observed as a multi layers diagram as
follows (Figure 3).

A business layer is based on the functional layer, this
functional layer depend on the application layer. The
implementation of this application layer is described by the
technical layer.

Figure 3. Methodology approach.

The use of four views allows traceability of the business

to the computer. It provides the logical sequence between the
business views, functional and application.

This top-down functional approach may have a
downside: how to structure the architecture of services into a
stable structure? And witch levels of abstraction in the
information system will we consider. Our answer is a dual
approach. First, learn the basic services starting from the
semantic model (Figure 4, functional view) and also
complement the services based on the principles of the
organization (Figure 4, application view): use case of the
information system and business process details.

The modeling principles presented apply with a global
reach and local levels. Of course, there are analysis and
design and the need to reorganize and streamline processes.
Use case diagrams of the information system are the business
functional requirements that must leave the system in a
consistent state. It ensures the unity of actor, unity of place,
time unit.

Figure 4. UML models used in our approach.

Our method for identifying use cases is classic. It

identifies the actors, list the types of events. Finally, we
deduce the interactions with the system. Then we structure
all the use cases to a hierarchy or order planning for a future
project.

Of course, in some projects, it is necessary to take into
account organizational or operational constraints. In this case
we show a view of the organization. It describes the process
in relation to the business organization.

Other constraints must also be considered as the
geographical dispersion of actors and business processes.
These features may require significant optimizations. For
example, the choice of appropriate new technologies can
help streamline and simplify processes. For example, the
nomadic operation belongs to that kind of constraints.

The underlying logical model is intended to specify and
organize the services of our SOA. This is accomplished by
the use of semantic diagrams (such as Figures 1 and 2). This
defines the logical architecture that will be derived within the
meaning of the Model Driven Architecture (MDA) approach
[14] in software components. The word “logical” denotes the
sense that the logic model should remain free of any
technical choice. It contains a Platform-Independent Model
(PIM) [15]. They can be derived to different technical
platforms: J2EE, .NET, ESB, Web services, etc. Our logical
architecture defines the components and services based on
semantic aspects, pragmatic aspects and geographic aspects.

Our logic model is not deprived of any technical concern.
It must produce a coherent model; this model must be
implementable effectively while respecting technical
choices.

C. Multi layer architecture

We structure our layered architecture. We distinguish a
logical level, related to semantic classes, an organization

199Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

level, linked to the workflow or orchestration and finally a
technical level related to the problems transverse. Our
service concept is seen as elementary grain architecture.
Services are provided at the logical level. They correspond to
elementary operations directly related to the state machine of
the main class of business concept. These operations are the
transitions of this automaton. They normally have been
specified in the semantic model.

The types of data exchanged between services must be
precisely specified. They correspond to the design pattern
DTO (Data Transfer Object) J2EE applications. It is the
pivot language used in the process orchestrations. They
reduce the number of parameters of services.

This data are formalized as classes belonging to a
mapping utility. They are grouped in a factory to make them
accessible to all services. These classes allow access to
properties using getter and setter. All instances of those
classes can be exposed through the use of context.

All components must provide at least one interface,
which is to say all the public services exposed to the outside.
The interfaces are not accessible. A component can provide
different interfaces for different tasks of the components. A
component also includes one or more data structures
combining the exchange of trade data structures internal
components. After deployment time these components will
be exposed via a component server.

Figure 5. State chart of a copy

Use cases should have been structured to eliminate any
redundancy. Each use case is then derived in an elementary
workflow where each activity is a candidate to become
distributed logical service. Basic activities correspond to
simple exchanges with users. The others are often called
business services.

III. SEMANTIC MODEL OF OUR APPROACH

Our semantic model is intended to gradually create a
stable business model describing the general business
concept business fundamentals. It corresponds to the
concepts and business objects of the project field. It is
described with UML notation: class diagrams with semantic
attributes, relations between the business concepts, business
rules that constrain them, the life cycle of the business
classes.

A. Constraints on semantics model

The requests on the semantic model are: tractability
upstream. It is useful to be able to justify the model in
relation to its inputs (functional requirements, legislation,
regulations, etc.). Other requirements relate to restitution: the
diagrams must be interpreted in natural language. We must
keep the synonyms of the terms in a thesaurus. Finally, the
model should express the semantics of the domain while
excluding of any other aspect.

Gradually, it evolves the model is documented in the
project including different aspects such as the number of
handled instances, their persistence...

The quality of such a model is assessed with reference to
classical properties. The non-coupling expresses that each
capture a single semantic entity. The homogeneity requires
that we do not aggregate various aspects of business
semantics. Sufficiency occurs when classes are all the
information. Completeness is achieved when all the relevant
features are included in the model.

This model is important because it is a communication
medium between the project partners. Moreover, it must be
easily usable by all members intervened in the project,
whether internal or not.

Constraints and business rules are encapsulated in
classes. The constraints are described as the sources of
method or attribute.

The life cycle of business objects is described using finite
state automata. Its purpose is to identify all the events
changing the state of business objects and operations of a
semantic nature. A second goal is to identify all the
disturbances affecting the cycle of the object: the trigger
events, operations performed during the transition.

B. Example of semantics model

We have studied workflow of copies of books which are
managed into a library. The library has several sites into a
town and books can be transferred from one site to another if
there are not borrowed more than eight weeks. Other
business rules are defined by business expert. This kind of
diagram (Figure 5) is an ideal support for expressing rules
and constraints because all existing cases are taken into
account.

When constraints change, such diagram catches all new
constraints, even if they involve the refactoring of the whole
diagram. Because this diagram is linked to a business class,
new methods enrich its behavior. Of course, such a
description is rich in information and can update the business
class diagram. These events are in addition to methods for
the question of the life cycle of objects. Then we created a

200Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

package diagram by business domain. This constitutes
around major business classes such as Library, User, Copy,
etc. The semantic model is valid by reviewing models. It is
also useful in cases of unit test on the model. This means
checking state machines and the events received and
forwarded. The model is simple and it is likely to be stable.

IV. PRAGMATIC MODEL AND PHYSICAL DISTRIBUTION

A. Process Analysis in UML

UML provides good modeling tools [16]. Use cases
provide an overview of the system: reactions reports by the
needs of actors. They can be used at two levels. Informally,
they are used to identify the processes and use cases in a
phase of reflection. Finally, more formally, they are useful
for describing use cases of information system.

Activity diagrams provide a graphical representation to
represent the largely consensual process. Sequence diagrams
are used to describe the use case scenarios. But they are
limited in their use to cases nominal and do not necessarily
provide added value. The state diagram can also model the
status of an activity of a business use case. They clear the
events that affect its performance. Class diagrams are used to
rank the players.

The difficulty of the analysis process is the level of
granularity of modeling. The distinction is between processes
and sub processes, tasks and activities. We often encounter a
meta-level model of the company to agree on the level of
detail of this modeling. The issue is the granularity of the
service and its reusability often introduces unnecessary and
lengthy discussions.

In this type of study, there are little methodological
approaches completely formalized and really consensual.
The existing methodological approaches are usually the
owners of these processes. We preconize to use an open
source approach to be able to use instrument allows fully
shared processes by the tools.

B. The organizational view

1) Process definition
It contains descriptions of the process. This description

comprises both system responses to external events and also
the information flows (flows, object flows, internal events),
it also includes coordination between the activities of
different actors.

The view also contains organizational decisions and their
explanations. This includes configuring services, distribution
of responsibilities, the profile of players and possibly other
constraints such regulations. This view is also about the
definition of classes related to problems of organization and
management. It also contains classes related to business
events that are in the semantic model.

We consider a process as an ordered set of activities to
produce a result: the production or transformation of an
object. Our pragmatic model describes the process the
processing steps acting on objects in the semantic model are
already described as state machines associated with these
objects.

Activity corresponds to an action or a set of actions. The
mastery of activities requires organization and rules that are
not present in the semantic model.

The process space is hierarchical, it is important to begin
the descriptions of the most important processes. It is
unnecessary to describe the process with a full level of detail
rendering them incomprehensible except to experts. We
establish a general map of the process. We determine the key
process, that is to say those criticisms vs. strategic objectives.
It is important to analyze the risks.

Our approach to analyze the process remains a classic.
First, we outline the beginning and end of the process, and
then describe the goal. This means knowing the customer's
expectations. In addition, we describe the interface with
other processes. We detail the resources used: objects
manipulated. We add the traceability rules. Finally, we
define the associated skills: entities contributing to the
process. We list the actions that can be activated with the
possible exception thrown.

We use activity diagrams for our performances. They
contain the events sent or received, the conditions of the
transitions, the parallel workflows and exchanged business
objects whose states are monitored.

When existing processes are described, it is possible to
reconfigure to improve efficiency, improve flexibility.
Further improvements are possible to provide a better level
control and smoother operation and even reduce the
execution time of processing. As an example of
improvement, there is research into the causes of waiting by
grouping tasks within a single activity or eliminating seizures
or occasions of data.

2) Modelling approach
Our approach aims to extract the organizational aspects.

It is important to analyze the process by respecting their
borders. For this, we focus on objects involved in the
process. Processes frequently collaborate within the same
activities and it is important to specify the transactional
aspects. This is specified as a string of treatments which
obeys the rule of all or nothing. The scope should be as far as
possible, as small as possible.

Of course, there arises the problem of transaction
management long term which could several hours or several
days. There is no question of pausing transactional locks on
objects handled; the rollback is managed by a compensation
mechanism.

3) Use view
An actor performs a series of transactions during his

dialogue with the system. But restrictions apply: a scenario is
not interruptible in business perspective view. In addition, a
use case is single-player. Use cases describe the purpose of
use. These are functional requirements that must leave the
business information system in a consistent state.

Our method for identifying use cases is very simple. We
first identify the actors and list the events and infer
interaction decomposition systems. This view must be
comprehensive to describe all interactions between the actors
and the system. Each use case typically handles one main
purpose. It is important to ensure that all use cases described

201Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

covers many transitions in the state machines of the major
classes of the semantic model.

C. Physical distribution

To complete the functional requirements, it is important
to locate users and geographic information systems. We add
the technical requirements for equipment: technical guidance
on network configuration requirements for the workstations.
Other sensitive issues include competition within use cases
and the constraints of scalability.

Nonfunctional constraints are taken into account as the
degree of availability desired. Requirements related to
quality of service, sometimes, bring the definition of
categories of use cases. And a class level of service quality is
associated with accessibility criteria.

Constraints related to the geographic dispersion are
difficult because they require difficult technical choices. A
site is described by its location, its capacity. He mentioned
the players it hosts and the type of activities taking place
there. Communication between sites is via the media. They
should list them: communication network, transport, etc.

We use deployment diagrams, collaboration diagrams
eventually. The collaboration diagram is often used early in
the project to be within the information system and show the
flow of information. Deployment diagrams are used in hand
continuously from one project to another.

V. LOGICAL ARCHITECTURE MODEL

A. Approach

The logic model is used to specify and organize the
service of SOA, based on semantic and pragmatic views. It
defines the logical architecture of SOA will be derived in
software components. Phase logical architecture of the
system is similar to all phases of project management
methodology. One of the rules is to minimize dependencies.
Finally it is important to consolidate services related to
business classes or use cases.

We chose to group services by field of business objects.
We added a set of factories. These factories are the first level
of urbanization. They correspond to the main structure of the
information system. A factory has no interface but represents
a logical division of classes. It involves important properties
of the SOA. This multilevel structure organizes the data flow
between the parties of the information system. Encapsulation
manages the relationship between different components of
the architecture: The level of services in terms of mask data.

Our methodological approach can be summarized. First,
there is the structuring of the logic model in key areas. Then,
there is the recovery of the semantic model and the
derivation of detailed models, definition of complex data
types. They are used to exchange information between
services. They are grouped with the utilities. Then, we treat
the analysis of use cases to discover the additional services.
This involves grouping into packages. Finally, there is a
detailed description of services (business and technical).

It is necessary to designate the services exposed to the
outside world. For efficiency reasons, it is crucial to choose
the type of invocation (web service, SOAP, XML, RMI,
etc.). Transaction management also has an impact, especially
for the resilience (the backup orchestration of context)

B. Structuring of the semantic model

Each main class of the semantic model is the heart of a
logic component. The division into logical component
follows the same structure as the division into business
components. Dependence after a combination of the
semantic model can be managed in several ways. First, it can
be passed as a parameter of the service to remove a strong
dependency. Secondly, it is possible to have data at the
service orchestration. Do keep the dependencies in the types
of data exchanged.

It is important to distinguish two types of services at the
level of elementary components. On the one hand the
services those run on a single component instance. These are
the services associated with managing the life cycle. On the
other hand the service for handling collections and
navigation. These are services that work on sets to calculate
a subset of data: search, sort, query, verification of existence.

The data exchanged are specified in detail because they
are the pivot language that is used in the process
orchestration. They reduce the number of service settings.
The data related to a secondary class masked by a main class
are managed by incorporation of a subtype in the main type.
The data related to a semantic class of another component
are managed by reference. They are retrieved by accessing a
directory.

A logical component is described by an interface. All
utilities are exposed to the outside. It also includes one or
more internal data structure. Of course this interface is not
accessible directly but through an access server. Optionally,
a component can provide multiple interfaces for different
missions.

C. Structuring of the pragmatic model

Each use case results in a Transactional service to
validate a customer dialog. The transactional service logic
starts a transaction that contains technical information
transfer. This means that inspections are carried out with the
use of a rules engine. If the checks are correct, the service
validates the transaction and returns the information resulting
from the transaction. In the pragmatic model, processes are
described in terms of activity diagram. This diagram is
attached either to the functional field or it’s a package
associated with crosscutting activities. The activity diagram
is shown in the logic model and built to represent the
functional area. It shows the services that keep coming into
the process. Human interventions are indicated by actions
that refer to use cases.

202Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 6. Structural diagram of the organization

In our previous example, organizations are run by
factories logic. Organizations share the same core but can
describe their operations as separate. In Figure 6, the
decomposition of the system comprises both the context of
use (organization, actor, ID), the informal context (set of
information related to the trade).

VI. ARCHITECTURE AND ORCHESTRATION

A. Service specification

In service specification step, we may choose the
signature and the names that will be present in the WSDL..
The parameters in reading, writing are prohibited. In an
SOA, the transition is performed by parameter value to allow
only based implementation web service. Additional
parameters are the context, they provide information about
the user context when the invocation. This information may
influence the functionalbehavior of the service. They help
minimize the number of services.

It is important to provide an exhaustive list of error
codes. Non-blocking errors do not throw program level
exception because these kinds of exceptions are catched and
managed in framework level. We can provide services in
signing a complex type that allows logging errors non-
blocking.

Preconditions and post conditions can guarantee the
conditions for running a service. They are based on the
parameters passed as input. They are typically implemented
by a direct appeal of the checking methods. This is a
prerequisite for triggering of the main algorithm. We chose
to externalize their code of the service implementation not
the use of AOP (aspect oriented programming) [17].

Service quality is also specified. It is a guarantee of
performance, availability and security. It relates to the
average response time, the number of calls per second web
service, the number of sessions, etc. We specify the end user
monitoring: indicators and measures used. The
documentation part of the services is important that a
supplement should not be overlooked because life depends
on it.

B. Technical aspects

Technical aspects that we addressed in our case study are
the persistence, security, object-relational mapping,
archiving issues, and the implementation of business rules
and data architecture. Management communication was done
by the web service call usually asynchronous.

We have implemented the business classes by POJO
(Plain Old Java Object). We create factory for façade to
delegate calls to the implementation classes. We distinguish
the services handling a single component instance handling
collection of services. These services must appeal directly to
a data service that handles requests multiple instances of the
database.
Queries performing joins on several business classes should
be modified to remove dependencies between elementary
concepts.

The process service calls keep coming. It is necessary to
implement a facade since the methods have directly initiated
the process. If several processes contain an identical set of
activities, these can be managed using a process as
implemented by a class in each package of integrated process
that contains it. Implementation of this principle respects the
principle of SOA but uses conventional technologies.

Processes are the orchestrators of calls to operations of
business services. In terms of architecture, the process
includes a presentation layer. A process is conventionally
implemented as a component state full or using an
orchestrator. In the first case, we must manage the execution
context and make the system fault tolerant.
We constructed an intermediate layer adaptation allows both
to transform data and orchestrate existing transactions. The
problem with JavaEE arises with the use of external
transaction via tools such as SAP via JCA connector. We use
a SOAP wrapper to trigger the transaction from operations.

We used the framework WISIF (Web Service Invocation
Framework) from Apache to call the JCA connector. For
security aspects, we wanted to make confidentiality and
identification of access rights. The use of SSL is possible to
exchange point to point but quickly becomes difficult with
the spread and use of web services. The security
management which is integrated directly within the SOAP
messages [18]. The standard WS-Security OASIS
framework provides a stabilized security manager. It enables
strong authentication based on Kerberos ticket and is based
on a W3C specification.

For transaction management, three aspects are taken into
account with different frameworks. WS-Coordination
provides a protocol to coordinate the actions of a distributed
application (creation and propagation of context between the
services). WS-Atomic Transaction defines transactions with
a simple method of two-phase commit. Finally, WS-
BusinessActivity can coordinate distributed activities with
long transactions.

We used a middleware for the exchange of asynchronous
messages. It has several properties: the ordonnancement
messages, persistent messages in the event of service
interruption, the integration of new components.
All of our orchestration is made with the BPEL language. As

203Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

defined above WSDL, it can describe a collection of Web
services. Activities can be combined with additional
elements to form structured activities. For asynchronous
calls, callbacks are defined by use of framework WS-
Addressing.

CONCLUSION AND FUTURE WORK

We have presented our approach of orchestration
definition. We have structured the design time in a sequence
of model definition: semantics, logic, pragmatic. We have
shown that relationships exist between them. These allow us
to check and update our design. Then we have explained that
BPEL scripts are derived and deployed into the business part
of our multi-layer application.

Our future work will focus on extending our approach to
other orchestration languages like CAMEL DSL [19]. Our
goal is to enrich Java DSL's routing for managing dynamic
mobile Participant that implements WS-Coordination. The
participants are defined in functional layer; our approach
offers a solution to adapt a functional definition to a
generated Participant implementation to the constraints of
the technical layer.

REFERENCES

[1] C. Szyperski, “Component Software: Beyond Object-Oriented
Programming”, 2nd Edition. Addison Wesley. 2002, pp. 139–150.
ISBN: 978-0201745726

[2] J. Rumbaugh, I. Jacobson and G. Booch, “Unified Modeling
Language Reference Manual,” 2nd Edition, Pearson Higher
Education, 2004, pp. 139-150, ISBN:0321245628

[3] Object Management Group. OMG Unified Modeling Language
Specification, Version 1.4, 2001.
http://www.omg.org/technology/documents/formal/uml.htm,
retrieved: October, 2012.

[4] R. S. Pressman. “Software Engineering, A practitioner’s approach”.
7th edition edition, Mc Graw-Hill Education, 2000, pp 603-630.
ISBN: 978-0071267823.

[5] P. Herzum, “Business Components Factory: A Comprehensive
Overview of Component-Based Development for the Enterprise”,
Kindle Edition, January 2000, pp. 477-527.

[6] W. H. Inmon, J. A. Zachman, and J. G. Geiger, “Data Stores, Data
Warehousing, and the Zachman Framework: Managing Enterprise
Knowledge.” McGraw-Hill, 1997, pp. 105-140, ISBN 0070314292.

[7] J. Zachman. The zachman framework for enterprise architecture. http:
//www.zifa.com/, 1997, retrieved: October, 2012.

[8] TOGAF Version 9. The Open Group, 2009.
http://www.togaf.info/togaf9/index.html, retrieved: October, 2012

[9] T. Erl, SOA Principles of Service Design, 1 edition, Prentice Hall,
July 18, 2007, pp. 211-252, ISBN: 978-0132344821

[10] S. Hussain, B. Ahmad, S. Ahmad, and S. M. Saqib, “Mapping of
SOA and RUP: DOA as Case Study,” Journal of Computing, January
2010, pp. 2-4.

[11] S. W. Ambler, J. Nalbone, and M. Vizdos, “Enterprise Unified
Process: Extending the Rational Unified Process”, Prentice Hall.
2002, www.enterpriseunifiedprocess.com.

[12] C. Hofmeister, R. L. Nord, and D. Soni, Describing software
architecture with UML. In Proceedings of the First Working IFIP
Conference on Software Architecture (WICSA1), San Antonio, TX,
February 1999. , pp. 7-12.

[13] S. White, Using BPMN to model a BPEL process, BPTrends 3 (3)
(2005) 1–18.

[14] A. Kleppe, J. Warmer, and W. Bast, “MDA Explained, The Model-
Driven Architecture” Practice and Promise. Addison Wesley, 2003

[15] M. Elammari and Z. Issa, “Using Model Driven Architecture to
Develop Multi-Agent Systems” the International Arab Journal of
Information Technology (IAJIT), Volume 10, No. 4, July 2013, pp.
19-24.

[16] M. Peltier, J. Bézivin, and G. Guillaume, “A general framework
based on XSLT for model transformations,” In WTUML’01,
Proceedings of the Workshop on Transformations in UML, Genova,
Italy, April 2001, pp. 5-7.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes,
J-M. Loingtier, and J. Irwin, "Aspect-oriented programming,” In
Proceedings of the 11th European Conference on Object-Oriented
Programming, June 1997, pp. 3-5.

[18] S. Santesson, R. Housley, and T. Polk, "Internet X.509 Public Key
Infrastructure Qualified Certificates Profile,"
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&par
ent=T-REC-X.509-200003-I pp. x-y, retrieved: October, 2012.

[19] C. Ibsen and J. Anstey. “Camel in Action”. Manning, 2010, pp. 113–
122.

204Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

http://www.omg.org/technology/documents/formal/uml.htm
http://www.togaf.info/togaf9/index.html
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-X.509-200003-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-X.509-200003-I

