

Using SSUCD to Develop Consistent Use Case Models: An Industrial Case Study

Mohamed El-Attar
Information and Computer Science Department

King Fahd University of Petroleum and Minerals
P.O. 5066, Al Dhahran 31261, Kingdom of Saudi Arabia

melattar@kfupm.edu.sa

Abstract- In software development projects that utilize a use case-
driven development methodology, it is crucial to develop high
quality use case models to ensure the development of a quality
end product. There are many quality attributes for use case
models. One of these qualities is consistency. A structure named
SSUCD (Simple Structured Use Case Descriptions) was
developed to guide use case authors while authoring their use
cases. SSUCD was developed in previous work to specifically
tackle the issue of consistency in use case models. In particular,
SSUCD ensures structural consistency in use case models. Thus
far, SSUCD has been validated using exemplars. While
exemplars provide beneficial preliminary validation, a more
thorough validation process is required to ensure the industrial
applicability of SSUCD. To this end this paper presents an
industrial case study that was used to validate SSUCD. The result
of the case study shows that SSUCD can be effectively used to
develop consistent use case models of industrial strength.

Keywords – Use Cases; SSUCD; Model Consistency.

I. INTRODUCTION

Use case modeling [7, 13] is a very popular technique used

to elicit and model functional requirements in object-oriented
software development projects. In a use case driven
development methodology, the use case model is used to drive
the development of other UML (Unified Modeling Language)
[13] design artifacts at the design phase. This process is
vulnerable to human injected defects since naturally there is a
gap between the analysis and design phases. Consequently, this
will cause system architects to create designs that provide
different functionality from that was required (i.e., developing
the ‘wrong’ system), leading to costly reworks and schedule
overruns, in addition to the intangible cost of unsatisfied
customers. It is, therefore essential to develop high quality use
case models in order to ensure the development of end systems
that delivers the required functionalities; while allowing them
to be understandable by all stakeholders, including “non-
technical” stakeholders.

The literature has identified a number of use case models
quality attributes that can be categorized into five main
categories: consistency, correctness, completeness, analytical
and understandability [11]. The harmful consequences of
lacking in any of these quality attributes have been documented
in the literature. Many research works have been devoted
towards improving these quality attributes or at least targeting a
subset of these quality attributes. Consistency in particular is a
highly sought after quality attribute [1-6, 10-12]. The current
state of practice to develop use case models depends on the
modeler’s discipline to create consistent use case models. Such
discipline seldom in exists in practice. In previous work, a

structure named SSUCD [11] was developed to specifically
target the issue of inconsistencies in use case models. In
particular, SSUCD can be used to ensure structural consistency
in use case models. SSUCD does not directly improve other
quality attributes. Therefore, it is recommended that SSUCD be
used in addition to other researched techniques to improve the
overall quality of use case models.

The remainder of this paper is organized as follows: Section
2 provides a brief background and discusses related works.
Section 3 presents the SSUCD structure. In Section 4, the
MAPSTEDI case study is presented. Finally, Section 5
concludes and provides suggestions for future work.

II. BACKGROUND AND RELATED WORK

 A use case model consists of a use case diagram, a set of use
case descriptions and a glossary. The glossary is an artifact
that is shared by all artifacts developed in a project to
document relative terminology in a consistent manner. The use
case diagram serves as a visual summary of the functional
requirements of the underlying system. The functional
requirements are textually detailed in use case descriptions.
 In a use case model, inconsistency can occur between the
use case descriptions, the various diagrams (if more than one
was used), and most commonly inconsistency may occur
between the use case diagrams and the corresponding set of
use case descriptions. The cost of inconsistencies depends on
the form it exists in.
 The literature has repeatedly warned against inconsistencies
in use case models. A taxonomy of use case modeling defects
and their harmful consequences were presented in Anda et al.
[3]. The taxonomy states that inconsistencies in a use case
model have a detrimental effect on every aspect of the
development process and in turn severely hampering the
overall quality of the end product. In Lilly [10], a number of
inconsistency defects were outlined. For example, an
inconsistent system boundary has been found to cause
ambiguity with respect to the functionality that needs to be
developed. Development teams may suffer from costly
redundant and unnecessary development leading to schedule
overruns. Conversely, development teams may miss some of
the required functionality. Inconsistencies in use case models
has also been found to be symptomatic of an ambiguous
domain model and a use case model that might be handling
concepts that are not defined or understood properly [5].
Inconsistencies may also be a result of missing or vague
information [5]. Ambler [2] warns that a high level of

172Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

inconsistencies in use case models may render it useless as it
becomes too outdated.
 Naturally many research works have been devoted towards
improving consistency in use case models. For example,
Armour and Miller [6] and Kulak and Guiney [8] have highly
recommended various mechanisms of reviewing use case
models as means to ensure their quality by assuring that they
possess a great deal of consistency. An automated approach
was proposed by McCoy [12]. McCoy [12] presents a tool that
provides a template for use case authors to write their use
cases. The template aids in ensuring consistency during the
data entry process. Butler et al. [4] introduced the concept of
refactoring to the use case modeling domain. A number of use
case refactorings improve consistency.

III. THE SSUCD STRUCTURE

 The structure SSUCD was devised to specifically tackle the
issue of inconsistencies. SSUCD employs a template of
commonly used fields in popular use case description
templates such as those presented by Cockburn [1]. Use cases
described using the SSUCD structure contains four main
sections, these are: (a) Use Case Name, (b) Associated Actors,
(c) Description, (d) Extension Points and Extended Use Cases.
With the exception of the “Description” section, these sections
utilize a handful of keywords to embed the required structure.
All keywords are written in uppercase for readability
purposes. The “Description” section on the other hand is
populated using natural language to allow for maximum
flexibility and expressiveness by use case authors. Other
sections can be added to cater to specific needs; the additional
sections must be contained as subsections of the “Description”
section.
 The design of the SSUCD structure accounted for
readability. This is achieved by using a limited set of English
keywords that are inserted within various sections of the
templates. All keywords pertain to the use case modeling
domain and thus greatly reducing the required learning curve.
A brief description of each keyword is shown in Table 1.
Figures 1 and 2 illustrates the concepts explained above and
demonstrates the visually the mapping of the keywords in
Table 1 using a mock example.

Table 1 A summary of the SMCD structure constructs
Section Keyword Diagram

Representation

Use Case
Name

ABSTRACT
 Abstract use cases are
depicted in italic font in
the diagrams.

SPECIALIZES
A generalization
relationship link is
depicted in the diagram.

IMPLEMENTS

A generalization
relationship link is
depicted in the diagram.
This is due to the fact that
the generalization and
implementation

relationships are depicted
using the same notation.

The name of
the use case

A use case with the given
name is displayed in the
diagram.

Description INCLUDE

Results in the creation of
an include relationship
directed towards the use
case stated in the
INCLUDE statement.

Extended
Use Cases

Base Use Case

An extend relationship
link is created and
directed towards the
stated base use case.

Extension Point

Optional to the user.
Results in the
augmentation of the
targeted extension point
name on the extend
relationship link.

IF

Optional to the user. The
condition is displayed on
the extend relationship
link in square brackets.

Extension
Points

The names of
public extension
points

Each extension point
stated is depicted within
the oval of the given use
case in the diagram.

Mock Example Textual Descriptions

Actor Name: A

Brief Description:
A brief description of actor A
Actor Name: B

SPECIALIZES: A

Brief Description:
A brief description of actor B
Use Case Name: C

ABSTRACT

Brief Description:
A brief description of use case C
Use Case Name: D

Brief Description:
A brief description of use case D

Extended Use Cases:
Base UC Name: F
AT: extension point of F
IF: is true
Use Case Name: E

IMPLEMENTS: C

173Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

SPECIALIZES: D

Brief Description:
A brief description of use case E and INCLUDE <F>
Use Case Name: F

Brief Description:
A brief description of use case F.

Extension Points:
Extension point of F

Figure 1. Mock Example of Textual Descriptions

Figure 2. Example use case diagram including the entire notational set
supported by the SSUCD structure

 The SSUCD structure is supplemented with the REUCD
(Reverse Engineering of Use Case Descriptions) process.
There are two perform key functionalities that are performed
by REUCD [11]: (a) REUCD constructs a use case diagram
that accurately represents the textual descriptions of use cases
and actors, (b) REUCD can generate skeletons of use case
descriptions. Once these descriptions are completed, REUCD
can once again be used to generate a use case diagrams that
accurately represents the textual descriptions.

A. Consistency and Mapping Rules Between Use Case

Descriptions and Diagrams

In this section, we will introduce the REUCD (Reverse
Engineering of Use Case Diagrams) process, which is used to
systematically map SSUCD’s structural constructs to
diagrammatic notations that form use case diagrams. This
systematic process is automated using the tool SAREUCD
(see Section 5), which will ensure the consistency and speed
of the process.
 The process of generating use case diagrams from use case
descriptions and vice versa is analogous to generating

complete and accurate UML class diagrams from code and
generating code structures from UML class diagrams. The
reason UML class diagrams cannot be used to generate
complete programs is because they act as a visual summary of
a program’s static structure. UML class diagrams are at a
higher level of abstraction compared to code. On the other
hand, a complete program will contain more than enough
details required to generate complete and accurate UML class
diagrams.
 Use case descriptions (analogous to code) contain far more
details than use case diagrams (analogous to class diagrams).
Use case diagrams are at a higher level of abstraction than the
descriptions. Therefore, given a set of use case descriptions, a
complete and accurate use case diagram can be systematically
produced. However, if modelers choose to create use case
diagrams manually first, which is often the case; a ‘skeleton’
of the use case descriptions can be systematically produced.
Detailed descriptions of the use case are later added manually
by analysts to ‘flesh out’ the generated ‘skeletons’. After the
use case descriptions are complete, an updated version of the
use case diagram can be systematically generated. Users of
SSUCD and REUCD will not be burdened with performing
these transformations since they will be carried out by a tool.

B. The REUCD Process

When given a set of SSUCD use case description, the REUCD
process is applied by iteratively parsing through the text of the
descriptions. Each iteration has several purposes and these are
described below:

Iteration 1: Identify actors and create XML components to
represent these actors to be displayed by a UML modeling
tool.

Iteration 2: Identify use cases and create XML components
to represent these use cases to be displayed by a UML
modeling tool.

Iteration 3: Identify relationships between actors and use
cases and create to corresponding XML components. This
step will require cross-referencing with XML components
previously created in the previous two iterations.

When given a use case diagram, the REUCD process is
applied on the XML file the represents the given use case
diagram. The process is applied by iteratively parsing through
the text of the XML file. Each iteration has a purpose as
defined below:

Iteration 1: Identify actors and create a text area for each
actor with its name and the appropriate fields.

Iteration 2: Identify use cases and create a text area for
each use case with its name and the appropriate fields.

Iteration 3: Identify the relationships between actors and
use cases and amend the corresponding text area to reflect
these relationships.

Finally, the text areas are combined into one file.

IV. THE MAPSTEDI SYSTEM CASE STUDY

In this section, we present an industrial case study where
SSUCD was applied successfully. This case study is

174Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

concerned with the MAPSTEDI (Mountains and Plains
Spatio-Temporal Database Informatics) use case model [9].
The MAPSTEDI system was built for research purposes by
geocoders to help them analyze biodiversity data in the
northern plains as well as the southern and central Rocky
Mountains both spatially and temporally. It was developed by
the Denver Botanic Gardens (DBG), Denver Museum of
Nature and Science (DMNS) and University of Colorado
Museum (UCM). The project’s aim is to merge their separate
collections into one distributed biodiversity database to
include over 285,000 biological specimens.

The use case model of the MAPSTEDI system originally
five use case models representing five subsystems. The use
case diagrams of three subsystems were later merged as a
result of a refactoring process. A brief description of each
subsystem is provided below:

 Database Queries: The purpose of this subsystem is to

perform queries on local and distributed databases for
collections data. There are two distributed databases.

 Database Integrator: The purpose of this subsystem is to
handle how the collections data from separate databases
are integrated after being updated.

 Database Edits: The purpose of this subsystem handles
the operational mechanisms for editing and updating the
databases. The databases are updated whenever a
geocoder edits the collections data.

 Administrative Process: The purpose of this subsystem
outlines the administrative functionalities and
responsibilities. This subsystem backups and restores
collections data and application code. Moreover, the
subsystem is used to install any new updates.

 Database Access: The purpose of this subsystem handles
access control of the database; who may access the
database and how. Public users have access to search and
download collections data and visualize biodiversity
analysis. However, only researchers have access to
sensitive data.

 The “Database Access” and “Administrative Process”
subsystems each had a separate use case diagram. Meanwhile,
the “Database Edits”, “Database Queries” and “Database
Integrator” subsystems are represented by a single merged use
case diagram.
 The purpose of this case study is to validate the SSUCD
structure and the REUCD process. In this case study, the use
case and actors descriptions were developed using the SSUCD
structure. The textual descriptions were then used as input by
the REUCD process to produce the corresponding use case
diagrams. The successful application of this case study is if
use case diagrams generated by the REUCD process were
structurally similar. Figures 1, 3 and 5 below contain the
textual descriptions of the use cases and actors in each use
case diagram. The use case diagrams generated by REUCD
based on the descriptions in Figure 1, 3 and 5, are shown in
Figure 2, 4, and 6, respectively.

Database Access
Actor Name:
User

Brief Description:
<A brief description about the User actor>
Actor Name:
Public User

Specializes:
User

Brief Description:
<A brief description about the Public User actor>

Actor Name:
Research User

Specializes:
User

Brief Description:
<A brief description about the Research User actor>

Use Case Name:
Download Collections Data

Associated Actors:
User

Basic Flow:
… INCLUDE <Search Collections Data>
Use Case Name:
Search Collections Data

Associated Actors:
User

Basic Flow:
…this use case allows the user to search collections data…

Use Case Name:
Visualize Biodiversity Analysis

Associated Actors:
User

Basic Flow:
…this use case allows the user to visualize biodiversity analysis…

Use Case Name:
Access Sensitive Data

Associated Actors:
Research User

Basic Flow:

…this use case allows the research user to access sensitive
data…

Figure 3. The descriptions of the use cases and actors of the “Database
Access” subsystem

175Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 4. The generated use case diagram from “Administrative Process”

Administrative Process

Actor Name:
Administrator

Brief Description:

<A brief description about the Administrator actor>

Actor Name:
Database Administrator

Specializes:
Administrator

Brief Description:
<A brief description about the Database Administrator actor>

Actor Name:
ArcIMS Administrator

Specializes:
Administrator

Brief Description:
<A brief description about the ArcIMS Administrator actor>

Use Case Name:
Backup Process

Associated Actors:
Administrator

Basic Flow:
…this use case name allows the administrator to perform process
backup…

Use Case Name:
Restore Process

Associated Actors:
Administrator

Basic Flow:
…this use case name allows the administrator to perform process
restoration…

Use Case Name:
Install Software Updates

Associated Actors:
Administrator

Basic Flow:

…this use case name allows the administrator to install
software updates…

Figure 5. The descriptions of the use cases and actors of the “Administrative
Process” subsystem

Figure 6. The generated use case diagram based on reverse engineering the
textual descriptions of use cases and actors in the “Administrative Process”
subsystem.

Merged Subsystems
Actor Name:
Geocoder

Brief Description:

<A brief description about the Geocoder actor>

Actor Name:
Database Integrator

Brief Description:
<A brief description about the Database Integrator actor>

176Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Use Case Name:
Geocode Specimen

Associated Actors:
Geocoder

Basic Flow:
…this use case name allows the administrator to geocode a
specimen and it INCLUDE <Update Collections Data>…

Use Case Name:
Update Collections Data

Associated Actors:
Database Integrator

Basic Flow:
…this use case name allows the administrator to update
collections data…

Extended Use Cases:
Base Use Case Name: Query Remote Database

Use Case Name:
Query Remote Database

Specializes:
Query Database

Basic Flow:
…this use case name allows the administrator to query remote
database…

Use Case Name:
Query DMNS Database

Specializes:
Query Remote Database

Basic Flow:
…this use case name allows the administrator to query DMNS
database…

Use Case Name:
Query DIGIR Database

Specializes:
Query Remote Database

Basic Flow:
…this use case name allows the administrator to query DIGIR
database…

Use Case Name:
Query Database

Basic Flow:
…this use case name allows the administrator to query database…

Use Case Name:
Query Local Database

Specializes:
Query Database

Basic Flow:
…this use case name allows the administrator to query local
database…

Use Case Name:
Integrate Query Results

Associated Actors:
Database Integrator

Basic Flow:
…this use case name allows the administrator to integrate query
results and it INCLUDE <Query Remote Database> and
INCLUDE <Query Local Database>…

Figure 7. The descriptions of the use cases and actors of the merged
subsystems

Figure 8. The generated use case diagram based on reverse engineering the
textual descriptions of use cases and actors in the merged subsystems.

A. Verifying the Correctness of the Generated Use Case

Diagrams

 The correctness of the generated use case diagrams was
verified through two distinct means. The first approach
involved the use of the UseCaseDiff tool [14] to check for
differences between the generated use case diagrams and the
original use case diagrams. UseCaseDiff is an open source use

177Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

case diagram differencing tool that was developed as part of
previous work [14]. Both sets of use case diagrams were
provided as input into the UseCaseDiff tool. The tool
generated a report showing no structural differences.
 The second approach used to verify the correctness of the
generated use case descriptions was via manual inspection.
The two sets of diagrams were juxtaposed manually by three
independent researchers. The reviewers did not find any
structural differences between the two sets of diagrams.

V. CONCLUSION AND FUTURE WORK

In this paper, we report on the successful use of SSUCD to
develop a structurally consistent industrial use case model that
represents the functionality of the five subsystems comprising
the MAPSTEDI system. The case study has shown that
SSUCD can be utilized by industry practitioners to develop
consistent use case models and to help them detect structural
inconsistencies in existing models.

Future work can be directed towards developing an
approach to transform use cases written using SSUCD into
other types of models, such as UML Activity and Sequence
Diagrams.

ACKNOWLEDGEMENTS

The author would like to acknowledge the support provided by
the Deanship of Scientific Research (DSR) at King Fahd
University of Petroleum & Minerals (KFUPM) for funding this
work.

REFERENCES

[1] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2000.
[2] S. Ambler, Agile Modeling: Effective Practices for eXtreme

Programming and the Unified Process. Wiley, 2002.
[3] B. Anda, D. Sjøberg, and M. Jørgensen, “Quality and Understandability

in Use Case Models,” 15th European Conference Object-Oriented
Programming (ECOOP), edited by J. Lindskov Knudsen. Springer-
Verlag, Budapest, Hungary, pp. 402-428, 2001.

[4] G. Butler and L. Xu, “Cascaded refactoring for framework evolution,”
Proceedings of 2001 Symposium on Software Reusability, ACM Press,
pp. 51-57, 2001.

[5] P. Chandrasekaran, “How Use Case Modeling Policies Have Affected
The Success of Various Projects (or How to Improve Use Case
Modeling),” Addendum To The 1997 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
pp. 6-9, 1997.

[6] F. Armour and G. Miller, Advanced Use Case Modeling. Addison-
Wesley, 2000.

[7] I. Jacobson, M. Ericsson, and A. Jacobson, The Object Advantage. ACM
Press, 1995.

[8] D. Kulak and E. Guiney, Use Cases: Requirements in Context. Addison-
Wesley, 2000.

[9] M. El-Attar, Analysis of the MAPSTEDI system Use Case Model.
Available online:
http://www.steam.ualberta.ca/main/research_areas/MAPSTEDI%20Anal
ysis.htm. [retrieved: October 2012].

[10] S. Lilly, “Use Case Pitfalls: Top 10 Problems from Real Projects Using
Use Cases,” Proceedings of TOOLS USA '99, IEEE Computer Society,-
pp. 174-183, 1999.

[11] M. El-Attar and J. Miller, “Producing Robust Use Case Diagrams via
Reverse Engineering of Use Case Descriptions,” Journal of Software
and Systems Modeling, vol. 7, no. 1, pp. 67-83, 2008.

[12] J. McCoy, “Requirements Use Case Tool (RUT),” Companion of the
18th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pp. 104-105,
2003.

[13] OMG 2003, “UML Superstructure Specification”, Object Management
Group, http://www.omg.org/docs/ptc/03-08-02.pdf, 2003. [retrieved:
October 2012].

[14] M. El-Attar, “UseCaseDiff: An Algorithm for Differencing Use Case
Models,” 9th International Conference on Software Engineering
Research, Management and Applications, pp. 148-152, 2011.

178Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

