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Abstract— Fault tolerance of satellite systems is critical for 
ensuring the success of the space mission. To minimize 
redundancy of the on-board equipment, the satellite systems 
should rely on dynamic reconfiguration in case of failures of 
some of their components. In this paper, modeling and 
implementation of a handshake procedure has been presented 
that becomes a crucial part of the dynamic reconfiguration 
process of a satellite subsystem for data processing.  The model 
for handshake methodology is specialized software for quickly 
and successfully recovering from the crisis and failure situation 
of the satellite system.   
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I.  INTRODUCTION 
To ensure high reliability during long-term missions, the 

satellite systems rely on redundancy to achieve fault 
tolerance and guarantee that the system would be able to 
deliver its services despite component failures. However, 
the use of redundancy in the satellites is restricted by the 
constraints put on the weight and volume of the on-board 
equipment. 

Despite a careful analysis performed to ensure the 
desired degree of reliability, recently one of the satellites 
has experienced a double-failure problem with a system that 
samples and packages scientific data [6]. The system 
consisted of two identical modules. When one of the 
subcomponents of the first module failed, the system 
switched to the use of the second module. However, after a 
while a subcomponent of the spare module also failed, so it 
became impossible to produce scientific data. In order to 
avoid failure of the entire mission, the company controlling 
the operation of the system has invented a solution that 
relies on healthy subcomponents of both modules and 
provides complex communication mechanism based on the 
handshake procedure to restore functioning and to resume 
production of scientific data. 

In this paper, we present a case study in modeling and 
implementation of Control and Data Management Unit 
(CDMU) [1] - a generic subsystem of satellites. In 
particular, we focus on modeling fault tolerance aspect of 
the system that is implemented as a handshake procedure 
between two redundant systems. This mechanism is 

introduced to achieve the dynamic reconfiguration. For this 
purpose, a formal model of the handshake procedure has 
been designed and implemented in Promela. Handshake 
modeling is an advanced software application to deal with 
dynamic reconfiguration for ensuring fault-tolerance when 
the mission-critical satellite system encounters faults in its 
component and errors in data communication.   

This paper is structured as follows. Section II describes 
the state-of-the-art model of CDMU and Section III presents 
the architecture of the control and data management unit. 
Section IV describes the handshake procedure performed to 
reconfigure the system from simple redundant two-module 
architecture to the Master-Slave architecture. The proposed 
system model for handshake is explained in Section V 
covering all relevant details of master and slave modules. 
Section VI discusses the handshake model between the two 
reconfiguration modules that has been implemented and 
verified using SPIN/PROMELA. Finally, conclusions and 
future work are summarized in Section VII.  

II. STATE-OF-THE-ART MODEL 
CDMU is a state-of-the-art platform to monitor and 

control the satellites system and to organize the collected 
on-board data. The major objective of CDMU is to acquire 
and transmit the data to the ground after carrying out 
appropriate processing. Moreover, it also distributes and 
decodes the given commands to its all redundant systems 
consisting of processor, reconfiguration and telemetry 
modules. Whenever any failure or data error takes place 
during the operation of the satellite system, there is an 
emergent requirement to dynamically reconfigure the 
components of CDMU for its smooth and crisis-free control 
and data management. Processing and storing of satellite 
data at the right time is of top-most importance during the 
working and recovery procedure of the proposed system. In 
case of experiencing any failure, the implemented CDMU 
structure and the developed model of handshake procedure 
immediately adapts to the well-defined and specialized 
switchover mechanism for shifting from one redundant 
processor to another in order to reconfigure and provide safe 
operation of the satellite system during its critical mission. 
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III. ARCHITECTURE 
The CDMU consists of two Processor Modules (PM1 

and PM2), two Reconfiguration Modules (RM1 and RM2), 
and two Telemetry Modules (TMM1 and TMM2). It their 
own turns, each PM consists of Random Access Memory 
(RAM), Integer Unit (IU), Floating Point Unit (FPU), and 
Erasable Electrically Programmable Memory (EEPROM). 
Each Reconfiguration Module (RM) has two components -- 
Mass Memory (MM) and On-Board Reference Time 
(OBRT). Telemetry Modules generate Telemetries (TMs) 
that are processed by Processor Modules. 

In CDMU, only one Processor Module (PM1 or PM2) is 
in active mode and can access one or both RM1 and RM2. 
TMs are received by the active processor module and 
accumulated only in MM of its local RM. However, TMs 
can be retrieved from the MM of partner RM after switching 
is done from one processor module to another. When each 
particular PM has experienced a failure, the Master and 
Slave policy is introduced for error recovery. It aims at 
ensuring that the CDMU functionality can be preserved 
even when failures are present in the system. 

In our case study, we consider the following two 
consecutive errors in CDMU that might occur during the 
execution of the system: 
 

1) PM1 fails due to the failure in FPU. 
2) TM ceases to function due to the failure in the link 

between TMM2 and PM2. 
  

The basis of the Master and the Slave is to prepare a 
work-around in order to address above mentioned failures. 
In this case, PM1 and PM2 are converted into the Slave and 
the Master respectively. Similarly, Master and Slave 
comprise of the functional program running in PM2 and 
PM1 respectively and it is mainly established to execute the 
system without the FPU and connection link. 

At a time, both the Master and the Slave interface with 
RM1 and RM2, respectively, as shown in the CDMU 
structure. However, RM1 and RM2 are not capable to hold 
simultaneous access to both of them. 

Despite the error in the connection link of PM2, the PM2 
is still in operational mode and stores TM in the MM. 
Similarly, PM1 is also in operational mode by using only IU 
program (without FPU) that recovers TM from the MM and 
sends to the operator. The operator interacts with the Master 
and the Slave by sending Tele-Commands (TCs). Figure 1 
shows that each processor module is connected to both RM1 
and RM2 and to both TMM1 and TMM2. The 
TeleCommand (TC) receiver is also linked to both PM1 and 
PM2. 

 

 
 

Figure 1: CDMU Structure [1] 

IV. FACTORS CONTRIBUTING IN HANDSHAKE 
The important key factors that are involved in the 

handshake procedure are as follows: 
 
1) Time Event Register (TER) is used for messaging 

between the Master and the Slave. As there is no 
direct link between the Master and the Slave, so 
TER is used as a shared device. Both can access 
TER to read and write messages. RM1 and RM2 
have their own TER devices. 

2) The two interrupts -- Time Event Interrupt (TEI) 
and Time Synchronization Interrupt (TSI) caused 
by RM1 and RM2 are sent to the Slave and the 
Master respectively. If the Master uses RM1 and 
interrupt triggers, then interrupt is only sent to the 
Slave because it is a local processor module of 
RM1. 

3) The interrupts can be used as a signal from the 
Master to the Slave for the acknowledgement of 
the messages because the Master has a charge of 
the interrupt timing. 

4) OBRT Status Register is used to find out that 
interrupt has triggered in the system. The Master 
holds the check of this register and clears the 
interrupt flag for allowing the coming up 
interrupts. 

5) The Master and the Slave cannot use the same RM 
at a time. However, both the Master and the Slave 
are informed through handshake procedure in order 
to choose required RM at a given time interval. 

6) Handshaking is done through Communication 
Channel (CCH) between the Master and the Slave. 
RM1 or RM2 is used as CCH. The TER in the 
CCH is expressed as Communication Time Event 
Register (CTER). 

7) The selection of RM1 or RM2 as CCH depends on 
the Master as it utilizes both RM1 and RM2. On 
getting the TC instruction from the operator, it 
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switches to one module of RM (RM1 or RM2) and 
releases the other RM for CCH. If the Master is 
using only one RM module initially, the unused 
RM will be selected as CCH. The Master can 
switch the RM at the end of the handshake 
procedure. 

8) The handshake message contains the phase content 
and timing of the message that is encoded in the 
CTER. The timing of the interrupt is slightly 
affected by the phase content that is encoded in the 
four Least Significant Bits (LSB) of the CTER, but 
this affect of interrupt timing is less than 0.3 ms 
and is, therefore, ignored. 

9) The phase content in the four least significant bits 
of the CTER is as under: 

i. When 4 LSB of CTER has value ‘1’, then 
the Master informs the Slave to 
communicate through RM1. Similarly, 
when 4 LSB of CTER has value ‘2’, then 
the Master informs the Slave to 
communicate through RM2. This phase is 
known as “Select Communication RM”. 

ii.  If the value is ‘4’ in the 4 LSB of CTER, 
the Slave updates the Master to confirm the 
communication through RM1. Likewise, if 
the value is ‘5’ in the 4 LSB of CTER, then 
the Slave informs the Master that it 
confirms the communication through RM2. 
This phase of the handshake procedure is 
called “Confirm Communication RM”. 

iii.  Upon setting the value of ‘10’ in 4 LSB of 
CTER, the Slave is informed by the Master 
that if RM1 is not in use then switch to it 
and use it. For the value ‘11’, the Slave has 
to switch to use RM2. When the value is 
‘14’, then the Master instructs the Slave to 
release both RM1 and RM2. This phase is 
named as “Command Slave”. 

iv. The Master sends a message to the Slave in 
which it verifies the RM1 or RM2 selection 
by putting the value ‘8’ in 4 LSB of CTER. 
This phase is entitled as “Confirm 
Command”. 

 
10) The encoding of the handshake messages is done 

within one second (s) - Pulse Per Second (PPS). 
The interrupts according to the PPS time slot are 
given below:  

i. When interrupts occur from 0.10 to 0.40 s, 
RM1 and RM2 are not selected in this time 
slot. It means that the Master instructs the 
Slave to confirm the change to use no RM. 

ii. For the selection of RM1, interrupts take 
place in the time slot ranging from 0.42 to 
0.70 s. The Master orders the Slave either 
to communicate with RM1 or confirm 

change to use RM1 during the handshake 
procedure. 

iii. In the 0.72 - 1.00 s time slot, interrupts are 
taken into account. This selection is 
encoded for RM2 where master notifies the 
Slave either to communicate with RM2 or 
confirm change to use RM2 during the 
handshake procedure. 

iv.  The purpose of the remaining unused slots 
0.00 – 0.10 s, 0.40 – 0.42 s and 0.70 – 0.72 
s is to avoid overlaps. Any interrupts 
appearing in these timing slots will be 
ignored. 

 
11)  The minimum time between two TSIs is greater 

than 0.3s to ensure that two TSIs do not trigger 
during the same time slot. On the other hand, 
interrupt can be triggered two times during the 
same time slot. 

V. PROPOSED SYSTEM MODEL FOR HANDSHAKE 
The handshake procedure [2] has been modeled for the 

Master and the Slave as shown in Figure 2. Handshake is a 
procedure in which the Master communicates with the Slave 
to update the selection of RM1 and RM2. It is a complicated 
process as there is no direct communication link between 
them. 

 

 
 

Figure 2: Model of Handshake Procedure 
 

A. Master Handshake Procedure 

The handshake procedure that is executed by the Master 
Module is shown in Figure 2. Below we give its brief 
description: 

Upon the reception of TC from the operator, the 
handshake procedure is started by the Master. The Master 
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informs the Slave that other RM will be used as CCH by 
updating the value of 4 LSB TER. If the Master is using 
RM2 and storing TM, then the Slave will be informed to 
make RM1 as CCH. Likewise, if RM1 is operated by the 
Master, then the Slave has to use RM2 as CCH. When CCH 
is RM1, then system operation is performed from 0.42 to 
0.70 s PPS slot. Similarly, for RM2, 0.72 to 1.00 s, PPS slot 
is used for the system operation. System has to wait for 
starting of the right PPS slot according to the CCH. 

In order to send information to Slave, interrupts are 
triggered from the Master after setting the value of OBRT 
Status Register to zero. For accuracy, the value of TER for 
the Slave RM is set to 0.04 s. The interval between two 
interrupts is 0.06 s. The Master ensures by reading the 
CTER value from the Slave that selection of CCH is done. 
The Master can swap the CCH selection at the end of 
handshake procedure. The Master commands the Slave by 
setting the future CCH selection value in the 4 LSB CTER 
and triggers a TEI only. The time value of TEI is not 
relevant to the CTER, so the time slot of TEI makes no 
changes in the end result of the system. Only operator is 
responsible for the new RM selection and determining 
which RM is used as CCH as stated in Section IV. In the 
system, operator initially notifies the RM selection to the 
Master, it changes CCH selection from used RM to other 
RM according to the swapping information that is encoded 
in 4 LSB CTER and also confirms the RM selection. The 
confirmation message is also forwarded to the Slave by 
sending two interrupts within the correct time slot. At this 
moment, the Master ends the handshake procedure and 
updates the operator for successful working by sending the 
corresponding TM. 

B. Handshake Procedure: Slave Behaviour 
When the operator starts the handshake, the following 

operations are carried out by the Slave as shown in Figure 2. 
If the Slave is using RM1 or RM2, then it will deselect 

the current RM on the reception of TC command from the 
operator. When RM is discontinued from the Slave, then 
OBRT Status Register will be set to zero and no more 
interrupts will be triggered. The Slave waits for 0.03 s to get 
the new command along with two interrupts (i.e. TEI and 
TSI) which will be generated from the Master during the 
expected PPS slot. When the Slave receives a message from 
the Master, then it decodes it from the interrupts time slot as 
mentioned in Section IV (para # 10). For verification, the 
Slave also interprets the value of 4 LSB CTER as described 
in Section IV (para # 9). If the values derived from the 
interrupts time slot and 4 LSB CTER are the same, then the 
Slave achieves the specified CCH selection. After that, the 
Slave sends acknowledgement of confirmation to the Master 
by setting the value of 4 LSB CTER according to Section 
IV. Now, the Slave has to wait again for 0.02 s for the new 
response or interrupt from the Master according to the PPS 
slot. On the arrival of message from the Master, the Slave is 
triggered by TEI. The Slave has no opportunity to change 

the decision of new selection and waits for 10s for the 
confirmation message from the Master. Again, the Slave 
receives two interrupts with the CTER message and 
compares the time slot of interrupts with previous CTER 
value. If both are same, then the Slave begins the operation 
with released RM. Finally, the Slave also completes the 
handshake procedure by sending TM to the operator. 

VI. VERIFICATION OF THE HANDSHAKE MODEL 
The handshake model has been implemented by using 

PROMELA (PROcess MEta LAnguage) high level 
modeling language with SPIN model checker for verifying 
the required results. SPIN [3,4] is extensively used in formal 
verification of distributed and parallel processing systems. 
SPIN has greatly facilitated the process of verification in the 
areas of mission-critical algorithmic applications, message 
and data communication in the client-server environment, 
synchronization and coordination of large number of 
processes in the parallel and distributed systems, deadlock 
handling methodologies in the modern multi-tasking 
operating systems, verification of the mission-oriented 
control models for space aircrafts, utilization of intelligent 
models for determining most suitable and economical paths 
over wide area networks, checking performance of routing 
protocols [5], testing of fault-tolerant strategies and 
implementation of a wide variety of switching techniques. 
The literature review reveals that most of the software-based 
systems/models are checked and verified by the SPIN model 
checker. 

The handshake model between two processors in control 
and data management unit has been successfully 
implemented and verified using SPIN/PROMELA. The 
flow chart for handshake procedure model is shown in 
Figure 3. The following algorithm along with description of 
each condition of the processes shows part of the 
implemented SPIN/PROMELA model. 
/*Variable Declarations */ 
active proctype Slave_starts_HP() 
{S_TC=true; 
if 
::(S_TC==true)->RM1=0;RM2=0; 
::( S_TC!=true)-> printf("\n\nExit Handshake Procedure.\n\n"); 
fi 
S_TM=true;} 
  

The above code depicts that when TC command is 
received to Slave from the operator, Slave starts handshake 
procedure by deselecting the RM selection. After successful 
execution of the TC command, Slave sends TM to operator 
and waits for Master’s response. In any other condition, 
handshake procedure will be terminated. 
active proctype Master_starts_HP()// time value is taken in (ms) 
{M_TC=true; RM1=0;RM2=1; // set by the operator 
if 
::(RM1==0 && RM2==1)->// I_time denotes timing of interrupts 
{CTER_4_LSB=1;I_time=500;TEI=true;TSI=true;OBRT_SR=1; 
run Slave_read_wrtie_operation(CTER_4_LSB,I_time,TEI,TSI);} 
::(RM1==1 && RM2==0)-> 
{CTER_4_LSB=2;I_time=800;TEI=true;TSI=true;OBRT_SR=1; 
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run Slave_read_wrtie_operation(CTER_4_LSB,I_time,TEI,TSI);} 
fi} 

The code associated with the above process describes 
that Master starts handshake on the operator command. 
When operator selects RM2 for Master, then Master uses 
RM2 and notifies Slave (by sending CTER and interrupts) 
to use RM1 as CCH. Likewise, if operator selects RM1, 
then Master uses RM1 and updates the Slave (through 
CTER and interrupts) to use RM2 as CCH. After that, it 
waits for Slave’s response. 
proctype Slave_read_wrtie_operation(int CTER_4_LSB,I_time;bool 
TEI,TSI) 
{if 
::((CTER_4_LSB==1) && (TEI==true && TSI==true) && (I_time>=420 
&& I_time<=700))-> 
{CTER_4_LSB=4;run Master_decides_future_selection(CTER_4_LSB);} 
::((CTER_4_LSB==2) && (TEI==true && TSI==true) && (I_time>=720 
&& I_time<=1000))-> 
{CTER_4_LSB=5;run Master_decides_future_selection(CTER_4_LSB);} 
::((CTER_4_LSB!=1) || !(I_time>=420 && I_time<=700))-> 
{printf("\n\nExit Handshake Procedure.\n\n");} 
::((CTER_4_LSB!=2) || !(I_time>=720 && I_time<=1000))-> 
{printf("\n\nExit Handshake Procedure.\n\n");} 
fi} 

The above piece of code illustrates that when timing of 
interrupts is in line with the information that is encoded in 
CTER 4 LSB, then Slave confirms the selection to Master 
and waits for 0.02 s in order to get Master’s response. So, 
when interrupts occurs between 0.42 to 0.70 s time slot and 
CTER 4 LSB is ‘1’, it means Slave confirms to use RM1 as 
CCH by encoding the value ‘4’ in CTER 4 LSB. Similarly, 
if time slot for interrupt is 0.72 to 1.00 s and CTER 4 LSB is 
‘2’ then RM2 is confirmed as CCH by the Slave through 
updating the value ‘5’ in CTER 4 LSB. If timing of the 
interrupts is not compatible with the encoded information in 
CTER 4 LSB, handshake procedure exits at this stage. 
proctype Master_decides_future_selection(int CTER_4_LSB) 
{if 
::(CTER_4_LSB==4)-> 
{OBRT_SR=0;CTER_4_LSB=11;TEI=true;OBRT_SR=1; 
if 
::(CTER_4_LSB==11)-> 
{RM1=1;RM2=0;aa= CTER_4_LSB;OBRT_SR=0;CTER_4_LSB=8; 
I_time=800;TEI=true;TSI=true;OBRT_SR=1;M_TM=true; 
run Slave_interprets_message(aa,I_time,TEI,TSI);} 
::(CTER_4_LSB==14)-> 
{RM1=0;RM2=0;OBRT_SR=0;aa=CTER_4_LSB;CTER_4_LSB=8; 
I_time=200;TEI=true;TSI=true;OBRT_SR = 1;M_TM=true; 
run Slave_interprets_message(aa,I_time,TEI,TSI);} 
fi;} 

The above fragment of the code describes that when 
Slave is using RM1, Master updates the up-coming 
selection of RM by placing the value ‘11’ or ‘14’ in CTER 4 
LSB with only TEI. If Master selects RM1, it releases RM2 
to be used as CCH by putting the value ‘11’ in CTER 4 
LSB. When Master picks RM1 and does not release RM2 to 
be used as CCH, it writes the value ‘14’ in CTER 4 LSB. 
After a half second to give the Slave sufficient time to read 
value of CTER, the Master confirms the selection to the 
Slave by encoding the value ‘8’ in CTER 4 LSB on the 
specified time  
 

 
 

Figure 3: Flow Chart of Handshake Procedure Model 
 

slot according to Section IV and exits the handshake 
procedure. 
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::(CTER_4_LSB==5)-> 
{OBRT_SR=0;CTER_4_LSB=10;TEI=true;OBRT_SR=1; 
The associated code with above condition illustrates this. 
if 
::(CTER_4_LSB==10)-> 
{RM1=0;RM2=1;OBRT_SR=0;bb=CTER_4_LSB;CTER_4_LSB=8; 
I_time=800;TEI=true;TSI=true;OBRT_SR=1;M_TM=true; 
run Slave_interprets_message(bb,I_time,TEI,TSI);} 
::(CTER_4_LSB==14)-> 
{RM1=0;RM2=0;OBRT_SR=0;bb=CTER_4_LSB;CTER_4_LSB=8; 
I_time=200;TEI=true;TSI=true;OBRT_SR = 1;M_TM=true; 
run Slave_interprets_message(bb,I_time,TEI,TSI);} 
fi;} 
fi} 

The above part of the code shows that when the Master 
is using RM1, it updates the up-coming selection of RM by 
setting the value ‘10’ or ‘14’ in CTER 4 LSB with only TEI. 
If the Master selects RM2, it releases RM1 to be used as 
CCH by putting the value ‘10’ in CTER 4 LSB. When the 
Master picks RM2 and does not release RM1 to be used as 
CCH, it writes the value ‘14’ in CTER 4 LSB. After a half 
second to give the Slave sufficient time to read value of 
CTER, the Master confirms the selection to the Slave by 
encoding the value ‘8’ in CTER 4 LSB on the specified time 
slot according to Section IV and exits the handshake 
procedure. 
proctype Slave_interprets_message(int previous_CTER,I_time;bool 
TEI,TSI) 
{if 
::((I_time>=420 && I_time<=700) && (previous_CTER==10) && 
(TEI==true && TSI==true))-> 
{S_TM=true;} 
::((I_time>=720 && I_time<=1000) && (previous_CTER==11) && 
(TEI==true && TSI==true))-> 
{S_TM=true;}s 
::((I_time>=100 && I_time<=400) && (previous_CTER==14) && 
(TEI==true && TSI==true))-> 
{S_TM=true;} 
::(!(I_time>=420 && I_time<=700) || (previous_CTER!=10))-> 
{ printf("\n\nExit Handshake Procedure.\n\n");} 
::(!(I_time>=720 && I_time<=1000) || (previous_CTER!=11))-> 
{ printf("\n\nExit Handshake Procedure.\n\n");} 
::(!(I_time>=100 && I_time<=400) || (previous_CTER!=14))-> 
{ printf("\n\nExit Handshake Procedure.\n\n");} 
fi} 
init 
{atomic// Atomic is used to reduce the complexity. 
{run Slave_starts_HP(); 
run Master_starts_HP();} 
} 

The code given above indicates that after waiting for 10 
s, Slave receives the confirmation message with two 
interrupts from Master. The timing of interrupts is matched 
with the information that is encoded in previous CTER 4 
LSB as mentioned in Section IV. Therefore, when timing of 
the interrupts lies between 0.42 to 0.70 s time slot and 
previous CTER 4 LSB is ‘10’, it notifies that Slave uses 
RM1 as CCH that is released by the Master. Similarly, 
timing of the interrupts lies between 0.72 to 1.00 s time slot 
and previous CTER 4 LSB is ‘11’, it notifies that Slave uses 
RM2 as CCH that is released by the Master. Also, when 
interrupts timing lies between 0.10 to 0.40 s and the value of 
previous CTER 4 LSB is ‘14’, then Slave uses neither RM1 

nor RM2 as CCH. After then Slave exits the handshake 
procedure. If interrupts timing is not in line with the 
information that is encoded in earlier CTER 4 LSB, 
handshake procedure exits at this stage too. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed a formal approach for 

modeling a fault-tolerant satellite system that relies on the 
handshake procedure for dynamic reconfiguration. We have 
demonstrated how to create a Promela model of the 
handshake and carry out its analysis. Since the handshake 
procedure has a number of non-trivial properties caused by 
the distributed nature of the system, such a model allows the 
designers to ensure correctness of the handshake 
implementation. In our future work, we are planning to 
extend the proposed approach to derive the generic 
modeling patterns. Moreover, it would be interesting to 
explore the handshake in the presence of more complex 
network architecture. 
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