

An Evaluation Framework for Requirements Elicitation in Agile Methods

Waleed Helmy

Faculty of Computers & Information

Cairo University

Cairo, Egypt

Amr Kamel
Faculty of Computers & Information

Cairo University

Cairo, Egypt

 Osman Hegazy

Faculty of Computers & Information

Cairo University

Cairo, Egypt

w.helmy@fci-cu.edu.eg

a.kamel@fci-cu.edu.eg

o.hegazy@fci-cu.edu.eg

Abstract—Gathering, understanding and managing

requirements is a key factor to the success of a software

development effort. There are several requirement techniques

available for requirement gathering which can be used with

agile development methods. These techniques concentrate on a

continuous interaction with the customer to address the

evolution of requirements, changing requirements, prioritizing

requirements and delivering the most important functionalities

first. However, problems have been reported with the use of

the agile methods in the area of requirements elicitation

particularly with an over reliance on a customer and lack of

elicitation guidelines. This paper describe how requirements

elicitation is usually done in more conventional software

development processes and makes an evaluation framework

for the way requirements elicitation can be done in the agile

methods and this could result in improvements to agile

approaches.

Keywords-Agile Methods; Requirements Elicitation; Agile

Requirements Elicitation.

I. INTRODUCTION

Agile software development approaches have become

more popular during the last few years. Several methods

have been developed with the aim to be able to deliver

software faster and to ensure that the software meets

customer changing needs. All these approaches share some

common principles: Improved customer satisfaction,

adapting to changing requirements, frequently delivering

working software, and close collaboration of business

people and developers [4, 9, 13].

Requirements engineering (RE), on the other hand, is a

software engineering process with the goal to identify,

analyze, document and validate requirements for the system

to be developed [14]. Often, requirements engineering and

agile approaches are seen being incompatible: RE is often

heavily relying on documentation for knowledge sharing

while agile methods are focusing on face-to-face

collaboration between customers and developers to reach

similar goals [1].

This paper aims to discuss how requirements elicitation

techniques can be used within agile development context.

Several studies addressed the requirements elicitation in

agile methods. In [15], a new method for automatically

retrieving functional requirements from the stakeholders

using agile processes is presented. The presented method is

a machine learning system for the automation of some

aspects of the software requirements phase in the software

engineering process. This learning system encompasses

knowledge acquisition and belief revision in a knowledge

base. The aim of the algorithm is to collect information from

the various stakeholders and integrate a variety of learning

methods in the knowledge acquisition process, while

involving certain and plausible reasoning.

The goal oriented requirements engineering method

proposed in [11] identifies the requirements in terms of

goals which are well understood by the stakeholders and the

goals are generally extracted from the stakeholders. While

extracting the goals, the high level goals are

decomposed/refined/broken to get the lower level goals/sub-

goals involving active participation of stakeholders through

the process of goal decomposition/refinement/splitting

involving Agents.

Since micro-businesses have restrictions with their

budget, manpower, and technical exposure to software,

some trade-offs must be addressed. A novel approach in

[16] demonstrated how several models and techniques such

as goals, business process models, patterns, and non-

functional requirements, have helped in defining the

software requirements of the micro-business.

However, problems have been reported with the use of

the agile methods in the area of requirements elicitation

particularly with an over reliance on a customer and lack of

elicitation guidelines. This paper describe how requirements

elicitation is usually done in more conventional software

development processes and makes an evaluation framework

for the way requirements elicitation can be done in the agile

methods and this could result in improvements to agile

approaches.

The next section gives an overview on what the

requirements elicitation is and what its techniques are.

Section III states the agile manifesto. Section IV discusses

agile methods from the requirements elicitation perspective.

Section V summarizes the agile requirements engineering.

In Section VI, we provide an evaluation framework for

requirements elicitation in agile methods. Section VII

summarizes the requirements elicitation issues in agile

methods. The last section presents the conclusion.

II. REQUIREMENTS ELICITATION

Requirements engineering is concerned with identifying,

modeling, communicating and documenting the

requirements for a system, and the contexts in which the

system will be used. Requirements describe what is to be

588Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

done but not how they are implemented [6]. There are many

techniques available for use during the RE process to ensure

that the requirements are complete, consistent and relevant.

The fundamental principle underlying requirements

engineering is that a system should be clearly specified

before its design and implementation [11]. So, the aim of

RE is to help to know what to build before system

development starts in order to prevent costly rework. This

goal is based on two major assumptions:

- The later mistakes are discovered the more

expensive it will be to correct them [3].

- It is possible to determine a stable set of

requirements before system design and

implementation starts.

The RE process consists of five main activities [2]:

Elicitation, Analysis and Negotiation, Documentation,

Validation, and Management.

Requirements elicitation tries to discover requirements

and identify system boundaries by consulting stakeholders

(e.g., clients, developers, users). System boundaries define

the context of the system. Understanding the application

domain, business needs, system constraints, stakeholders

and the problem itself is essential to gain an understanding

of the system to be developed.

The most important techniques for requirements

elicitation are described in the remainder of this section.

Interviews: Interviewing is a method for discovering facts

and opinions held by potential users and other stakeholders

of the system under development. Mistakes and

misunderstandings can be identified and cleared up. There

are two different kinds of interviews:

- The closed interview, where the requirements

engineer has a pre-defined set of questions and is

looking for answers

- The open interview, without any pre-defined

questions the requirements engineer and

stakeholders discuss in an open-ended way what

they expect from a system.

In fact, there is no distinct boundary between both kinds of

interviews. You start with some questions which are

discussed and lead to new questions [8]. The advantage of

interviews is that they help the developer to get a rich

collection of information. Their disadvantage is that this

amount of qualitative data can be hard to analyze and

different stakeholders may provide conflicting information.

Observation and Social Analysis: Observational methods

involve an investigator viewing users as they work and

taking notes on the activity that takes place. Observation

may be either direct with the investigator being present

during the task, or indirect, where the task is viewed by

some other means (e.g. recorded video). It is useful for

studying currently executed tasks and processes.

Observation allows the observer to view what users actually

do in context. This overcomes issues with stakeholders

describing idealized or oversimplified work processes.

Focus Groups: Focus groups are an informal technique

where a small group of users from different backgrounds

and with different skills discuss in a free form issues and

concerns about features of a system prototype. Focus groups

help to identify user needs and perceptions, what things are

important to them and what they want from the system.

They often bring out spontaneous reactions and ideas. Since

there is often a major difference between what people says

and what they do, observations should complement focus

groups.

Focus groups can support the articulation of visions, design

proposals and a product concept. Additionally, they help

users in analyzing things that should be changed, and

support the development of a ’shared meaning’ of the

system [7].

Brainstorming: Brainstorming helps to develop creative

solutions for specific problems. Brainstorming contains two

phases - the generation phase, where ideas are collected, and

the evaluation phase, where the collected ideas are

discussed. In the generation phase, ideas should not be

criticized or evaluated. The ideas should be developed fast

and be broad. Brainstorming leads to a better problem

understanding and a feeling of common ownership of the

result.

Prototyping: A prototype of a system is an initial version of

the system which is available early in the development

process. Prototypes of software systems are often used to

help elicit and validate system requirements. There are two

different types of prototypes. Throw-away prototypes help

to understand difficult requirements. Evolutionary

prototypes deliver a workable system to the customer and

often become a part of the final system. Prototypes can be

paper based (where a mock-up of the system is developed

on paper), ”Wizard of Oz” prototypes (where a person

simulates the responses of the system in response to some

user inputs) or automated prototypes (where a rapid

development environment is used to develop an executable

prototype).

III. AGILE MANIFESTO

The Agile manifesto as the Agile Manifesto official site

states is as follows "We are uncovering better ways of

developing software by doing it and helping others do it.

Through this work we have come to value:

 Individuals and interactions over processes and

tools.

 Working software over comprehensive

documentation.

 Customer collaboration over contract negotiation.

 Responding to change over following a plan.

That is while there is value in the items on the right; we

value the items in the left more." [9].

IV. AGILE METHODS

A. Extreme Programming

XP uses story cards for elicitation [1]. A user story is a

description of a feature that provides business value to the

589Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

customer. Use cases, on the other hand, are a description of

interactions of the system and its users and do not

mandatory have to provide business value.

Before story cards can be written, customers have to

think about what they expect the system to do. This process

can be seen as brainstorming. Thinking about a specific

functionality leads to more ideas and to more user stories.

Every story is discussed in an open-ended way before

implementation. Initially, developers ask for enough details

to be able to estimate the effort for implementing the story.

Based on these estimates and the time available, customers

prioritize stories to be addressed in the next iteration. XP

emphasizes writing tests before coding. Acceptance tests are

defined by the customer and are used to validate the

completion of a story card. XP is based on frequent small

releases. This can be compared with requirements review

and with evolutionary prototyping.

B. Scrum

The main Scrum techniques are the product backlog,

sprints, and daily scrums [1]. With regard to Requirements

Engineering the product backlog plays a special role in

Scrum. All requirements regarded as necessary or useful for

the product are listed in the product backlog. It contains a

prioritized list of all features, functions, enhancements, and

bugs. The product backlog can be compared with an

incomplete and changing (a kind of “living”) requirements

document containing information needed for development.

For each sprint (= 30 day development iteration), the highest

priority tasks from the backlog are moved to the sprint

backlog. No changes are allowed to the sprint backlog

during the sprint. I.e. there is no flexibility in the

requirements to be fulfilled during a sprint but there is

absolute flexibility for the customer reprioritizing the

requirements for the next sprint. At the end of a Sprint a

sprint review meeting is held that demonstrates the new

functionality to the customer and solicits feedback.

C. Feature Driven Development

Feature Driven Development (FDD) is a short iteration

process for software development focusing on the design

and building phase instead of covering the entire software

development process [4]. In the first phase, the overall

domain model is developed by domain experts and

developers. The overall model consists of class diagrams

with classes, relationships, methods, and attributes. The

methods express functionality and are the base for building

a feature list. A feature in FDD is a client-valued function.

The items of the feature list are prioritized by the team. The

feature list is reviewed by domain members [5]. FDD

proposes a weekly 30-minute meeting in which the status of

the features is discussed and a report about the meeting is

written. Reporting can roughly be compared with

requirements tracking.

D. Agile Modeling

The basic idea of AM [2] is to give developers a

guideline of how to build models that help to resolve design

problems but not ’over-build’ these models. Like XP, AM

points out that changes are normal in software development.

AM does not explicitly refer to any RE techniques but some

of the practices support several RE techniques (e.g. tests and

brainstorming). AM highlights the difference between

informal models whose sole purpose is to support face-to-

face communication and models that are preserved and

maintained as part of the system documentation. The later

are what is often found in RE approaches.

V. AGILE REQUIREMENTS ENGINEERING

The agile principles applied to software engineering

include iterative and incremental development, frequent

releases of software, direct customer involvement, minimal

documentation and welcome changing requirements even

late in the development cycle [6].

Conventional RE processes focus on gathering all the

requirements and preparing the requirements specification

document up front before proceeding to the design phase.

These up front requirements gathering and specification

efforts leave no room to accommodate changing

requirements late in the development cycle. On the other

hand,

On the other hand, agile requirement engineering [12]

aims at applying agile thoughts to traditional requirement

engineering. It is the optimization and improvement of

traditional requirement engineering, getting it fit to the

continuous changes of requirements.

Agile RE welcomes changing requirements even late in the

development cycle [3]. This is achieved by using the agile

practice of Evolutionary Requirements which suggests that

requirements evolve over the course of many iterations

rather than being gathered and specified up front. Hence,

changes to requirements even late in the development cycle

can be accommodated easily.

Initially, the high level features for the system are

defined where features indicate the expected functionality.

All the features have to be identified upfront in order to

determine the scope of the system. These features describe

the expected functionality of business value to the

customers. The development period spans multiple release

cycles. Only one feature or a subset of the identified features

is considered for development during a release cycle. Then,

the requirements for each feature are gathered just-in-time

(JIT) from the customers before the development of that

feature. As only a subset of the identified features is

implemented during a release cycle, only details of this

subset of features are gathered from the customers.

Customer are actively involved in the Agile RE process.

Usually, a customer is available onsite to provide details of

the features to the development team. Direct customer

involvement facilitates the adoption of the JIT philosophy.

590Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Agile RE accommodates rapidly changing requirements.

Changes to requirements identified are logged and are

implemented in the following iterations. As only a subset of

features is implemented during a release cycle, changes to

these features do not affect the other features that are yet to

be built.

Agile RE focuses on minimal documentation. No formal

Requirements Specification is produced. The features and

the requirements are recorded on story boards and index

cards. The artifacts produced depend on the project. Some

Agile RE artifacts are paper prototypes, use case diagrams

and data flow diagrams. However, if the client requires

formal documentation to be produced, the development

team strives to produce the same.

Verification and Validation (V&V) of requirements in

agile RE is more of a validation process. The agreed

standards used for verification are usually stated in the form

of user stories and hence, V&V is more of a validation

process. Validation is not explicit and is carried out just-in-

time. There is no specification of explicit validation

activities in agile RE. As the customer is usually available

onsite, the features/ requirements can be validated as and

when required. Some Agile RE practices are listed below:

Evolutionary Requirements – The requirements are

allowed to evolve over time. All the requirements are not

identified upfront. This practice is called No Big

Requirements Up Front (BRUF).

Incremental and iterative implementation of

requirements – Agile RE suggests incremental

development of software. The development period is

divided into release cycles and each release cycle spans

multiple iterations. Hence, the requirements are

implemented in an iterative and incremental fashion.

Accommodate change late in the development life cycle –

The main objective of Agile RE is to accommodate

changing requirements even late in the development cycle.

Usually changes identified to features are logged and

incorporated during the future iterations.

Minimal requirements documentation – Documentation

is usually in the form of features or stories recorded on

index cards. No formal requirements specification

documents are produced. However, when employing third

party organizations for performing maintenance activities,

minimal documentation is a disadvantage.

Gather details just-in-time– The development team defers

gathering details till the latest responsible moment. Only the

details of the features to be implemented during a release

cycle are gathered. Adopting JIT philosophy helps

accommodate changing requirements.

Implicit Verification and Validation (V&V) – As

mentioned earlier, V&V is more of a validation process.

Validation is not carried out explicitly.

Treat requirements like prioritized stack – Agile methods

specify that the requirements should be considered similar

to a prioritized stack. The features are prioritized by the

customers based on their business value. These prioritized

features are stored in a stack and ordered by their priorities.

Adopt user terminology – The features and requirements

are recorded in the domain language of the user. This is

done in order to help users understand the captured needs

and requirements.

Direct customer involvement – Agile RE mandates the

involvement of customers at every stage of the development

process. As customers are involved throughout, the

developers can gather details about the features just-in-time.

VI. AN EVALUATION FRAMEWORK

The table below is an evaluation framework for the

requirements elicitation techniques in agile methods. The

framework compares four agile methods with respect to

requirements elicitation.

In the previous sections, we gave an overview on

requirements elicitation techniques as well as on agile

methods. Here, we now analyze potential synergies between

these approaches.

TABLE 1: AN EVALUATION FRAMEWORK FOR REQUIREMENTS
ELICITATION IN AGILE METHODS

 Method

 RE

Practice

XP

Scrum

Agile

Modeling

FDD

Req.

Elicitation

User Stories

Interview,

Brainstorming

Product

Backlog

Interview

X

Brainstorming

Feature List

Interview

Customer involvement: The CHAOS report [7] showed the

critical importance of customer involvement. Customer

involvement was found to be the number one reason for

project success, while the lack of user involvement was the

main reason given for projects that ran into difficulties. A

key point in all agile approaches is to have the customer

’accessible’ or ’on-site’. Thus, traditional RE and agile

methods agree on the importance of stakeholder

involvement

Agile methods often assume an “ideal” customer

representative: the representative can answer all developer

questions correctly, she is empowered to make binding

decisions and able to make the right decisions. Even if the

requirements are elicited in group sessions (Scrum) it is not

guaranteed that users or customers with all necessary

backgrounds are present. On the other hand, RE has a less

idealized picture of stakeholder involvement. The different

elicitation techniques aim to get as much knowledge as

possible from all stakeholders and resolve inconsistencies.

In addition, RE uses externalization and reviews to ensure

that all requirements are known and conflicting

requirements are in the open

Another difference between traditional approaches and

agile methods is that in traditional approaches the customer

is mainly involved during the early phase of the project

while agile methods involve the customer throughout the

whole development process.

591Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Feature: In agile development, a feature is a chunk of

functionality that delivers business value. Features can

include additions or changes to existing functionality. A

feature should adhere to the following criteria:

 It should provide business value

 It should be estimable - it must have enough

definition for the development team to provide an

estimate of the work involved in implementing it

 It should be small enough to fit within an iteration -

therefore, if it is too big, it should be broken down

further

 It should be testable - you should understand what

automated or manual test a feature should pass in

order to be acceptable to the customer

The different agile methods use different terminology to

refer to features. It is up to the team to decide which

methodology or terminology to use. Extreme Programming

uses the terms User Stories or Stories to represent features;

Scrum uses Product Backlog to describe a feature list;

Feature-Driven Development uses Feature. Ultimately, the

goal is the same - to deliver business value regularly in

small increments, and sooner rather than later.

Product Backlog, Features, User Stories: The product

backlog is an ordered list of "requirements" that is

maintained for a product. It contains product backlog Items

that are ordered based on considerations like risk, business

value, dependencies, date needed, etc. The features added to

the backlog are commonly written in story format. The

product backlog is the “What” that will be built, sorted in

the relative order it should be built in. The product backlog

contains rough estimates of business value and development

effort, these values are often stated in story points.

Interviews As customer involvement is a primary goal of

agile software development, the most common RE-related

technique are interviews. Interviews provide direct and

“unfiltered” access to the needed knowledge. It is known

that chains of knowledge transfer lead to misunderstandings.

All agile approaches emphasize that talking to the customer

is the best way to get information needed for development

and to avoid misunderstandings. If anything is not clear or

only vaguely defined, team members should talk to the

responsible person and avoid chains of knowledge transfer.

Direct interaction also helps establishing trust relationships

between customers and developers.

Brainstorming: This technique is not explicitly mentioned

in any agile software development method but can be used

with any approach.

VII. REQUIREMENTS ELICITATION ISSUES IN

AGILE METHODS

The agile requirements elicitation approach toward

requirements usually results in several architecture-related

issues that can potentially have negative impact on

architectural practices, artifacts or design decisions [10].

Following paragraphs describe the most commonly

observed requirements elicitation issues when using agile

approaches are:

Lack of focus on Non Functional Requirements: In agile

approaches handling of non-functional requirements is ill

defined [1]. Customers or users talking about what they

want the system to do normally do not think about

maintainability, portability, safety or performance. Some

requirements concerning user interface or safety can be

elicited during the development process and still be

integrated. But most non-functional requirements should be

known in development because they can affect the choice of

database, programming language or operating system. Agile

methods need to include more explicitly the handling of

non-functional requirements in a way they can be analyzed

before implementation.

Incomplete Requirements Elicitation: The “user stories”

or the like are just the beginning points of both the

requirements gathering and development processes in agile

methods. Early requirements are simply a place to start. It is

expected to add more requirements as more is known about

the product. This attitude toward requirements makes

software architecture development more difficult. The

architecture that chosen by the team during the early cycles

may become wrong, as later requirements becomes known

[8].

VIII. CONCLUSION

This paper presented an evaluation framework of how

the requirements are elicited in four common agile methods:

XP, scrum, agile modeling, and FDD.

XP uses story cards for requirements elicitation through

interviews and brainstorming techniques. In Scrum, all

requirements regarded as necessary or useful for the product

are listed in the product backlog. It contains a prioritized list

of all features, functions, enhancements, and bugs. The

requirements are elicited from users through interviews. In

FDD, the overall domain model is developed that consists of

class diagrams with classes, relationships, methods, and

attributes. The methods express functionality and are the

base for building a feature list. The feature list is elicited

through interviews. AM does not explicitly refer to any RE

techniques but some of the practices support several RE

techniques (e.g. tests and brainstorming).

The agile requirements elicitation approach toward

requirements usually results in several architecture-related

issues that can potentially have negative impact on

architectural practices, artifacts or design decisions [10].
The “user stories” or the like are just the beginning points of

both the requirements gathering and development processes

in agile methods. Early requirements are simply a place to

start. It is expected to add more requirements as more is

known about the product. Agile methods, however, have a

lack of focus on certain parts of what is considered as

important in requirements engineering. The customers don't

usually cover non-functional requirements when they define

requirements.

592Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

REFERENCES

[1] Eberlein, A., Maurer, F., and Paetsch, F., "Requirements
Engineering and Agile Software Development", Proceedings
of the Twelfth International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
IEEE CS Press, pp. 308-313, 2003.

[2] Scott, W., "Agile Modeling", John Wiley & Sons, 2001.

[3] Scott, W., "Agile Requirements Modeling",
http://www.agilemodeling.com/essays/agileRequirements.htm
, retrieved: October, 2012.

[4] Pekka, A., Outi, S., Jussi, R., and Juhani, W., "Agile software
development methods - Review and analysis", VTT
Publications, No. 478, 2002.

[5] Peter, C., Eric, L., and Jeff, L., "Java Modeling in Color with
UML", Prentice Hall PTR, Chapter 6, 1999.

[6] Soundararajan, S." Agile Requirements Generation Model: A
Soft-structured Approach to Agile Requirements
Engineering". Master Thesis. Faculty of the Virginia
Polytechnic Institute and State University, Blacksburg, VA.
2008.

[7] Standish Group: Chaos Report, http://
www.standishgroup.com, retrieved: October, 2012.

[8] Tomayko, J., "Engineering of Unstable Requirements Using
Agile Methods", International Conference on Time-
Constrained Requirements Engineering, Essen, Germany,
2002.

[9] Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham,
W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R.,
Kern, J., Marick, B., Martin R., Mellor, S., Schwaber, K., Sutherland,
J., Thomas, D., "Manifesto for Agile software Development",
http://www.agilemanifesto.org/, retrieved: October, 2012.

[10] Babar, M., "An exploratory study of architectural practices
and challenges in using agile software development
approaches", http://ulir.ul.ie/handle/10344/1127, retrieved:
October 2012.

[11] Sen, M. and Hemachandran, K., "Elicitation of Goals in
Requirements Engineering Using Agile Methods",
Proceedings of the 2010 IEEE 34th Annual Computer
Software and Applications Conference Workshops, pp. 263-
268, 2010.

[12] Jun, L., Qiuzhen, W., and Lin, G., "Application of Agile
Requirement Engineering in Modest-Sized Information
Systems Development", Proceedings of the 2010 Second
World Congress on Software Engineering - Volume 01 Pages
207-210, 2010.

[13] Poppendieck, T. and Poppendieck, M., "Lean software
development: An agile toolkit for software development
managers", Addison-Wesley, London UK, 2003.

[14] Kotonya, G. and Sommerville, I., "Requirements Engineering
Processes and Techniques", John Wiley & Sons, Chichester,
UK, 2002.

[15] Ankori, R., "Automatic Requirements Elicitation in Agile
Processes", the IEEE International Conference on Software -
Science, Technology & Engineering, pp. 101-109, 2005.

[16] Macaseat, R., Chung, L., Garrido, J., Noguera, M., and Luisa,
M., " An agile requirements elicitation approach based on
NFRs and business process models for micro-businesses, 12th
International Conference on Product Focused Software
Development and Process Improvement, pp. 50-56, 2011.

593Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

