
Towards a Methodology for Hardware and Software Design Separation

in Embedded Systems

Gaetana Sapienza, Tiberiu Seceleanu

ABB Corporate Research

and Mälardalen University

School of Innovation, Design and Engineering

Västerås, Sweden

{gaetana.sapienza,tiberiu.seceleanu}@se.abb.com

Ivica Crnkovic
Mälardalen University

School of Innovation, Design and Engineering

Västerås, Sweden

ivica.crnkovic@mdh.se

Abstract—Development of embedded systems in automation

industry often includes development of both software and

hardware, which requires both software and hardware

expertise. In the current practice these expertise are not often

completely combined in synergic ways. Traditionally, design

gets separated into hardware design and software design at

very early stage which negatively impacts the overall

application development process due to design flow

interruption and redesign. In order to overcome to the

aforementioned problems, this paper presents a new design

methodology that provides platform independent design first,

and pushes hardware- and software-dependent design to a

later stage. This enables “software-independent” hardware

and “hardware-independent” software development after the

separation stage, which collectively improve the overall

development process.

Keywords: Development Process; Design Methodology;

Partitioning; Multi Criteria Decision Analisys (MCDA).

I. INTRODUCTION

The continuous increase in complexity of embedded
industrial applications constantly demands improvements of
the overall development process. Ideally, the development
process has to be able to simultaneously satisfy two main
driving requests imposed by the today's market trends: (i)
significantly decreasing time-to-market, and (ii) significantly
decreasing development and product costs, while preserving
quality and launching high-competitive products. In addition
to the above, the technology advancements in semiconductor
and electronics fields in a combination with the growing
demands of providing more sophisticated software
functionalities constantly challenge the design
methodologies in order to improve the overall development
process [1]. Due to the intrinsic nature of embedded systems
i.e., the tight coupling between hardware and software, the
development process is extremely affected by the efficiency
of the design phase which has to rely on methodologies that
are able to integrate key paradigms of hardware design and
software design in an effective manner.

Traditionally, the system design starts with a separation
of software and hardware design [2] at an early stage of the
development process. The common practice of the separation
into hardware and software is an iterative process,
approached in a manually controlled “trial and error” mode,
which is not supported by suitable and effective tools or
systematic decision process. The hardware-software

separation is typically done by invoking individual back-end
tools several times in order to later decide which
architectural solution appears to be the most suitable one.
This approach, unfortunately, is prone to negatively affect
the overall application development process due to e.g.,
issues such as flow interruptions and redesigns.

In this paper, we present a new systematic design
methodology which enables hardware and software design
separation as late as possible after the overall specification
and design activities and a well-structured decision process.
The approach is inspired by Model-Driven Architecture with
Platform-Independent Model (PIM) and Platform-Specific
Model (PSM) stages [3]. PIM identifies software functions
independent of the underlying technology, while PSM
defines technology-specific solutions. Our approach focuses
on the specification and design part of the system valid for
both software and hardware (the PIM part), and the design
specifically for software and hardware (the PSM part). By
doing this, when designing software and hardware specific
parts, it is possible to minimize the dependencies between
hardware and software after the design separation.
Specifically, the proposed methodology will be applied in
embedded applications targeting the automation domain. The
concepts highlighted in this paper, are supported by years of
experience in industry with design methodologies and
embedded systems development. The remainder of the paper
is organized as follows: the next section discusses the current
state of practice for embedded application design in the
automation industry domain. Section 3 describes the new
proposed design methodology. Section 4 describes a case
study. Section 5 concludes the paper and future work is
outlined.

II. THE CURRENT STATE OF PRACTICE

A typical software-hardware industrial development
process can be described as a number of sequential phases
[2][4]: requirements management and system specification,
design, implementation, verification and validation, as
shown by the diagram A in Figure 1. The development
process starts with the specification phase in which
requirements are supposed to be identified and analysed.
After the specification phase, the design phase usually
branches into two separated design flows, for hardware and
software, respectively. These flows evolve separately and get
into their own implementation. When both hardware
implementation and software implementation are completed,

557Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

the integration takes place. Subsequently the verification and
validation phase get in progress. The diagram A depicted by
Figure 1 represents a rather simplified development process
flow. In reality, it is more complex: phases get interleaved
and each of them might require be iterated and/or optimized
several times over the entire development process.
Consequently, this process meets several serious problems
and drawbacks. We describe them briefly for each phase.

A. Early start of the design phase

During the specification phase, and before starting with
the design phase, the requirements are expected to be fully
finalized in order to efficiently support the design phase.
However, in practice due to time and resources constrains the
design phase is enforced to start before the requirements
have reached a reasonable mature and stable stage. The
incompleteness of the specification negatively affects the
quality and fluidity of the design phase, and also contributes
to originate the issues subsequently described.

B. Early separation into hardware and software

Despite the fact that hardware and software for
embedded applications are tightly connected, typically the
design phase splits very early into the two design flows.
After the separation, hardware and software are considered
as two separated activities which are seldom integrated until
the integration and verification phases. In principle, (i)
hardware does not take into account the computational
power required by the software and the capability that the
software might offer for enabling hardware optimization and
(ii) software does not impact the hardware design
specifications, and does not fully exploit the available
hardware resources. The too early design start corresponding
to the too early flow (hardware and software) separation,
does not allow to properly focus on the most important and
core part of the design phase which is referred in this paper
as partitioning decision process. This process is supposed to
determine which parts of the application will be designed in
hardware and which parts of the application will be designed
in software. Problem statement on the partitioning problem
can be found in [5].

The impact of the initial decisions is critical since it will
condition the remaining development process and the entire
application’s lifecycle; as a consequence, any decision
change afterwards is arduous and costly. Starting a design
phase relying on an apparently appropriate set of partitioning
decisions potentially poses higher risks for the successful
accomplishment of the application development process.

Although the modern design tools (e.g., The MathWorks
Simulink®, IBM® Rational® Rhapsody® (UML (Unified
Modelling Language)-based tool)) support well the “trial-
and-error” approach, in practice the problems remain since a
systematic decision process with the appropriate support is
missing. Due to the aforementioned aspects related to the
early start of the design, it can be highlighted that the
development process (as represented by the diagram A in
Figure 1) is negatively impacted in terms of quality, costs

and time by the following emerging problems: (i) hardware
or software flow interruptions and (ii) hardware or software
redesigns.

C. Hardware or software design and implementation

interruptions

Hardware or software design flow interruptions are
observed as a break in the continuity of the design flow, due
to the (partial) lack of specifications that have impact on the
partitioning. The diagram A in Figure 1 shows a
representation of the flow interruptions for both hardware
and software. They are undesired since causing an increase
in the complexity in the design flow, while affecting the
overall quality. The first interruption occurs in the hardware
design flow the second interruption occurs during the
software implementation.

D. Hardware or software redesign

The need of performing redesign (either hardware or
software) is usually dictated by reasons of different nature,
e.g., new requirement/s, requirement/s changing, non-
feasibility of requirement/s, lack of application-specific
knowledge, etc. In literature, research work discussing
redesign issues for embedded systems can be found in [1][6].
The hardware and software redesign process is illustrated on
the diagram A in Figure 1. It may happen during the initial
design, or it can be required after the implementation. It
represents one of the most typical scenarios of redesigns
encountered in practice: “redesign after implementation”
caused by a very late integration of hardware and software.
In diagram A in Figure 1, the hardware redesign is caused by
the non-feasibility of the requirement A (Req_A) which
leads to the necessity of the software redesign due to the
non-fulfilment of the requirement (Req_B).

III. THE NEW APPROACH PROPOSAL

Given the current state of practices in automation
industry, we present a new systematic design methodology
able of minimizing or even overcoming the issues described
above. Our proposal is a process which is mainly
characterized by the following key features: (i) providing
support/feedback to the specification phase, and (ii) starting
with a model-based design common for both software and
hardware and continuing with its separation to software-
specific and hardware-specific design process when
collecting all artefacts that enable software-independent
hardware design and hardware-independent software design
separation, as depicted in Figure 1 by the diagram B. The
explanation of the key features is subsequently done through
the description of the proposed approach and the overall
overview presented in Figure 2.

The approach is divided into three essential stages:
Identification, Decomposition and Partitioning. The
Identification stage provides inputs to the Decomposition,
while the Decomposition provides inputs to the Partitioning
stage.

558Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Re-design due to
non-feasibility
of Req_A

Implementation

Verification

Design

SW-DesignHW-Design

Validation

Specification

Re-design due to
non-fulfillment
of Req_B

Req_A
Req_B

Integration

interruption
HW- Implementation SW-Implementation

HW-specific Design SW-specific Design

SW-ImplementationHW-Implementation

1) Support for specification

2) Separation as late as possible

Integration

PHASES
TRADITIONAL DEVELOPMENT PROCESS NEW DEVELOPMENT PROCESS PROPOSAL

(diagram A) (diagram B)

Figure 1. Traditional application development process (A) and the development process proposal

Figure 2.

A. Identification of key design criteria

In our experience, a design methodology tailoring
industrial automation applications has to able of meeting and
efficiently trading-off a number of design boundary
conditions deriving from: stakeholder concerns, technology
and feasibility studies, functional and non-functional
requirements, human factors (e.g., expertise, knowledge,
etc.), constraints (e.g. legacy, reuse of existing platform, tool
chains, manufacturing platforms and cost, etc.), technology
advances in semiconductors and software, domain-specific
features. As a consequence, it is crucial that all of these
boundary-conditions are identified and carefully evaluated
before starting the separation into hardware or software. By
our approach they get identified and mapped into a set of key
design criteria. Later they serve as inputs for supporting the
subsequent stage of application decomposing and allowing
the application to go through a decision process, as shown in
Figure 2.

 In order to define the set of key criteria, an accurate
analysis of several design processes related to the application
domain from different perspectives (performance, timing,
overall quality, costs, etc.) will be performed. In details, it
will be performed by the following steps:
1) Extrapolation of the mentioned boundary-conditions

highlighting the relation with the design decisions in
order to identify patterns like:
a. the most high- impact decision choices,
b. the most frequently adopted decision choices.

2) Classification of the above extracted design boundary
conditions in relation to their hardware or software
features. It is important to highlight what the cause-
effect relations are in the entire design process.

3) Study to assess if and how well the design matches the
required specifications, referred as design-specification
matching for brevity. Interest will be also focus on
biased decisions, to get a systematic interpretation of
their impact on the overall design.

4) Identification of the criteria driving the strategic choices
in the design.

In addition to establishing the motivation for decisions in

the application development process, the key identified
criteria will further provide guidelines for the refinement of
the specifications. The analysis targets to gather a number of
information related to the entire application life-cycle
process (modelled by the extended V-Model in Figure 2)
which in combination with the key identified criteria serve to
complement and provide a systematic feedback to the
specification phase.

B. Application Decomposition

Assuming that from a high abstraction level the

application is modelled as a number of components, we

propose an application decomposition process that extracts

the elementary functionalities of the application and further

refine the selection to the point in which the hardware or

software implementation features of each component will be

fully defined.
The proposed approach is based on both the analysis of

the application specifications as well as the key design
criteria identified in the previous stage. We propose a 2-step
analysis:
1) Identification of the functionalities that directly matches

the application specifications;
2) A decomposition of the identified functionalities in

components strictly characterized by the key design
criteria, and ready for the partitioning phase.

The above discussed decomposition strategy is supported
by the diagram depicted in Figure 3. In practice, the two
identified steps will be implemented using the following
methodologies: (i) analysis of the application requirements
and generation of specific functional components
constituting different hypotheses of coarse-grained
components suitable to be represented through well-known
existing model-driven based tools like: The MathWorks

559Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Design

Specification

End-of-Life
Replacement

Stakeholder Concerns
Tech & Feasibility Study
Constraints

Upgrades,

Changes,
Maintenance

Implementation

Human Factors

HW-Components SW-Components

Application

Application

Domain-specific Features

Technology Advances

PARTITIONING

D

E

C

O

M

P

O

S

I

T

I

O

N

KEY DESIGN CRITERIA inputs Requirements
inputs

(designed) (designed)

I

D

E

N

T

I

F

I

C

A

T

I

O

N

inputs

inputs

COMPONENTS

in
p

u
ts

Source of information
to be considered in a stage

Input to the stage

Produced output by the stage

Stage

Component

SW-Component (designed)

HW-Component (designed)

Figure 1. Relation between the proposed approach and V-Model and the Identification stage. Identification, Decomposition, Partitioning Flow

Simulink®, IBM® Rational® Rhapsody® (UML-based
tool) etc., and (ii) the initial selection of coarse-grained
components will be further decomposed through the key
design criteria characterization to bias the generated
components towards implementation issues, to create a
well-posed problem as inputs to the subsequent decision
process. Hence, all generated subcomponents will be
strongly characterized by the key design criteria involved.

C. Partitioning Decision Process

Despite classical partitioning schemes that have been
proposed in the past [7][8] which treat the problem as a
nondeterministic polynomial problem to be optimized, we
propose to face it as Multi-Criteria Decision Analysis
(MCDA) problem. Unlike the approach proposed by [9]
we do not intend to use MCDA for ranking the choice, but
for targeting the design partitioning decisions in an
efficient way. The choice of using such approach is driven
by the variety and quantity of design decision criteria that
require to be taken into account and their strong inter-
dependencies. In addition to the above it is also motivated
by the need of having a full traceability of the decision
process. An intuitive and transparent procedure for
generating the decisions is of crucial importance for
studying the sensitivity of the design criteria in the overall
decision process.

Additionally, in case of issues such as redesign or
interruptions, caused by incompleteness or misleading of
the specifications, it is possible to back-propagate the error
and identify the major source of the unexpected behaviour
in order to effective adapt the design strategy to further re-

iterations. Further, the design feedback provided to the
specification, enables of the hardware-specific and
software-specific design separation as late as possible
through the combined effects produced by the
Identification as well as the Decomposition stage. Using
the key design criteria for guiding the stepwise component
discretization, implicitly allows the possibility of
accumulating the required energy (i.e. in form of key
components information) to start, after separation, design
hardware and design flow where the dependencies are
minimized. Furthermore, by performing the partitioning,
after that the decomposition stage is completed, the set of
components have been fully analysed and characterized,
which consequently decreases the probability of assigning
components to hardware or software based on wrong poses
assumptions.

IV. TOWARDS TO AN INDUSTRIAL APPLICATION CASE

STUDY

The status of this case study is referred to the context
of the two first phases of the extended V-Model (i.e.,
Specification and Design) as well as the Decomposition
stage discussed in Section III.B.

In order to verify and validate the proposed
methodology, we started working on the specification and
design of a wind turbine application that is supposed to be
deployed in an industrial prototype within the integration
framework specified and developed by the Artemisia
iFEST (industrial Framework for Embedded Systems
Tools) project [10]. The main purpose of the application is
to convert the rotational mechanical energy of the rotor

560Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

blades caused by the wind into electrical energy to be
redistributed via a power network.

A core component of the application is represented by

the wind turbine controller, which has to be able of

providing the dynamic regulation of the rotor blades at

different wind profiles while maximizing the production of

electrical energy. In parallel it has to be able of supervising

the entire transformation process such as to guarantee the

proper overall functioning of the wind turbine and

minimizing any risk of damage to the physical wind

turbine system.

Implementation

Design

Specification

Application

Components

SW-Components
(implemented)

HW-Components
(implemented)

Components
(coarse-grained)

(fine-grained)

HW-Components
(designed)

SW-Components
(designed)

1 Step

2 Step

Partitioning

Application

Application

D

E

C

O

M

P

O

S

I

T

I

O

N

Stage

HW-Component

Component

SW-Component

Process Flow

Figure 2. The Application Decomposition Process, 2-step analysis.

We intend to implement the design on several

platforms, providing both for software (single and dual-

core processors) and hardware (FPGA - Field-

Programmable Gate Array) solutions. As tools used in the

process we have chosen:

 HP ALM (Hewlett-Packard Application Lifecycle
Management): for the specification and analysis
phase.

 The MathWorks Simulink®: mostly for the design
phase but also for Verification and Validation
(simulation), and for the implementation (translation
of design into C and VHDL).

 According to the development process flow as well as

the part of application decomposition process described

above, we started with the specification phase. In order to

go through the first step of the application decomposition

process described in Section III.B, we took into account

all of the info depicted in Figure 2, for instance the

domain-specific features, the constraints, the stakeholder

concerns, etc. Few examples follow:

 Domain-specific features: the application has to
provide control functions allowing pitch regulation;

the application has to be standard-compliant (i.e.,
IEC-61400); power network disturbances, etc.

 Constraints: the application has to be implemented
into hardware and software; the implementation has to
integrate legacy C-language code parts; the
application has to allow the firmware to be field-
upgradeable

 Requirements: time constraints for operations;
reaction time at system failure, ambient temperature
and relative humidity values; normal and extreme
electrical conditions; safety procedures, etc.

 Stakeholder concerns: the project has to be able of
delivering a high quality product with short time-to-
market to pay-back the development cost and have a
large margin profit.

After this first step, the identified key functionalities

were mapped into components: (i) the pitch regulation,

and (ii) the supervision.

In addition to this, we also identified the need for

diagnostic and filtering functionalities. The components

were modelled by using Simulink. The outcome of the

mapping of the specification into the design is presented

in Figure 4. It shows a two-level decomposition of the

wind turbine application into components, which is

achieved by the analysis of the application requirements.

Level A models the Wind Turbine Plant and the Wind

Turbine Controller. Level B shows a further

decomposition of the Wind Turbine Controller component

into four components: the Pitch Regulator, the

Supervision, the Filtering and the Diagnostic.

Wind

Load

thetaSetPoint

u

I

P

Sensors

Wind Turbine Model Plant

Sensor SignalsControl Signals

Wind Turbine Controller

Signal 1

Group 1

Wind Profile Input

Scope1

1

Resistive Load1

1

Control Signals

Filtered Turbine Speed

Filtered Wind Speed

Braking

Parking

Turbine Mode

Supervision

Filtered Turbine Speed

Filtered Wind Speed

Braking

Parking

Pitch Command

Pitch Regulator

Pitch Command

Turbine Mode

Wind Prof ile

Filtered Turbine Speed

Filtered Wind Speed

Model Verification

SWTomega

SWTwindspeed

Filtered Turbine Speed

Filtered Wind Speed

Filter

1

Sensor Signals
Filtering

control commands sensor inputs
Wind Turbine Plant

Wind Turbine Controller

Pitch
Regulator

Supervision

Diagnostic

Filtering sensor inputs
control commands

Level A

Level B

wind

Figure 1. Wind Turbine Model (Plant and Controller). Decomposition

of the Wind Turbine Controller (2-level).

What we have presented above is the first step of the

application decomposition process. The next step will be

to achieve a more detailed design decomposition of the

application, as described in Section III.B. After that, the

application will be applied for a multi-criteria decision

561Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

process in order to decide about which components will

be implemented in hardware and in software.

Subsequently the application will be deployed into several

platforms in order to evaluate the proposed new approach.

V. CONCLUSION

The paper presented a proposal of a new systematic
design methodology that is able to improve the overall
process from the design perspective as well as from the
application lifecycle perspective. It consists of three main
stages: Identification, Decomposition and Partitioning, that
collectively drive through the definition of the main
methodology characteristics such as the support towards
the specification phase and the enabling of software-
independent hardware design and hardware-independent
software design separation.

The next step of our research work is defining which
requirements the MCDA approach has to fulfil in order to
support the aforementioned partitioning process.
Subsequently, we will analyse if any already available
MCDA method (or a combination of more MCDA
methods) is able of meeting the identified requirements
and can be applied for the application partitioning. After
that, we will focus on the identification and formalization
of the key design criteria to use as the set of inputs (i) for
guiding the fine-grained application decomposition and (ii)
for supporting the partitioning process into designed
hardware and software components as described by Figure
2. As final step, the proposed methodology will be
evaluated on the above presented industrial application
case study.

ACKNOWLEDGMENT

This research is supported by the Knowledge
Foundation (KKS) through ITS-EASY, an industrial
research school in Embedded Software and Systems,
affiliated with the School of Innovation, Design and

Engineering (IDT) at Mälardalen University (MDH),
Sweden.

REFERENCES

[1] P. Koopman, “Embedded System Design Issues (the rest
of the story)”, Proceedings of IEEE International
Conference on VLSI in Computers and Processors, Oct.
1996.

[2] A.S. Berger, "Embedded Systems Design: An
Introduction to Processes, Tools and Techniques", CMP
Books; 1 edition, Dec. 15, 2001.

[3] A. G.Kleppe, Jos Warmer, Wim Bast, “MDA Explained:
The Model Driven Architecture: Practice and Promise”,
Addison-Wesley Professional, 1 edition , May 1 2003.

[4] H.Van Vliet,"Software Engineering: Principles and
Practice", Wiley, 3 edition, Jun 27, 2008.

[5] G.De Micheli, R.Gupta, “Hardware/Software Co-
Design,” Proc. of the IEEE, vol. 85, No.3, 1997, pp.349-
365.

[6] C.Coelho, C.Yang,V. Mooney, G.De Micheli,
“Redesigning hardware–software systems,” in Proc. 3rd
Int. Workshop on H/S Codesign, Grenoble, France, Sep.
1994.

[7] Y.Fan, T.Lee, "Grey Relational Hardware-Software
Partitioning for Embedded Multiprocessor FPGA
Systems", AISS: Advances in Information Sciences and
Service Sciences,vol. 3, No. 3, 2011, pp. 32 - 39.

[8] M.L.Vallejo, J.C.Lopez, ”On the hardware-software
partitioning problem: System Modeling and partitioning
techniques”, ACM Transactions on Design Automation
of Electronic Systems (TODAES) vol. 8, Issue 3, July
2003, pp. 269 – 297.

[9] P.Garg, A. Gupta, J.W.Rozenblit, "Performance analysis
of embedded systems in the virtual component co-design
environment", Proceeding of the 11th IEEE International
Conference and Workshop on the Engineering of
Computer-Based Systems, May 2004, pp. 61-68.

[10] iFEST. iFEST - industrial Framework for Embedded
Systems Tools. ARTEMIS JU project #100203.
Retrieved September 26, 2012, from http://www.artemis-
ifest.eu/

562Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

http://www.artemis-ifest.eu/
http://www.artemis-ifest.eu/

