
A Multiple View Environment for Collaborative Software Comprehension

Glauco de F. Carneiro
Computer Science Department

Salvador University (UNIFACS)
Salvador, Bahia, Brazil

glauco.carneiro@unifacs.br

Carlos F. R. Conceição
Computer Science Department

Salvador University (UNIFACS)
Salvador, Bahia, Brazil

carlos.conceicao@unifacs.br

José Maria N. David
Computer Science Department

Federal University of Juiz de Fora
Juiz de Fora, Minas Gerais, Brazil

jose.david@ufjf.edu.br

Abstract—Collaboration is an important issue for software
comprehension activities which are performed in distributed
development environments. Several studies have pointed to the
relevance of visualization to provide support to these activities.
Enriching visual metaphors with awareness elements can
enhance collaboration in such environments. This paper
presents a multiple view interactive environment to support
collaborative software comprehension. A case study was
carried out to analyze the effectiveness of the proposed
environment considering that awareness elements are visually
represented to support the collaborative software
comprehension.

Keywords- collaboration; software comprehension; software
visualization; distributed development environments.

I. INTRODUCTION

Humans rely more on vision than all the other senses
[25]. For this reason, the use of visual resources is relevant
for software engineering. Software visualization uses
perceptible cues to visually represent several software
systems properties. The goal is to unveil patterns and
structures that otherwise would remain hidden during
software comprehension activities [24]. Software
comprehension in distributed development environments
requires collaboration support. Awareness plays an important
role in software comprehension activities in a collaborative
environment since it supports programmers to find
meaningful information to their activities [11]. Supporting
awareness in a distributed environment enables, for example,
the identification of who is working in the project, what
participants are doing, why they are doing, which artifacts
they are manipulating and how their actions might impact
others [16].

Visual resources have been used to support programmers
to perform their activities in distributed development
environments [1][2]. However, there are still some open
questions in this area, specially related to awareness. In this
paper we focus on two of these questions. The first is related
to the inclusion of visual representation of awareness
elements in integrated development environments (IDEs) in
order to increase the effectiveness of software
comprehension. The goal is to provide programmers with
information related to what has been done in the context of a

given project. The second question is related to the use of
multiple view interactive environments as a mean to enhance
software comprehension. The goal is to support awareness
due to the use of three important concepts used in the
information visualization domain: i) navigational slaving –
multiple views systems should enable actions in one view to
be automatically propagated to the others [22]; linking –
multiple views systems should connect data in one view with
data in the other views [17]; brushing – multiple views
should enable corresponding data items in different views to
be simultaneously highlighted [17].

A view is a particular visual representation of a data set.
Complex data sets typically require multiple views, each
revealing a different aspect of the data [19]. Multiple view
systems have been proposed to support the investigation of a
wide range of information visualization topics [20].
SourceMiner [3][28] is a multiple view interactive
environment (MVIE) from which the collaborative
environment was developed and now is described in this
paper. It was implemented as an Eclipse IDE plug-in to
interactively visualize Java projects, complementing the
native views and resources provided by the IDE. It uses code
as its main data source and provides a set of features to
support programmers to configure the visual scenario that
best fit a software comprehension goal. Examples of features
to interact with the views are: (i) filters to visually present
information that match filtering criteria; (ii) semantic and
geometric zooming to better adjust views to the canvas; (iii)
flexibility to arrange views in accordance with the preference
of the programmer; and (iv) transparent navigation from the
visual representation to the source code. SourceMiner has
been used in different software engineering studies such as
code smells identification [3] and characterization of
strategies adopted by programmers in software
comprehension activities [4].

The Collaborative SourceMiner [5] is a collaborative
version of SourceMiner. It combines the use of a multiple
view interactive environment with collaboration elements
such as chat and bullets that inform which parts of the
software have been analyzed by each programmer . This
paper focuses on awareness support of the environment. The
goal is to enhance software comprehension in distributed
development, for this reason we use the term collaborative
software comprehension.

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

This paper is structured as follows. In Section II we
briefly review concepts related to collaborative software
comprehension. Next, we present the proposed conceptual
model of Collaborative SourceMiner. In Section IV we
present a case study to analyze the effectiveness of the use of
awareness elements in MVIEs to support collaborative
software comprehension. Finally, in Section V, a discussion
is presented, followed by conclusions about our work and
avenues for future work

II. COLLABORATIVE SOFTWARE COMPREHENSION

In distributed software development environments, the
geographic distance can hinder and limit the interaction
opportunities due to the temporal distance [6]. It also
hampers the understanding level of actions and efforts of
group participants due to the cultural differences [7].
Moreover, the fact that the participants could have different
native languages is a potential obstacle to communication
[8]. According to Dix [9], two important aspects that benefit
programmers in distributed development environment are: (i)
explicit communication, where one programmer can inform
others about his or her activities, and (ii) consequential
communication where programmers can obtain useful
information to accomplish activities by observing others´
actions.

The approach used in this paper is based on a
collaboration model known as 3C+P (communication,
coordination and cooperation plus perception) proposed in
[17]. According to Fuks and Assis [12], awareness is the key
element to support collaboration activities. However, the
way these elements interact with each other depends on the
project in which they have been used [18]. Awareness
provides information to enhance collaboration due to the
following: a) it enables the coordination of activities; b) it
promotes the discussion of tasks through communication; c)
it enhances interaction with others participants in the shared
workspace through cooperation [10][13]. The workspace has
an important role in collaboration activities [14]. Through
the shared workspace participants can gain knowledge about
group activities. This fact enhances awareness. The way
awareness is supported in shared workspaces is essential in
the cases where time and space need to be considered in the
collaboration process definition [15].

In a distributed context, visual resources could also
support awareness. These resources can be combined with
collaboration elements (communication, coordination and
cooperation) represented in the IDE to enhance software
comprehension. This results in the proposed conceptual
model that is discussed in the next section.

Researchers have already used visualization to support
awareness. For example, Lanza et all. [26] proposed an
approach to augment awareness by recovering development
information in real time and broadcasting it to developers in
the form of three lightweight visualizations. Treude and
Storey [27] conducted a study about the use of a community
portal by software project members. However, to the best of
our knowledge, these researches do not consider examples of
the use of awareness elements associated with collaboration

elements in order to support software comprehension
activities in MVIEs.

III. THE PROPOSED CONCEPTUAL MODEL

The proposed conceptual model was based on the
definition of awareness presented in [11]. The main goal is to
enable programmers from the same group to collaborate in a
shared workspace and hence obtain knowledge to perform
software comprehension activities. The conceptual model
has as its start point the scenario illustrated in Figure 1.
According to the figure, programmers perform software
comprehension activities in different places. In the figure, the
circle illustrates programmers accessing the source code
(triangle) using the IDE (square). Considering this situation,
we can conclude that collaboration occurs using resources
(for example, chat on line) that are not integrated into the
IDE. This scenario does not necessarily explore the
potentiality of visual resources to support software
comprehension activities. Moreover, a considerable
cognitive effort will be needed due to the fact that the
collaboration resources are not integrated into the IDE. This
situation can also hinder convergence to perform a
collaborative software comprehension.

Based on the scenario illustrated in Figure 1, we present
the Figure 2 with the proposed conceptual model for
collaborative software comprehension. The difference
between Figure 1 and the part A of Figure 2 is that the IDE
now has the Collaborative SourceMiner plug-in, represented
by the red circle in the Figure 2. Moreover, the visual
resources provided by the Collaborative SourceMiner have
the goal to support awareness in a distributed software
development. The views are enriched by awareness elements
to enhance communication, coordination and cooperation.

Figure 1. Collaborative Software Comprehension

For example, consider a set of classes that had its source
code most frequently accessed by the members of a team
while performing a given task. The result is that they can
have its visual representation highlighted in the views. In this
same example, a programmer can add a note to the visual
representations of a class reporting information that needs to
be considered relevant to the execution of the same task.

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

(A)

(B)

Filters
RANGE

SLIDERS
CHECK

BOX
RADIO

BUTTONS
TEXT

FIELDS (D)

METRICS

LOC CC COUPLING COHESION (C)SOFTWARE
ATTRIBUTES

MESSAGES FROM THE
USERS

MESSAGES FROM THE
SYSTEM

AWARENESS (E)

SOFTWARE DOMAIN ANALYSIS

SOFTWARE VISUALIZATION AND AWARENESS DOMAIN

V1

V2

V3

V5

V4

V8

V7

Collaborative
Software

Comprehension
Activities

JAVA
SOURCE

CODE

ECLIPSE
IDE V6

Coordenation

Communication

Cooperation

Awareness

1 2

3

4

56

Collaborative
Software

Comprehension
Activities

JAVA
SOURCE

CODE

ECLIPSE
IDE

JAVA
SOURCE

CODE

ECLIPSE
IDE

Figure 2. The Proposed Conceptual Model for Collaborative Software Comprehension

The fact that the representation of a set of entities is
highlighted by awareness elements does not necessarily
imply that these entities are relevant. These awareness
elements are an initial suggestion of what should be analyzed
by the group. For this end, the group can use the shared
workspace to discuss and converge to the set of entities that
are really of interest to the task at hand.

The combined use of multiple views enriched by
awareness elements is conveyed in the part B of the Figure 2.
Each view is represented by a colored circle (V1 to V8, for
example). These views when used together and combined
aim at providing features of a multiple view interactive
environment (MVIE). The awareness elements are the result
of information that programmers find useful to share with
others from the same team (marked as messages from the
user in the Figure 2 and implemented in Figure 6) and
information regarding classes and methods accessed while
performing a specific task (marked as messages from the
system in the Figure 2 and implemented in Figure 7). These
messages are represented in the views using visual attributes
such as icons and colors that can vary in tonality depending
on the type and numbers of messages related to a specific
software entity (see Figure 7). The part C of the figure shows
that software entities (packages, classes, methods, attributes
and interfaces) obtained from the Abstract Syntax Tree
(AST) are enriched by metrics such as size, cyclomatic
complexity, and coupling. The model allows the inclusion of
new metrics that appear to be relevant in the shared
workspace. The part D illustrates that the interaction with the
multiple views is supported by the filters, semantic and
geometric zooms and other interaction resources.

In fact, the model considers the influence of
coordination, cooperation and communication elements to
enrich the shared workspace with awareness information.
This is represented in part E of Figure 2, where the result is a
visual scenario composed of multiple views and their
corresponding awareness elements.

The model considers both synchronous and asynchronous
interaction support. Interactions in Collaborative
SourceMiner result from two types of messages: those from
the user (Figure 6) and messages that are automatically
collected by the system registering what programmers are
doing in the IDE. The first one is the kind of messages that
can be sent by the programmers to register information that
is considered relevant to a specific task asynchronously. The
second type of message is sent automatically by the
Collaborative SourceMiner. The goal of this set of messages
is to enrich the visual representation in the multiple views in
order to contextualize programmers synchronously. When a
programmer starts the execution of a task his or her actions
are registered and automatically sent to a server, as
illustrated in Figure 3.

Figure 3. Implemented Topology of the Conceptual Model

A web service is available to receive and send messages
from and to the Collaborative SourceMiner clients which are
configured in the team. The client of this service is the IDE
Eclipse with the Collaborative SourceMiner plug-in. The
messages contain the following parameters: project, user,
and, optionally, the activity in which the programmer is
working. Before recording the message, Collaborative
SourceMiner checks if the user who sent the message is in
fact registered in the project.

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 4. Messages from the System Registering Actions Executed by a Programmerc

C

A

D B

Figure 5. Polymetric View enriched by Messages from the System

Registering Actions Executed by a Programmer

Figure 6. Communication among Participants through the Polymetric

View

Figure 7. Treemap View displaying Icons to represent Messages from the

System

Figure 4 displays examples of messages that are
automatically registered (marked as A in the Figure). Each
register has the following format: programmer, date/hour,
activity, entity (class, interface, or method) and view. The
messages can be filtered using as a parameter the
programmer(s) that performed the actions (marked as C in

the figure) and the task that it was associated with (marked
as B in the figure).

Another possibility to filter messages is by the period in
days that it occurred (marked as D). These data aim at
characterizing actions performed by programmers while
performing a specific task. When a software entity is
modified, an icon is presented. Different versions of this
entity can be shown if the programmer click in this icon. In
Figure 5 the polymetric view [3] illustrates the inheritance
hierarchy of entities (classes and interfaces) of a software
system. It portrays inheritance relationships between the
software entities (class/interface) as a forest of round
rectangles.

Originally proposed for this purpose, polymetric views
help to understand the structure and detect problems of a
software system in the initial phases of a reverse engineering
process [3]. Interfaces are represented as green circles (arrow
A) and classes as blue rectangles (arrow B). In the same
figure, arrows C and D indicate icons that represent
messages that can be relevant to the understanding of a
specific entity. In this case, arrow C indicates messages from
system while arrow D indicates messages from the users.
The icons can vary in tonality to highlight software entities
with which programmers most interacted. This is related to
the coordination support. It has the goal to indicate entities
that at first glance are somehow related to the activity
performed by the group. This can, for example, motivate the
group to know which entities programmers with more
experience were interacting with. In this case, specific pieces
of code are relevant when the team knows that experienced
programmers worked on them.

This can promote faster convergence for the
identification of these parts of the code that are probably
related to the software comprehension activity. Moreover,
this scenario can also be used to stimulate interactions
among participants so that they can make a decision. The
difference between this scenario and the one described in
Figure 1 is that now collaboration occurs through the use of
the Collaborative SourceMiner shared workspace. Another
difference is that the collaborative software comprehension
is based in a multiple view interactive environment.

As already discussed, visual resources have the potential
to support collaborative software comprehension. This
potential can be better exploited when the views are enriched

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

with information from every participant. For example, the
way the shared workspace has been used by group members
of the group (part B of conceptual model presented in Figure
2) encourage the sharing of knowledge.

Another example is related to the importance of expert
programmers in a team. They can lead the convergence to
the strategy to be applied in a given activity. This fact can
occur when the shared workspace indicates software entities
that expert programmers have selected to perform the
activity. This enables other programmers to analyze the same
entities through the same views as suggested and registered
by the experts. Moreover, this situation motivates interaction
among programmers so that decisions can be taken together
and the group has access to a wider pool of ideas and
possibilities regarding the activity to be performed then they
would have when working alone. The expected result is the
combined use of collaboration elements (communication,
coordination and cooperation) in a multiple view interactive
environment to support software comprehension activities.
This is represented in Part E of Figure 2.

IV. THE CASE STUDY

A case study was conducted to analyze the following
research question: “How awareness elements provided by
Collaborative SourceMiner support software comprehension
considering that programmers work collaboratively in a
distributed environment?”

Null hypothesis: Awareness elements provided by
Collaborative SourceMiner do not effectively support the
identification of code smells considering that the participants
work collaboratively in a distributed environment.

Alternative hypothesis: Awareness elements provided by
Collaborative SourceMiner effectively support the
identification of code smells considering that the participants
work collaboratively in a distributed environment.

Six participants took part in the study. They worked in
two groups of three participants each. This number of
participants offered a reasonable tradeoff between the cost of
the study and detailed qualitative analysis and the
generalizability of the results. To be eligible for inclusion,
participants were required to have the following skills:
experience with the object-oriented programming Java; and
in the use of the Eclipse IDE. This experience was verified
by asking them to fill in questionnaire forms. No current
member of our research groups took part in this study. They
were all volunteers and no compensation was provided for
their participation in this study.

Prior to the study tasks, the participants were required to
complete a tutorial session on how to use the multiple views
approach implemented by Collaborative SourceMiner. In this
training session, the participants had 24 hours to familiarize
themselves with the tool. They were asked to analyze a
program, called Health Watcher [21], and to answer 28 basic
questions regarding the tool functionalities. During the
tutorial session, the second author of this paper was available
online (email and chat) to provide complementary guidance
and detailed explanation on how to use Collaborative

SourceMiner. After the tutorial participants were asked to
execute the code smells identification.

This study relies on a software product line, called
MobileMedia (MM) [22] that manipulates photo, music, and
video on mobile devices, such as mobile phones. It has about
4 KLOC distributed in 18 packages and 50 classes. We
selected MobileMedia due to several reasons. First, its Java
implementation is available. Second, its key concerns were
previously identified by the developers and mapped to the
source code [22].

We relied on two experts to build a reference list for each
analyzed code smell (Feature Envy - FE, God Class - GC,
and Divergent Change - DC[23]). The experts are
researchers that participated in the development,
maintenance, and assessment of the target system. The goal
was to detect actual instances of each code smell in versions
3 to 7 of MobileMedia.

We collected direct and indirect data based on
questionnaires answered by the participants and provided by
an instrumentation system. The questionnaires described the
MobileMedia main functionalities, the code smells with
examples, and the tasks to be performed by the participants.
Participants were asked to list classes suspected of
manifesting code smells as well as the strategies they use to
identify them. They were also asked to describe which of the
Collaborative SourceMiner resources, such as views,
concerns, filters, and colors, they found helpful to perform
the task at hand. A logging functionality of Collaborative
SourceMiner automatically records data describing the
environment usage at a fine-grained detailing level. This
functionality sends the data automatically to the server (see
Figure 3) and is used to monitor how frequently a view or a
feature of the tool is used, the transitions among views, and
the time each action happened. The goal is a better
understanding of the participants’ strategies based on their
recorded actions.

Two important roles of this study were the coordinator
and programmer. The first had the following responsibilities:
register the project to be analyzed, the activities to be
performed and the participants of the study. The goal was to
configure the environment for the study. The coordinator did
not perform any of the software comprehension activities.
Each team had 48 hours to perform the asked tasks. Each
group was asked to identify the code smells Feature Envy,
God Class and Divergent Change [23] in a software system
called Mobile Media.

Table 1 presents the values of precision (p) and recall (r)
of the identification of code smells of each participant. The
precision metric quantifies the rate of correctly identified
code smells by the number of detected code smell
candidates. Recall quantifies the rate of correctly identified
code smells by the totally number of actual code smells.
PA1, PA2, and PA3 represent the participants 1, 2 and 3
from the first group. PA4, PA5, and PA6 represent the
participants 1, 2, and 3 from the second group. The values of
PA5 were not considered in the study due to the fact that he
did not answer the questionnaires.

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

TABLE I. PRECISION AND RECALL IN CODE SMELLS IDENTIFICATION

 PA1 PA2 PA3 PA4 PA6
r p r p r p r p r p

GC 0,9 1,0 0,8 0,9 0,9 0,7 0,2 0,7 0,2 0,7
DC 0,2 0,6 0,1 0,4 0,1 0,1 0,1 0,1 0,1 0,4
FE 0,4 0,3 0,1 0,1 0,2 0,2 0,2 0,4 0,2 0,6

The analysis of the data from Table 1 shows that

participants from the first group had greater variation of
precision and recall than participants from group 2. The
lesser variation of precision and recall of group 2 can be
justified by the collaboration among participants. All the
participants obtained higher values and lesser variation of
precision and recall in the God Class identification when
compared with the other two code smells. The analysis of the
messages provided by the Collaborative SourceMiner and
the questionnaires show that participants used the
communication feature (internal chat) provided by the
proposed plug-in to indicate the code smells candidates.

Messages among participants revealed evidences of

communication during the execution of the asked tasks.
Figure 6, for example, shows evidences of this
communication where PA1 and PA2 comment the case of
the class BaseController as a God Class candidate. PA2 also
informed us in the questionnaires that s/he had clicked in the
icons in the views to read messages sent by others about the
relationship of specific software entities and the asked task.

PA2 also mentioned that used the filters presented in
Figure 4 to analyze the messages of interest to the task.
According to PA2, “when I noticed that PA1 interacted
several times with the class
UnavailablePhotoAlbumException, I analyzed the class in
more details in order to verify if it should be a Feature Envy
candidate. However, after this analysis I concluded that it
was not a Feature Envy occurrence”. PA1 registered in the
questionnaire that “the comments from the other participants
helped me to identify certain particularities in the classes and
methods of the analyzed software system that I would not be
able to identify without collaboration”. PA3 informed that:
“The messages, especially the ones from PA1, were of great
relevance to guide me in the execution of the asked tasks.
PA4 also mentioned that: “the indication of the
BaseController class was in accordance with the suggestion
of PA6”. This comments provided by the participants show
initial evidences that enriching the visual representations
with Information provided by the participants of a group
contributed to the convergence of which should be done in
the asked tasks.

Due to the values of precision and recall obtained by PA1
and the comments registered in the questionnaires, there are
initial evidences that PA1 guided PA2 and PA3 in the tasks
execution using the collaboration resources provided by the
Collaborative SourceMiner.

Based on the analysis of the research questions analysis,
we present the observations as follows. Observation 1:
during the execution of the asked activities programmers
collaborated among themselves and to some extent

converged in the indication of code smells. Observation 2:
there are initial evidences that participants considered the
actions and comments of others from the same group to
decide how to proceed in the asked activities. Observation 3:
there are initial evidences that participants adopted similar
strategies to identify code smells, hence they collaborate
while performing the asked tasks. These observations and the
results obtained in the study presented in this paper show
evidences that the alternative hypothesis is true.

A. Threads to Validity

The use of only one object (Mobile Media) as well as its
size and complexity are far inferior when compared with
typical software systems. However, MobileMedia has
already been used in other studies to characterize the use of
software visualization tools. An important limit to the
generalizability of our findings comes from the fact that we
have based our observations on the analysis of the behavior
of only five subjects. However, as already mentioned, the
number of participants accepted in the study was based on a
tradeoff between the cost of the study and qualitative
analysis of the results to derive the observations.

V. CONCLUSION AND FUTURE WORK

This paper presented a multiple view environment to
support collaborative software comprehension. The
coordinated views integrated into the IDE provide
mechanisms that enable the use of awareness to perform
software comprehension activities in a distributed
development. The results of the study presented in this paper
show initial evidences about how programmers use
Collaborative SourceMiner to perform code smells
identification. Moreover, the results showed how the features
provided by the proposed environment enable the use of
awareness elements to perform software comprehension
activities. Another important result was the use of visual
representation of software entities combined with awareness
elements in the context of software comprehension.
Differently from other studies like the ones presented in [26]
and [27], the focus of this paper was to present initial
evidences on how programmers could interact and
collaborate to foster software comprehension using the visual
metaphors available in SourceMiner. We are planning the
inclusion of other mechanisms of cooperation,
communication and coordination in the Collaborative
SourceMiner to support software comprehension activities in
a distributed development.

A version of CollaborativeSourceMiner is available at
[28] as well as instructions to configure its environment.

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

REFERENCES
[1] Biehl, J.T., Czerwinski, M., Smith, G., and Robertson, G.G. (2007)

"Fastdash: a visual dashboard for fostering awareness in software
teams". In: Proceedings of the SIGCHI conference on Human factors
in computing systems, ACM 1313-1322.

[2] de Souza, C.R.B., Quirk, S., Trainer, E. and Redmiles, D. Supporting
Collaborative Software Development through the Visualization of
Socio-Technical Dependencies. ACM Conference on Supporting
Group Work, ACM Press, Sanibel Island, FL, 2007.

[3] Carneiro, G., Silva, M., Mara, L., Figueiredo, E., Sant'Anna, C.,
Garcia, A., and Mendonca, M. Identifying Code Smells with Multiple
Concern Views. In proceedings of the 24th Brazilian Symposium on
Software Engineering (SBES), 2010.

[4] Fernandes, J. M.; Carneiro, G. Strategies and Profiles of Novice
Programmers while Identifying Code Smells. In: IX Brazilian
Workshop on Software Maintenance (WMSWM 2012), Fortaleza/CE.
In portuguese.

[5] Conceição, C.F.R. Analyzing the Use of Awareness Elements to
Support Software Comprehension Activities in a Distributed
Development Environment. Master Thesis. Computer Science
Department. Salvador University (UNIFACS), 2012. In portuguese.

[6] Gerfalk, P. J. Fitzgerald B. Flexible and distributed software
processes: old petunias in new bowls? Communications of the ACM,
v. 49, n.10, p.26-34, 2006.

[7] Casey V. Leveraging or exploiting cultural difference? In: IEEE
International Conference on Global Software Engineering (ICGSE
2009), Limerick, Ireland: IEEE Computer Society, 2009. p. 8-17.

[8] Carmel, E.; Tjia, P. Offshoring Information tecnhnology: sourcing
and outsourcing to a global workforce. Cambridge: Cambridge
University Press, Cambridge, U.K., 2005.

[9] Dix, A.; Finlay, J.; Abowd, G.; and Beale, R. Human-Computer
Interaction, Prentice Hall. 1993.

[10] Ellis, C. A.; Gibbs, S. J.; and Rein, G. L. Groupware - Some Issues
and Experiences. Communications of the ACM, v. 34, n. 1, p. 38-58,
1991.

[11] Dourish, P.; Bellotti, V. Awareness and coordination in shared
workspace. Conference on Computer-Supported Cooperative Work.
pp. 107-114, Toronto, Canada, Nov. 1992.

[12] Fuks, H.; Assis, R. L. Facilitating perception on virtual learningware-
based environments. The Journal of Systems and Information
Technology. Edith Cowan University. Austrália, v. 5, n. 1, p. 93-113,
2001.

[13] Gutwin, C.; Greenberg, S. A descriptive framework of workspace
awareness for real-time groupware. Journal of Computer-Supported
Cooperative Work. Issue 3-4, p. 411-446, 2002.

[14] Gutwin, C. Workspace awareness in real-time distributed groupware.
1997. PhD Thesis. Department of Computer Science, University of
Calgary, 1997.

[15] Omoronyia, J. Ferguson, M. Roper, and M. Wood. A Review of
Awareness in Distributed Collaborative Software Engineering.
Software Practice and Experience, 40 (12). November 2010. pp.
1107-1133.

[16] Storey,M. Theories, Tools and Research Methods in Program
Comprehension: Past, Present and Future. Software Quality Journal,
2006.

[17] Fuks, H.; Raposo, A.; Gerosa, M.A.; Pimentel, M.; and Lucena,
C.J.P. The 3C Collaboration Model. The Encyclopedia of E-
Collaboration, Ned Kock (org), 2007, pp. 637-644.

[18] Fuks, H., Raposo, A., Gerosa, M.A., Pimentel, M., Filippo, D., and
Lucena, C.J.P. Inter- and Intra-relations among Communication,
Coordination and Cooperation. In IV Brasilian Symposium on
Collaborative Systems, Rio de Janeiro – RJ. 2007, pp. 57-68. (In
Portuguese).

[19] Pattison, T. and Phillips, M. View Coordination Architecture for
Information Visualization. In Proceedings of the Australian
Symposium on Information Visualization, 2001, Sydney, Australia.
pages 165-171.

[20] M. Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for Using
Multiple Views in Information Visualization. In ACM AVI 2000;
Palermo, Italy. 110-119.

[21] Greenwood, P. On the Impact of Aspectual Decompositions on
Design Stability: An Empirical Study. ECOOP, Germany, 2007.

[22] Figueiredo, E. Evolving Software Product Lines with Aspects: An
Empirical Study on Design Stability. ICSE, May 2008.

[23] Fowler, M. Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

[24] Petre, M. Mental imagery and software visualization in high-
performance software development teams. J. Vis. Lang. Comput., v.
21, n. 3, p. 171-183, 2010.

[25] Ware, C. Information Visualization, Second Edition: Perception for
Design (Interactive Technologies). 2. ed.Morgan Kaufmann, 2004.

[26] Lanza, M., Hattori, L., and Guzzi, A. Supporting Collaboration
Awareness with Real-time Visualization of Development Activity. In
Proceedings of the 14th IEEE European Conference on Software
Maintenance and Reengineering (CSMR), pp. 207 - 216. IEEE CS
Press, 2010.

[27] C. Treude and M.-A. Storey. Effective Communication of Software
Development Knowledge Through Community Portals. In
Proceedings of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE ’11). ACM, New York, NY, 91-101.

[28] SourceMiner. A Multiple View Interactive Environment Implemented
as an Eclipse Plug-in. Available at http://www.sourceminer.org.

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

