
Predicting Quality Requirements Necessary for a Functional Requirement
Based on Machine Learning

Ken Tanaka
Department of Information Sciences

Kanagawa University
Kanagawa, 259-1293, Japan

Email: ktanaka@info.kanagawa-u.ac.jp

Haruhiko Kaiya
Department of Computer Science

Shinshu University
Nagano, 380-8553, Japan

Email: kaiya@shinshu-u.ac.jp

Atsushi Ohnishi
Department of Computer Science

Ritsumeikan University
Shiga, 525-8577, Japan

Email: ohnishi@cs.ritsumei.ac.jp

Abstract—In the early stage of the software development,
quality requirements should be explicitly specified as well as
functional requirements. Software architecture and/or design
decision should be largely reconsidered if some quality re-
quirement is overlooked in the early stage. We thus propose
a technique for predicting quality requirements necessary for
each functional requirement. A functional requirement is rep-
resented with a semi-formal language called eXtended Japanese
Requirements Description Language (X-JRDL), which is based
on the case grammar. In our previous work, the results of
the prediction largely depended on human such as domain
experts and requirements analysts because prediction rules
were manually written by them. We thus introduce machine
learning to avoid this problem. To predict quality requirements
necessary for any kinds of functional requirements, training
data should be appropriately chosen. We choose the training
data so that we can predict necessary quality requirements
for all types of functional requirements. Since semantically
impartial data are suitable for such training data and one
of the cases called concept is semantically dominant in an
X-JRDL sentence, we choose the training data set in which
any of the concepts evenly occurs. Through the experiments,
we confirm our technique works well for predicting necessary
quality requirements.

Keywords-requirements analysis; quality requirements; machine
learning; case grammar.

I. INTRODUCTION

In order to write a requirements specification of high qual-
ity, we must take the following characteristics into account;
correctness, consistency, unambiguity, completeness, rank of
importance, stability, verifiability and traceability [1]. For
functional requirements, these characteristics are taken into
account well, but taking them into account is still a research
challenge in non-functional or quality requirements. Quality
requirements specify how well functions are accomplished
[2], and they are very important. Some systems such as
the online computer aided instruction (CAI) systems or the
online shopping sites should be highly reliable, while others
such as web browsers and desktop publishing systems should
be usable. If quality requirements are not correctly specified
in a requirements specification, software system may not
be correctly developed. Because there are more problems

in quality requirements than in functional requirements, the
special issue was published in IEEE Software [2]. This
introductory article of the issue focuses on the following
three problems; implicit understanding of stakeholder, trade-
offs among quality requirements and difficulty to measure
and to track quality requirements.

To resolve these problems, detecting quality requirements
necessary for each functional requirement is crucial because
such detection is a basis of discussing stakeholders’ un-
derstanding, their trade-offs and tacking. We have already
proposed a technique for detecting such quality requirements
[3]. The technique uses a semi-formal notation for a func-
tional requirement called eXtended Japanese Requirements
Description Language (X-JRDL) [4] because the notation
explicitly represents the semantic structure of a functional
requirement and the structure directly gives influences on
quality requirements necessary for the functional require-
ment. The rules for the detection thus can be written in the
if-then rules. Although the results of applying the technique
were useful for defining quality requirements [3], it took a lot
of effort for preparing the rules for detection. In addition, the
quality of rules largely depended on the expertise of people
(normally domain experts and requirements analysts) who
wrote the rules.

The main contribution of the new technique proposed in
this paper is to avoid these problems. In our new technique,
a machine learning technology is used to detect the quality
requirements necessary for each functional requirement. By
using a machine learning technology, rules for detection
are automatically generated based on the existing results of
detection (we called such results training data). Necessary
quality requirements are thus automatically detected based
on the rules. The detection results become more accurate
than ever when the appropriate training data increase. We
still use the semi-formal notation for a functional require-
ment X-JRDL because the semantic information is explicitly
represented in an X-JRDL sentence, and such information
is convenient for machine learning. In addition, converting
a natural language sentence to a sentence in X-JRDL is
already studied [5]. If a sentence is characterized in more

540Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

than hundreds components, it is important to choose limited
number of components for the efficient machine learning.
Because an X-JRDL sentence (called a requirements frame)
consists of less than ten components (cases), we do not
have to do it. It is rather important to choose appropriate
training data because the appropriate choice of training data
enables us to detect the quality requirements necessary for
all types of functional requirements. In general, we choose
the training data so that the data is evenly chosen with
respect to the cases in a requirements frame. Because a
requirements frame is regarded as a vector of cases, we
can use the cosine similarity to choose such training data.
However, we have to focus on specific cases to choose such
training data if such cases are more dominant than others.
Through the experiments, we found one of the cases called
concept is more dominant than other cases. In addition,
the training data in which any of the concepts evenly
occurs enabled us to predict necessary quality requirements
successfully.

The rest of this paper is organized as follows. In the
next section, we briefly introduce our previous rule-based
technique for predicting quality requirements necessary for
each functional requirement. Because the technique requires
rules written by experts, it is not easy to use it in practice.
In Section III, we introduce our new technique for such
prediction using machine learning. In our technique, training
data are carefully chosen for better prediction. We made
an experiment to evaluate our proposed technique. The
experiment, the results and its discussion are also reported.
We then review existing researches about both the quality
requirements analysis and the application of machine learn-
ing to the software engineering field. We, finally, summarize
our current results and show future issues.

II. RULE-BASED TECHNIQUE FOR PREDICTING QUALITY

REQUIREMENTS

In this section, we explain our previous rule-based tech-
nique [6] [3] for predicting quality requirements necessary
for each functional requirement because the inputs and the
outputs of the technique are the same as those of our new
technique presented in the next section.

A. Overview of the rule-based technique

The goal of our rule-based technique is to predict quality
requirements types such as usability, reliability and accuracy
for each functional requirement. The steps of the technique
for predicting quality requirements are as follows.

1) We have to prepare the rules for each problem domain
such as web based information systems, drawing soft-
ware and so on. Each rule decides whether specific
quality requirements types are necessary for a func-
tional requirement. An example of a rule is shown in
Figure 2.

#1. The system shall send news articles to UNIX server.

#2. The system shall set the time to send.

Case Type

Concept DFLOW

Object Info

Source System

Goal Extsystem

Case Type

Concept DFLOW

Object Info

Source System

Goal Extsystem

Case Type

Concept SET

Agent System

Object number

Case Type

Concept SET

Agent System

Object number

Figure 1. Examples of converting a requirement sentence to a requirements
frame.

2) Requirements specifications are usually written in nat-
ural language such as English. We have to convert
each sentence in a specification into a requirements
frame, which is a sentence represented in a semi-
formal language called X-JRDL [4] based on the case
grammar [7].

3) For each requirements frame, all rules are applied and
candidates of necessary quality requirements types are
detected. Examples of quality requirements types are
“usability”, “accuracy”, “time behavior” and so on. We
can use the quality sub-characteristics in ISO9126 [8]
and/or NFR framework [9] as the catalog of quality
requirements types.

4) Based on the results of the detection, requirements an-
alysts adds quality requirements descriptions (usually
represented as adverbs) each functional requirement.
Examples of quality requirements descriptions are
“without specific training for its operation”, “more
than 80% correct results for its query”, “within 3
seconds for its response” and so on.

B. Requirements Frames for Functional Requirements

Semantics of a functional requirement largely gives influ-
ences on the decision which types of quality requirements
are necessary for the functional requirement. We thus con-
vert a functional requirements sentence (usually written in
natural language) into a requirements frame. A requirements
frame is based on the case grammar [7], and consists of
several cases and its types. We thus represent a requirements
frame as a tabular form. The examples of the requirements
frames represented in a tabular form are shown at the bottom
of the Figure 1.

The mandatory case is called “Concept” in a requirements
frame, and it corresponds to the verb in an original require-
ments sentence. We have prepared a list of typical types
of a concept as shown in Table I. For each concept type,
complementary cases may be specified for each functional

541Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Table I
TYPICAL TYPES OF A CONCEPT

Concept Meaning

DFLOW Data flow

CFLOW Control flow

ANDSUB And-tree structure

ORSUB Or-tree structure

GEN Data creation

SET Set the value to data

RET Retrieve a record in a file

UPDATE Update a record in a file

DEL Delete a record in a file

INS Insert a record in a file

MANIP File manipulation

EQ, NE, LT, GT, LE, GE Logical operators

Table II
TYPICAL TYPES OF COMPLEMENTARY CASES

Noun Type Meaning

Human active and external object

Function active and internal object

File passive object of information set

Data passive object of a single information

Info information in the real world

Control passive object for control transition

Device passive object of an instrument

System the system to be defined

Extsystem external systems related to the system to be defined

Number numerical data or information

requirements sentence. Such complementary cases corre-
spond to a subject, objects and a complement in a sentence.
Each of such complementary cases also takes a type as
shown in Table II. How to convert each sentence into a
requirements frame is out of scope of this paper because we
have already studied the issue in our previous works [4] [5].

We show examples of requirements frames and their
corresponding original sentences in Figure 1. At the top of
the figure, two typical functional requirements sentences are
represented. Because the sentence #1 is about data flow from
the system to be developed to an external system (UNIX
server), DFLOW is chosen as a type of its concept. Accord-
ing to the definition of our requirements frames, DFLOW
requires complementary cases such as Object, Source and
Goal. Object corresponds to the data to flow. Source and
goal correspond to be the source and the destination of the
data flow. In the sentence #1, the information flows from the
system to the external system. We thus assign Info, System,
Extsystem types to each case as shown in the figure. A
requirement #2 is also converted in the same way.

C. Rules

Because a requirements frame explicitly represents the se-
mantic information about the original requirements sentence,
we may simply check the types of cases to detect necessary
quality requirements for each functional requirement. We
thus simply construct if-then rules for deciding whether a
specific quality requirement is necessary for a requirement
frame. At the top in Figure 2, we show an example of such
a rule (Rule A). The rule decides whether Interoperability is
necessary for a requirement frame. The if-then part of the
rule focuses on the types of cases about Concept, Source
and Goal. Because a requirement frame #1 in the figure
satisfies this condition, the rule decides Interoperability is
necessary for the requirement frame #1. On the other hand,
the rule does not decide Interoperability is necessary for a
requirements frame #2 because the condition is not satisfied
in it.

D. Discussion about the rule-based technique

We have written 14 rules for web-based information
system [3], and the rules are applied in a case study [10].
One of the big problems of this technique is the effort for
writing such rules. It takes about a few weeks for two
experts of requirements engineering for writing such 14
rules. Even if the rules can be reused in the same domain and
they can be improved during their usage, such expectations
largely depend on the expertise of requirements analysts.
Another problem is about their application. According to
the result of the case study, an expert simply referred the
results of rule application and he basically subjectively
updated the original requirements. One of the reasons was
that the expert considered the rules to be still immature
and the rules should be manually improved during more
applications. If such rules can be improved automatically
along the progress of their usage, the effort for the rule users
(normally, requirements analysts) largely decreases.

III. QUALITY REQUIREMENTS PREDICTION USING

MACHINE LEARNING

The problem of obtaining quality requirements from a
requirements frame can be formalized as a classification
problem of obtaining classification rules from a finite data
set. Let the set of input vectors be denoted by I = Bn and
the set of labels by L = {l1, l2, · · · , lm}, where B = {0, 1}.
Training data D denotes a finite set D ⊆ I × L.

Definition 3.1:

D = {(d(1), l(1)), (d(2), l(2)), · · · (d(n), l(n))}
Here, d(1), d(2), · · · , dn are called instances, and
l(1), l(2),··· ,l

|D|
are called classes to which the individual

instances belong. n = |D| denotes the number of
training data samples, and m denotes the number of
labels. Classification rules are represented by the function

542Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

#1. The system shall send news articles to UNIX server.

#2. The system shall set the time to send.

Case Type

Concept DFLOW

Object Info

Source System

Goal Extsystem

Case Type

Concept DFLOW

Object Info

Source System

Goal Extsystem

Case Type

Concept SET

Agent System

Object number

Case Type

Concept SET

Agent System

Object number

Quality Req.: Interoperability
If-Condition: Concept=DFLOW & (Source=Extsystem | Goal=Extsystem)

Rule A

#1 satisfies Rule A.

#2 does not satisfy Rule A.

Figure 2. Examples of applying a rule to requirements frames.

δ : I ⇒ L. A classification problem is the problem of
obtaining optimal δ for given D based on certain criteria.

Various learning algorithms are used in classification
problems, such as support vector machines, decision trees,
maximum entropy models, and naive Bayes classifiers. In
choosing the learning algorithm, it is necessary to choose an
algorithm that can suitably capture the structures included
in the data set of the target classification problem [11].

In the case where a support vector machine is used, it
is necessary to determine a kernel function that is suitable
for the problem. A kernel function is a function that gives
the similarity between instances. However, it is not easy to
obtain a function that appropriately represents the semantic
similarity between instances represented by requirements
frames. As for a decision tree, although it is advantageous in
that classification rules obtained can be readily understood,
in the case of the type of problem being considered in
this research, which requires manual preparation of training
data, since the number of instances is limited, excessive
segmentation might occur, resulting in degraded general-
ization ability. Furthermore, since the training data samples
investigated in this research are sparse binary vectors, and
it is assumed that the same instance might be classified into
different classes, deterministic learning algorithms are not
suitable. Therefore, in order to obtain appropriate results,
it will be a better approach here to acquire corresponding
relationships between inputs and outputs by directly using
word co-occurrences rather than capturing complex con-
textual structures. Accordingly, a naive Bayes classifier is
adopted here as a learning machine in view of the simplicity
of the model and the ease of computation.

Representations of requirements frames of the specifica-
tions prepared by experts are converted into binary vectors.
For example, the concepts of the case frame are associated
with a 17-dimensional vector since the number of types is
17. This vector changes in accordance with the number of

concepts defined in accordance with the relevant domain.
Structures included in the concepts, such as objects, sources,
and goals, are also represented as binary vectors of prede-
termined orders. Similarly, quality characteristics required
for individual requirements frames are also converted into
binary vectors.

A. Instance selection using cosine values

Binarized specifications and quality characteristics are
considered as instances and classes of the instances, and
the set of these will be denoted by R. A portion of the
set R is used as the training data D. Here, half of the
instances prepared are used as the training data D. The set of
instances correctly classified by the learned function δ will
be distinguished by attaching the subscript c. The correct
answer rate representing the ratio of correctly classified
instances among the other half instances D′ = R −D will
be referred to as the successful learning rate Esuc, and the
correct classification rate for all instances will be referred to
as the learning accuracy Eacc.

Esuc =
|D′

c|
|D′| (1)

Eacc =
|Dc ∪D′

c|
|R| (2)

In selecting instances, it is necessary to select training data
samples uniformly in some sense from the set of instances.
As a criterion of the similarity between instances, here, the
sum of cosine values between learning data samples will
first be used. The sum Si of cosine values of an instance i
will be defined as follows.

Definition 3.2:

Si =

n∑

j(�=i)

d(i)d(j)

|di||dj | (3)

543Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

By choosing instances with small values of Si, orthogonal
instances will be preferentially used for learning from the
data set, so that unbiased instance selection can be expected.

In this research, four requirements specifications were
picked up from the specifications of procurement examples
at the Information Systems and Welfare Division of the
Ministry of Economy, Trade and Industry of Japan and were
converted into requirements frames, which were used as
training data. The numbers of instances of the training data
used in the experiment are given in the table below. The
instances corresponding to the four requirements specifica-
tions were sorted in ascending order according to equation
(3), and � |R|

2 � instances were picked up as the training data
D.

Table III
NUMBERS OF INSTANCES OF REQUIREMENTS SPECIFICATIONS USED IN

LEARNING EXPERIMENT.

Spec. 1 Spec. 2 Spec. 3 Spec. 4

37 41 52 58

In the learning experiment, the naive Bayes classifier
scheme of WEKA [12], which is a machine learning plat-
form, was used. In order to confirm the effect of cosine-
based selection, a learning experiment in which instances
were chosen at random was also conducted. Learning was
performed for each quality characteristic of the individual
specifications, and Esuc and Eacc values for each quality
characteristic, as well as average Esuc and average Eacc

for all quality characteristics, were obtained. The average
Esuc values are shown in Figure 3, and the average Eacc

values are shown in Figure 4, in which the horizontal axis
represents the number of instances and the vertical axis
represents the average E.

The cosine-based instance selection was effective when
|D| was small; however, there was a tendency for both Esuc

and Eacc to decrease as |D| increased. One reason for this
tendency was that the cosine values of requirements frames
with the same representation were added up into the sum Si

of cosine values for each instance, used in equation (3), so
that frequently used requirements frames were excluded. In
instance selection, some measure is needed to avoid adding
up the cosine values of requirements frames with the same
representation. Therefore, the sum defined by equation (4)
below will be used hereafter.

Definition 3.3:

Si =
n∑

j(dj �=di)

d(i)d(j)

|di||dj | (4)

B. Requirements frames representations and features

In order to adapt to the learning scheme, here, it is
assumed that training data samples are represented by sim-
ple binary vectors. However, individual cases included in

1E

0 9

0.95
E

0.85

0.9

0.8

0.85

i
0.75

0.8
cosine
random

0.65

0.7
random

0.6

0.65

30 40 50 60 70
0.6

30 40 50 60 70

the number of casesthe number of cases

Figure 3. Relationship between the number of instances and Esuc.

0 95

1
E

0.9

0.95
E

0.85

0.9

0.8

0.85

cosine

0.75

cosine
random

0 65

0.7

0.6

0.65

0.6
30 40 50 60 70

the number of casesthe number of cases

Figure 4. Relationship between the number of instances and Eacc.

requirements frames representations include elements that
are necessary for quality characteristics identification and
those that are not necessary. Here, of the elements of the case
structure, such as concept, function, and reliability, elements
that are necessary for quality characteristics identification
were revealed experimentally. The necessary elements cor-
respond to features used in learning, which can be utilized
for appropriate selection of example problems. Note that,
in this paper, we place the term “feature” in the context of
machine learning; so, the meaning of it is different from that
in software engineering.

Features necessary for quality characteristics identification
were estimated for Specification 4, which was found to have
the lowest level of E in the results described in the preceding
section. Table IV shows the individual requirements frames
representations included in the instances of Specification 4.

544Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Table V shows the results of learning in which half of the
instances were selected as training data based on cosine
values in view of five frames representations.

Table IV
REQUIREMENTS FRAMES REPRESENTATIONS OF SPECIFICATION 4.

Concept DFLOW, CFLOW, SET, RET,

UPDATE, DEL, INS, MANIP

Agent System, Human

Goal System, Human, Extsystem

Object Data, Info, Function

Source System, Human, Info

Table V
RESULTS OF LEARNING IN WHICH INSTANCES WERE SELECTED FOR

EACH REQUIREMENTS FRAME REPRESENTATION.

Concept Agent Goal Object Source

Eacc 0.90 0.83 0.70 0.86 0.70

Ettl 0.93 0.87 0.81 0.89 0.81

The highest Esuc and Eacc were obtained when instances
were selected based on concept among the requirements
frames representations. Concept has the highest order among
the requirements frames representations, effectively serving
for instance separation, so that it is suitable feature that can
be used for learning.

C. Instance selection based on concept

In order to confirm the estimation in Section III-B, a
learning experiment in which instances were selected based
on concept was conducted. Regarding the four requirements
specifications used in Section III-A, instances were selected
based on concept among the requirements frames represen-
tations of the individual specifications. When the number of
instances was less than half, orthogonality of the remaining
instances was evaluated based on equation (4), and instances
were selected accordingly until the number reached half.
Esuc and Eacc for each quality characteristic, as well as the
average Esuc and Eacc, were obtained. The Esuc average
values are shown in Figure 5, and the Eacc average is
shown in Figure 6. For the purpose of comparison, the
results of learning in the case where instances were chosen
at random and the results of learning in the case where
instances were chosen at random from concept and are
also plotted. The experimental results demonstrate that the
success rate in the case where instances were selected from
concept monotonically increased as the number of instances
increased, suggesting its effectiveness in learning. In the case
where instances were selected from concept, a maximum
success rate of about 0.91 was achieved for unknown data.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

30 35 40 45 50 55 60 65 70

cosine

random

concept

concept（random）

the number of cases

EE

Figure 5. Esucin the case where instances were selected from concept.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

30 35 40 45 50 55 60 65 70

cosine

random

concept

concept（random）

EE

the number of cases

Figure 6. Eacc in the case where instances were selected from concept.

In the case where instances were chosen at random, the
success rate varied considerably depending on the number
of instances. From what has been described above, it is
estimated that, when obtaining the quality characteristics
of a large-scale specification, it will be effective to select
instances in such a manner that overall quality characteristics
are determined based on concept in requirements frames
representations and that further classification is performed
based on cases as needed.

IV. RELATED WORK

There are several studies how to define each quality
requirement, but most of them requires the huge amount
of human effort. In ISO 25021 [13], concrete examples
how to measure quality requirements are shown, and these
examples help analysts to make quality requirements mea-
surable. Donald Firesmith gives some format to specify qual-
ity requirements rigorously [14]. In Architecture Tradeoff
Analysis Method (ATAM) [15] [16], a template for quality
requirements called “quality attribute scenario” is provided

545Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

to evaluate the validity of architectural decision. Such tem-
plate may be used to support stakeholders writing quality re-
quirements. In an article by Ozkayad et al. [17], an empirical
data of the most common quality attributes was shown based
on the ATAM. This kind of empirical data help requirements
analysts to specify quality requirements. For similar systems,
similar kinds of quality requirements are normally required.
For example, most functions in typical Web browsers require
security and usability, but do not so require accuracy and
fault tolerance. This kind of analysis helps analysts to val-
idate their quality requirements definition in a specification
by comparing to specifications of other similar systems [18].
However, such analysis does not directly point out missing
quality requirements in each functional requirement. The
analysis just suggests that the specification is unbalanced
with respect to quality requirements definition. UML is the
most popular semi-formal notation for software development
now, and there are some challenges to introduce quality
requirements into it [19] [20]. However, how to specify
such introduced information is normally out of scope in
each research. Using ontology, dictionary and/or thesaurus
[21] is one of the useful ways to improve the quality of
requirements with respect to semantic aspect. However, it
is a little bit weak because simple words/terms matching
cannot completely represent the semantic information in a
requirement.

There are a lot of software engineering researches using
machine-learning techniques, such as cost estimation [22],
defect prediction [23] and design pattern mining [24]. Most
researches focus on variable selection rather than training
data selection because plenty of variables exist in such
application area. For requirements engineering researches,
machine-learning techniques are rarely used. One of the
exceptions is a method for classifying non-functional re-
quirements (NFR) automatically using a machine learning
technique [25]. In this method, usual natural language
documents are used for the classification, but semi-formal
notation is used in our research. Training data sets are chosen
empirically so as to effectively classifying NFRs in this
research, but training data sets are systematically chosen
based on the theory of machine learning in our research.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed and evaluated a new tech-
nique for predicting quality requirements necessary for a
functional requirement based on the machine learning. The
main contribution of this research is to avoid human effort
for preparation of detection, i.e., writing and improving
detection rules manually. In our technique, each functional
requirement is represented in X-JRDL, which is a semi-
formal language based on case grammar. Because X-JRDL
explicitly represents the semantic structure of a functional
requirement, we can easily decide which kinds of quality
requirements are necessary for a functional requirement.

In our previous work [3] [6], we proposed a rule-based
technique for predicting necessary quality requirements. The
results of the previous work were not bad, but it took a
lot of effort to write rules for prediction. In addition, the
quality of prediction largely depended on the expertise of
the people who wrote the rules. Our new technique avoids
such problems because detection rules are automatically
generated by machine learning, and the rules can be also
automatically improved.

In this research, requirements frames representations that
were suitable as features were revealed experimentally
through selection of training data based on cosine values. In
the case of a large-scale requirements specification, uniform
selection of instances from concept among requirements
frames representations gave the most appropriate quality
characteristics. Although duplicates increased as the data
volume increased in the case of instance selection based
on simple similarity of cosine values, a high success rate
was achieved by selectively choosing instances from suitable
features.

The results shown here are average values of Esuc and
Eacc. In view of the individual quality characteristics, the
results for reliability were lower than those for the other
quality characteristics. Although independence of individual
attributes is assumed when classes are given by naive Bayes
classifiers, presumably, some dependencies exist in reality.

In future research, it is necessary to examine instance
representations and selection methods that are free of such
dependencies. We would like to also develop a supporting
tool (a CASE tool) to support a requirements analyst to
write a requirements specification based on our proposed
technique.

REFERENCES

[1] “IEEE Recommended Practice for Software Requirements
Specifications,” 1998, IEEE Std. 830-1998.

[2] J. D. Blaine and J. Cleland-Huang, “Software Quality Re-
quirements: How to Balance Competing Priorities,” IEEE
Software, vol. 25, no. 2, pp. 22–24, Mar./Apr. 2008.

[3] H. Kaiya and A. Ohnishi, “Finding incorrect and missing
quality requirements definitions using requirements frame,”
IEICE Transactions, vol. 95-D, no. 4, pp. 1031–1043, 2012.

[4] A. Ohnishi, “Software requirements specification database
based on requirements frame model,” in ICRE, 1996, pp. 221–
228.

[5] Y. Matsuo, K. Ogasawara, and A. Ohnishi, “Automatic trans-
formation of organization of software requirements specifica-
tions,” in RCIS, 2010, pp. 269–278.

[6] H. Kaiya and A. Ohnishi, “Quality requirements analysis
using requirements frames,” in QSIC, 2011, pp. 198–207.

[7] R. Shank, “Representation and Understanding of Text,” Ma-
chine Intelligence, vol. 8, pp. 575–607, 1977.

546Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

[8] International Standard ISO/IEC 9126-1, “Software engineer-
ing - Product quality - Part 1: Quality model,” 2001.

[9] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-
Functional Requirements in Software Engineering. Aca-
demic Publishers, 1999.

[10] H. Kaiya and A. Ohnishi, “Improving software quality
requirements specifications using spectrum analysis,” in
COMPSAC Workshops, 2012, pp. 379–384.

[11] C. M. Bishop, Pattern Recognition and Machine Learning,
new ed. Springer-Verlag, 2008.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an update,”
SIGKDD Explorations, vol. 11, no. 1, pp. 10–18, 2009.

[13] International Standard ISO/IEC 25021, “Software engineering
- Software product Quality Requirements and Evaluation
(SQuaRE) - Quality measure elements,” Oct. 2007.

[14] D. Firesmith, “Quality Requirements Checklist,” Journal of
Object Technology, vol. 4, no. 9, pp. 31–38, Nov.-Dec. 2005.

[15] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lip-
son, and J. Carriere, “The Architecture Tradeoff Analysis
Method,” in IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS), 1998, pp. 68–.

[16] L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice, 2nd ed. Addison-Wesley, 2003.

[17] I. Ozkayad, L. Bass, R. S. Sangwan, and R. L. Nord, “Making
Practical Use of Quality Attribute Information,” IEEE Soft-
ware, vol. 25, no. 2, pp. 25–33, Mar./Apr. 2008.

[18] H. Kaiya, M. Tanigawa, S. Suzuki, T. Sato, and K. Kaijiri,
“Spectrum analysis for quality requirements by using a term-
characteristics map,” in CAiSE, 2009, pp. 546–560.

[19] Y. Zhang, Y. Liu, L. Zhang, Z. Ma, and H. Mei, “Mod-
eling and Checking for Non-Functional Attributes in Ex-
tended UML Class Diagram,” in Annual IEEE International
Computer Software and Applications Conference (COMP-
SAC2008), 2008, pp. 100–107.

[20] Z. M. Yi Liu and W. Shao, “Integrating Non-Functional
Requirement Modeling into Model Driven Development
Method,” in 17th Asia-Pacific Software Engineering Confer-
ence (APSEC 2010), Dec. 2010, pp. 98–107.

[21] D. V. Dzung and A. Ohnishi, “Improvement of quality of
software requirements with requirements ontology,” in QSIC,
2009, pp. 284–289.

[22] D. G. e Silva, M. Jino, and B. T. de Abreu, “Machine learning
methods and asymmetric cost function to estimate execution
effort of software testing,” Software Testing, Verification, and
Validation, 2008 International Conference on, vol. 0, pp. 275–
284, 2010.

[23] E. Ceylan, F. O. Kutlubay, and A. B. Bener, “Software defect
identification using machine learning techniques,” EUROMI-
CRO Conference, vol. 0, pp. 240–247, 2006.

[24] R. Ferenc, Á. Beszédes, L. J. Fülöp, and J. Lele, “Design
pattern mining enhanced by machine learning,” in ICSM,
2005, pp. 295–304.

[25] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Auto-
mated classification of non-functional requirements,” Requir.
Eng., vol. 12, no. 2, pp. 103–120, 2007.

547Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

