ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Experimentation Package for Evaluation of Problems Applied to the
Software Project Subject Using PBL

Jacson Rodrigues Barbosa*, Fabrizzio Alphonsus Alves de Melo Nunes Soares®, Auri Marcelo Rizzo Vincenzi*
* Instituto de Informdtica
Universidade Federal de Goids, UFG
Goiania-GO, Brazil

E-mail: {jacsonbarbosa, fabrizzio, auri} Qinf.ufg.br

Abstract—This paper presents an experimentation
package that compares the traditional and problem-
based learning (PBL) approaches in the Software
Project academic subject. The package was applied in
a controlled experiment in a Computer Science class
of a higher education institution, having message-
oriented middleware as a case study. The case study
enabled us to validate the experimentation package
and to collect initial data to investigate the advan-
tages and disadvantages of PBL against traditional
learning. Even though the statistical analysis failed
to show differences between the two approaches in
view of the data collected, students’ answers to a
questionnaire enable us to verify how PBL may be
used to increase their motivation and interest in the
subject.

Keywords-Message-oriented middleware; software
project teaching; problem-based learning.

I. INTRODUCTION

In the teaching process of almost all fields of knowl-
edge, a constant and crucial feature is problem solving
or the preparation for problem solving. If the teacher
provides facts and procedures to his/her students with-
out giving them the chance to carry out investigations
on their own and to formulate questions, they may
memorize the subject but be unable to understand it
in depth or to apply it [1].

Problem-based learning (PBL) offers a structure that
helps students understand a given subject in more detail.
According to this method, problems must challenge the
students to reach higher levels of knowledge [2]. A
possible way to verify the cognition levels that a certain
problem must reach in PBL consists in applying Bloom’s
revised [3] taxonomy, which classifies the cognitive abil-
ities of individuals according to six levels, as is shown
in [4], and summarized below:

e Remember: to produce correct information from
memory;

¢ Understand: to provide a meaning to educational
material or experiences;

o Apply: to use a procedure;

e Analyze: to break down a concept into parts and
report on their relation with the whole;

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

o Evaluate: to carry out inferences based on criteria
and patterns;

e Create: to link pieces of data in order to create
something new.

Therefore, this paper proposes an experimentation
package which assesses the cognitive levels reached by
students enrolled in the Software Project subject when
instructed by PBL, as well as to identify the quality
of the software they developed, based on standard OO
metrics [5].

This paper is structured as follows: Section II presents
the problems that were investigated in Software Project.
Sections III and IV describe the experimentation pack-
age applied and the questionnaire given to the students,
respectively. Section V displays the results obtained
from applying the package. Finally, Section VI offers
conclusions and suggestions for future research.

II. PROBLEMS APPLIED TO THE SOFTWARE PROJECT
SUBJECT

Message-oriented middleware (MOM) and software
coupling were selected for the case study.

Message-oriented middleware is a communication
method between software components used in dis-
tributed systems. A client may send and receive asyn-
chronous messages to and from any other client, con-
nected to a special agent that provides facilities to create,
send, receive and read messages. Software coupling is a
measure of the interconnection between theses classes
or subsystems. Strong coupling means that the related
classes need to know internal details from each other,
that changes spread throughout the system and that the
system is potentially more difficult to understand. Thus,
loose coupling is linked to the considerable need for flex-
ibility required by great distributed systems, in addition
to failure tolerance. This means that the dependencies
must be kept to a minimum as much as possible so that,
in case of failure or unavailability of a system and/or
service, the others remain available and working. MOM
allows for loose coupling. Sender and receiver do not
need to be synchronized or previously known. It is an

486

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

alternative to synchronized distributed methods which
may resort to blocking during communication.

In the PBL approach used in this research, the notions
of MOM and coupling are presented in three interdepen-
dent problems.

The first problem discusses the main concepts re-
garding MOM and coupling, as well as presents two
message exchange models. The first model is based on
producer/consumer problems and is also known as point-
to-point. It follows the concept of queues that are fed
with messages, which in turn are then removed by a
single consumer. The producer sends messages to a
queue and the consumer reads them. In this case, the
producer knows the message’s destination and sends it
directly to the consumer’s queue. This model comprises
the following features:

e Only one consumer reads the message;

e The producer does not have to be executed while the
consumer reads the message, just as the consumer
does not need to be executed while the producer
sends the message;

e Once a message is successfully read, the consumer
acknowledges the message to the producer.

The second model selected is the publisher/subscriber
model. It is based on the concept of topic, according to
which messages are listed in topics that are received by
one or more subscribers [6]. It supports publishing mes-
sages to a given topic of messages. The subscriber(s) may
register interest in receiving (“subscribing”) messages on
a particular topic. According to this model, neither the
publisher nor the subscriber knows about each other. Its
features are:

o Several consumers may read the message;

o There is a timing dependency between publishers
and subscribers of a given topic. A publisher must
create a subscription for subscribers to receive mes-
sages. The topic subscriber must be continuously
active in order to receive messages.

Once the problems were discussed with the students,
the latter were asked to research two real-life problems
that may be solved by using each of the models presented
in class. They were given two days to solve this first
problem.

As regards the second problem, two brief descriptions
of systems were presented. The first is used for selling
cinema tickets (Software 1), whereas the second records
students’ enrolments in the subjects of a given university
(Software 2). Students were asked to define the most
suitable architecture (publisher/subscriber or point-to-
point) for both software, as well as create a class diagram
and a prototype of graphical user interface. They were
given two weeks to complete this task.

Finally, the third problem involved asking students to

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

build Software 1. In view of the fact that they already
had knowledge of Java™, they were asked to implement
the software via Java 6, Java Message Service (JMS) -
Version 1.1 and Oracle™ GlassFish Server Open Source
Edition 3.1.

The tasks were given in this order to promote more
effective learning, taking into consideration the cognitive
levels explored in each problem proposed. Further details
regarding these levels are provided in the following sec-
tion.

A. Problem analysis according to Bloom’s taxonomy

Tables I, II and III show the cognitive levels for
Problems 1, 2 and 3, respectively, in accordance with
Bloom’s taxonomy.

The first problem aims to assess the students’ ab-
straction abilities, i.e. to verify their ability to choose
real-life applications of the recently learnt tools. For in-
stance, this problem verified their ability to choose real-
life examples that are linked with each of the recently
discussed MOM architectural models. Therefore, this
problem intended to explore the most superficial levels
of Bloom’s taxonomy, having provided the students with
an initial contact with MOM-related concepts. Hence,
the concepts under study were those of remembering,
understanding and applying.

Table I
ANALYSIS OF PROBLEM 1
Cognitive level Characterization
Remember MOM software architectural concepts.
Understand Understanding of MOM concepts.
Apply Identification of real-life examples linked
with both kinds of architecture.
Analyze Not explored.
Evaluate Not explored.
Create Not explored.

The results of this stage are shown as a table of con-
fusion, also known as a confusion matrix. It consists of
a table with two rows and two columns that reports the
number of false positives, false negatives, true positives
and true negatives.

The second problem also aimed to assess the students’
abstraction abilities, but unlike the previous problem,
now they had to choose the tool i.e. the model most
suited to solve the problem in question. Table II shows
the cognitive levels explored in this problem.

The third problem aimed to assess the students’ tech-
nical abilities. During this stage they had to show the
extent of their ability to encode software by using the
MOM models learnt. The cognitive levels explored are
shown in Table III.

487

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Table 11
ANALYSIS OF PROBLEM 2

Cognitive level Characterization

Remember Use of MOM concepts acquired in prob-
lem 1 and use of representational form of

classes and associations in UML.

Understand
Understanding the representational form

of classes and associations in UML in order
to meet the corresponding functional re-
quirements and architectural restrictions.

Use principles and techniques of software
project modelling.

Apply

Anal
nalyze Identification of parts of the problem that

are modellable based on informal textual
specification.

Evaluate
Design the software to meet the quality

attribute of usability.

Create Creation of conceptual model (UML class
diagram) and graphical user interface

project.

Table I1I
ANALYSIS OF PROBLEM 3

Cognitive level Characterization

Remember Use of software project concepts acquired
in problem 2.

Understand Understanding of MOM to solve the prob-
lem.

Apply Use of Java for error treatment, database
access and message exchange.

Analyze Identification of parts which must be im-
plemented in the program based on the
models.

Evaluat

vatuate Choose specific data structures to provide
an effective solution.

Create Development of software for
selling/booking cinema tickets.

III. EXPERIMENTATION PACKAGE FOR ASSESSING
PBL IN THE SOFTWARE PROJECT SUBJECT

This section presents the experimentation package
which was adopted during the experimental tasks and
result analysis. Its detailed description makes it possible
for this study to be replicated in future research. The
experimentation package set for the analysis of PBL in
the Software Project subject was organized following [7],
Its stages were:

A. Definition of experiment

To analyze PBL in the teaching of Software Project.

With the purpose of assessing PBL in the teaching
of Software Project.

As regards factors that contribute to the quality of
teaching, such as the ability to remember, to understand,
to apply, to analyze, to evaluate and to create.

In the context of undergraduate students of Com-
puter Science enrolled in Software Project.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

B. Selection of context

The context chosen for the experiment is the teaching
and application of MOM-related concepts. The experi-
ment involved the use of academic software developers
whose time and tools were controlled for teaching and
the designing of a software for cinema ticket selling via
JMS.

C. Formulation of hypotheses

A two-way analysis of variance (ANOVA) was per-
formed to verify statistical differences between PBL and
traditional approaches in Software Project.

ANOVA defines the null hypothesis (Hy), according
to which there are no statistical differences between the
methods under analysis. When the probability (p) found
is lower than 0.05, the null hypothesis may be rejected,
otherwise it will not be possible to state that there are
statistical differences between the methods.

D. Selection of variables

The variables analyzed in the experiment are divided
into two types: dependent and independent. The former
were the cognitive levels reached in the problems, and
the latter were the problems’ cyclomatic complexity and
size.

E. Selection of participants

All students enrolled in the Software Project subject
were selected (N = 14). Observe that, even though N is
small, an experimentation package allows us to replicate
this same experiment several times, and new collected
data can be added to this one, thus increasing confidence
on the obtained results. This first replication aimed at
validating the proposed package.

F. Experimental project

Firstly, the teacher presented the major theoretical
concepts regarding MOM and the two message ex-
change models: point-to-point (queue model) and pub-
lish/subscribe. No examples were given regarding the
models.

G. Quality assessment

A control sample was also used to validate the ex-
periment internally. This sample consisted of a task
set to the students regarding the traditional learning
approach (first part of the subject); according to the
task, students had to define a class diagram based on a
context previously specified by the teacher. The external
validation, as the students’ profiles in Table VII confirm,
was based on academic professionals who were then
enrolled in the third semester of the course and whose
average work experience in the field amounted to 7.5
months.

488

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

H. Preparation

Students were not aware of the reasons behind the
research being carried out, but were informed of the steps
to be taken to solve each of the three problems proposed.

1. Application

The experimentation package was applied during one
semester (five months) in the Software Project subject,
part of the Computer Science course. The first part
of the subject involved the application of traditional
methodological strategies (first two months), and the
second part involved PBL (last three months).

J. Descriptive statistics

Ordinal and interval scales were used for the statistical
analysis of the experiment to verify students’ perfor-
mance under both traditional and PBL approaches.
Once the data had been collected, the sample was as-
sessed to establish whether it showed normal or non-
normal distribution. In case of the former, paramet-
ric statistics was required; in case of the latter, non-
parametric statistics was required [8].

K. Data reduction

The criteria for data reduction were only required in
case of dropouts, i.e. students who did not carry out any
of the tasks set. About 21.4% of data (three students
dropped out of the university) was left out so as not to
jeopardize the experiment results.

IV. STUDENTS’ VIEWS ON PBL

After having solved Problem 3, the students were
given a questionnaire on the experience of problem-
based learning. The following questions in Table VII
were adapted from those found in [9].

V. RESULTS AND DISCUSSION
A. Characteristics of Problem 1

In Table IV each column represents the student’s
option, whereas each row yields the correct option. For
instance, line 2 and column 2 show that 100% of the
students managed to correctly identify real-life problems
that may be solved through the point-to-point model.

As Table of Confusion shows, solving this problem
proved quite easy for the students. Of the solutions
provided for the Topic model, only 18.18% did not
comply with its definitions.

Table IV
TABLE OF CONFUSION OF PROBLEM 1

Topic Point-to-point
Topic 81.82% 0%
Point-to-point | 18.18% 100%

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

B. Characteristics of Problem 2

As Table V shows, all the students successfully se-
lected the architecture model most suited to each of the
software descriptions presented.

Table V
SELECTION OF ARCHITECTURE MODEL

Software Coherent Incoherent Total
Software 1 100% 0% 100%
Software 2 | 100% 0% 100%

C. Characteristics of Problem 8

The estimate for the necessary effort to develop the
software for this problem was calculated by the function
point analysis (FPA) described in [10]: 1,949 lines of
Java.

Table VI shows some metrics collected from the solu-
tions given by the students with the aid of JaBUTi (Java
Bytecode Understanding and Testing) [11]. The first
metric regards the size of the programs in terms of non-
comment source lines of code (NCLOC). Following are
two metrics related to maximum and average cyclomatic
complexity [12] of the methods from each program, CC-
MAX and CC-AVG, respectively. The remaining metrics
are part of C&K metrics [5], such as: weighted method
count via cyclomatic complexity (WMC-CC), depth of
inheritance tree (DIT), lack of cohesion in methods
(LCOM), response for class (RFC) and coupling between
objects (CBO).

Regarding the LOC metric, the mean size of imple-
mentations was 1,700 LOC. Half of them showed values
above average and closer to the estimate given by FPA.

The analysis of metrics related to McCabe’s cyclo-
matic complexity revealed that, even though CC-MAX
shows methods with maximum cyclomatic complexity
of about 30 (the recommended yield would not be
greater than 10 [13]), this only occurs in some isolated
methods which, despite showing several conditions, are
simple from the standpoint of programming logic. Thus,
in general, as the remaining complexity-related metrics
(CC-AVG and WMC-CC) attest, class methods are
described as simple and devoid of considerable risk [14],
this is confirmed by AMZ-LOCM, which shows that
the average size of the methods of each implementation
ranged from 6.55 LOC in Implementation 1 to 2.59
in Implementation 5, which results in an overall size
average of 3.95 LOC.

DIT shows that inheritance was little explored in all
projects. The DIT limit was restricted to one, without
considering the calculations of Java’s API classes.

LCOM is important to estimate the degree of cohesion
in a given software. For instance, in an object-oriented
software, it may be used to measure the cohesion of each

489

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

software class. A high LCOM value may suggest that
the class project is poor, as was proved in a class of
Implementation 5 whose LCOM value was 366.

CBO is useful in showing the potential reuse of classes,
given the fact that loosely-coupled classes are “more
independent”. However, strongly-coupled classes are also
very complex and more sensitive to changes in a project,
which makes maintenance difficult and requires more
rigorous tests. But as Table VI shows, the solutions
provided by the students generally showed low coupling.

D. Students’ views

Table VII gathers information collected from the
students after the academic subject had come to an
end. All the students who answered Question 7 (62.5%)
declared positive experiences with PBL. Some of the
comments were “The method promoted opportunities to
increase knowledge”, “It makes the students responsible
in the teaching-learning process” and “Motivation for
students”.

As regards Question 8, 71.43% of the students consider
the use of PBL in Software Project a “good” opportunity
to solve real-life problems. However, they also consider
both methods (traditional and PBL) as important in
the subject in question (refer to answers to Questions 9
and 10).

E. Statistical analysis

Table VIIT and Figure 1 show statistical data that
refer to students’ performance in the tasks they were
assigned, in accordance to the teaching methodology
adopted. It is important to point out that, for both
methodologies, the same group of students was used in
all the problems.

The Lilliefors and Cochran test revealed the normality
and homogeneity of the variances (p < 0.05); as the
problems taken into account in the experiment are also
independent, then ANOVA may be used to carry out
data analysis.

ANOVA obtained p = 0.75 for the set of collected
data. The result was higher than 0.05, therefore the null
hypothesis (Hp) cannot be rejected i.e. from a statis-
tical perspective and in view of the range of problems
explored, there are no statistical differences between the
traditional methodology and PBL.

Table VIII
DESCRIPTIVE STATISTICS
Teaching Mean | Median Standard Devi-
method ation
Traditional 7.16 7 0.75
PBL 7.29 7.33 0.98

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

8,61 O Traditional
8,4 el)

8,2]

7.8
7,6
7,4
7,2

6,8
6,6

6,4 7
6,21
E.

0 1 2 3

Students' Performance

Figure 1. Boxplot of Students’ Performance

VI. CONCLUSION

This paper presented the experimental package and re-
sults of a controlled experiment which aimed to compare
students’ performance in view of the application of two
teaching methodologies (traditional and PBL) within the
Software Project subject. However, this paper’s main
objective was to validate the experimentation package
based on its first application in the Software Project
subject.

The statistical analysis revealed that there are no
differences between the teaching methods adopted. Nev-
ertheless, the assessment of the mean differences showed
that PBL’s was 0.13 higher than the traditional method-
ology’s; furthermore, the analysis of students’ answers
to the questionnaires revealed that they had positive
experiences when using PBL.

In future research, we intend to apply this experimen-
tal package to other university classes in order to com-
pare the differences. Furthermore, we intend to repeat
the experiment with students enrolled in the following
year. Further detailed information on this topic can be
found in [15]. We also intend to carry out a statistical
analysis (logistic regression) of the metrics collected by
JaBUTi to identify patterns associated with cognitive
levels.

ACKNOWLEDGMENTS

The authors would like to thank the Brazilian Funding
Agencies - CNPq and Capes - for their partial support
to this work.

REFERENCES

[1] R. Delisle, How to use problem-based learning in the
classroom. Alexandria, Virgina, USA: ASCD, 1997.

490

ICSEA 2012 :

The Seventh International Conference on Software Engineering Advances

Table VI
DIRECT METRICS OF SOLUTIONS PRESENTED

Copyright (c) IARIA, 2012.

Implementation LOC CC-MAX | CC-AVG | WMC-CC | AMZ-LOC | DIT | LCOM RFC CBO
1 2,007 33 1.44 5.63 6.55 1 3.16 18.77 6.16
2 804 27 1.13 7.31 3.32 1 5.25 19.22 6.34
3 1,838 33 1.12 5.16 3.56 1 2.52 15.19 4.52
4 3,579 37 1.24 5.84 4.7 1.06 3.35 20.81 6.97
5 1,238 46 1.06 5.55 2.59 1 6.51 16.88 4.85
6 805 7 1,08 4.23 2.98 1 3.13 14.7 5.49
Average 1,711.83 30.50 1.18 5,62 3.95 1.01 3.99 17.60 5.72
Standard deviation | 1,045.02 13.11 0.14 1.01 1.46 0.02 1.55 2.41 0.94
Table VII
INFORMATION OBTAINED AFTER QUESTIONNAIRE APPLICATION
Question Answer %
How old are you? Average=20.26 years -
. . . Yes 57.14
?
Do you work with software development (internship, contract etc.)? No 19,86
If you answered “yes” to the previous question, how long have you
worked in the field (specify the period in months or years, e.g. Average=7.5 months -
six months)?
Quality of teaching at the university 12.5
. . . . Visibility of the university 12.5
S S ?
Why have you chosen this university to study Computer Science? Duration of the course 12.5
No particular reason 12.5
When you made your decision, were you aware that the university’s Yes 0
Computer Science Department had adopted a new teaching method? No 100
If you answered “yes” to the previous question, do you think this Yes 0
influenced your decision? No 0
The university decided to apply active teaching-learning Offered conditions to increase knowledge 37.5
methodologies in the Computer Science curriculum. How would Makes student responsible in the teaching-learning process 12.5
you describe your experience as an active participant of Students’ motivation 12.5
such methodologies in this department? Question not answered 37.5
Based on your learning process, how do you rate the use of Excellent 14.29
. 4 Lo . Good 71.43
problem-based learning (PBL) in designing software projects to .
e - Fair 14.29
solve real-life problems?
Poor 0
Do you prefer a traditional teaching method, in which the Yes 0
teacher presents the contents to be No 28.57
learnt and you study them? Both 71.43
You have designed/implemented a software for cinema ticket Yes 42.86
selling as part of a PBL-based case study. Do you prefer this No 0
teaching-learning strategy to the traditional method? Both 57.14
[2] J. A. M. Santos and M. F. Angelo, “Anélise de proble- [6] 1. Gorton, Essential Software Architecture. Berlin,

mas aplicados em um estudo integrado de programacao
utilizando pbl,” WEI - Workshop sobre Educag¢do em
Computacdo, Anais do XXIX Congresso da SBC, pp.
519-522, 2009.

[3] B. J. Duch, S. E. Groh, and D. E. Allen, The Power of
Problem-Based Learning: a practical how to for reaching
undergraduate courses in any discipline. Virginia: Stylus
Publishing, LLC, 2001.

[4] L. W. Anderson, D. R. Krathwohl, P. W. Airasian, K. A.
Cruikshank, R. E. Mayer, P. R. Pintrich, J. Raths, and
M. C. Wittrock, A Tazonomy for Learning, Teaching,
and Assessing: A Revision of Bloom’s Taxonomy of
Educational Objectives, Complete Edition. Allyn &
Bacon, 2001.

[5] S.R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476-493, June 1994.

ISBN: 978-1-61208-230-1

Germany: Springer, 2006.
[7] C. Wohlin, P. Runeson, M. Hést, M. C. Ohlsson, B. Reg-
nell, and A. Wesslén, Experimentation in Software En-
gineering: An Introduction. Springer, 2000.

[8] D. C. Montgomery, Design and Analysis of Experiments,
5th ed. John Wiley & Sons, 2001.

[9] J. R. B. Costa, V. F. Romano, R. R. Costa, A. P.
Gomes, and R. S. Batista, “Active teaching-learning
methodologies: Medical students views of problem-based
learning,” Rewvista Brasileira de FEducag¢ao Médica, pp.
13-19, 2011.

[10] E. J. Braude and M. E. Bernstein, Software Engineering

Modern Approaches, 2nd ed. John Wiley Sons, 2011.

[11] A. M. R. Vincenzi, W. E. Wong, M. E. Delamaro,

and J. C. Maldonado, “JaBUTi: A coverage analysis

tool for java programs,” in XVII Simpdsio Brasileiro

491

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

(12]

(13]

(14]

(15]

de Engenharia de Software (SBES 2003), Manaus, AM,
October 2003.

T. J. McCabe, “A complexity measure,” in Proceedings of
the 2nd international conference on Software engineering
(ICSE ’76), October 1976.

R. S. Pressman, Software Engineering — A Practitioner’s
Approach, 7th ed. McGraw-Hill, 2009.

E. Vandoren and K. Sciences, “Cyclomatic complexity,”
june 2000, available at: http://www.sei.cmu.edu/str/.
Accessed on: 03/06/2012].

J. R. Barbosa, F. A. A. de Melo Nunes Soares, and
A. M. R. Vincenzi, “Problems applied to the software
project subject using pbl,” Web page, july 2012.
[Online]. Available: http://www.inf.ufg.br/~auri/pbl-
en/. Accessed on: [07/18/2012].

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

492

