
Towards a Knowledge-Based Representation of Non-Functional Requirements

Mohamad Kassab

The Pennsylvania State University

Malvern, Pennsylvania, U.S.A

muk36@psu.edu

 Ghizlane El-Boussaidi

École de Technologie Supérieure

Montreal, Canada

ghizlane.elboussaidi@etsmtl.ca

Abstract— Knowledge-based representation is necessary to

support the description of Non-Functional Requirements

within a system and to provide practitioners and researchers

with a valuable alternative to current requirements

engineering techniques. The aim of our research reported in

this paper is to systematically develop an ontology which

provides the definition of the general concepts relevant to

NFRs without reference to any particular application domain.

The general concepts can then act as a common foundation for

describing particular non-functional attributes as well as

providing a conceptual model for NFRs (including, e.g., entity

definitions, relations, etc.). The ontology also contains rules

which define the semantics of the defined concepts.

Keywords- non-functional requirements; ontology; software

architecture; quality.

I. INTRODUCTION

The IEEE-830: “Guide to Software Requirements

Specifications” [1] defines a proper requirements

specification as being: unambiguous, complete, verifiable,

consistent, modifiable, traceable, and usable during

operations and maintenance. To help achieving this, the

requirements elicitation process should consider: (1) the

functional requirements which are associated with specific

functions, tasks, or behavior that the system must support

and (2) the non-functional requirements (NFR).

Existing NFRs elicitation methods adopt memo of

interview transcripts to collect initial NFRs and then

construct systems with the NFRs integrated according to the

experience and intuition of the designers [2]. However,

empirical reports [3, 4, 5] indicated a number of drawbacks

when using these methods. For example, a significant

portion of NFRs may be neglected as it is difficult to ask

users to provide their NFRs explicitly because they are

always related to specific domains and affected by context.

Furthermore, NFRs can often interact, in the sense that

attempts to achieve one NFR can help or hinder the

achievement of other NFRs at certain functionality. Such an

interaction creates an extensive network of

interdependencies and trade-offs between NFRs which is

not easy to describe [6]. In addition, the current methods

don’t provide sufficient answers on how the NFRs should

be accommodated at later stages of the development (e.g.,

software architecture).

The growing awareness of these issues among the

requirements engineering (RE) community in the last few

years led to a heightened interest in NFRs description and

modeling and, in turn, to the emergence of several models

intended to capture and structure the more relevant concepts

defining the NFRs and their relations. Such models are

generic ones and must be instantiated to be usable for

specific domains or applications. Yet, the instantiation

process is not easy to perform since the generic models

usually do not contain sufficient information about NFRs

interdependencies [7]. Some standards have been proposed

in order to unify the definition of subsets of NFRs; e.g.,

software quality concepts [8]. However, till now there is no

clear and coherent generic representation of the NFRs

concepts.

On the other hand, the growing interest in ontology-

based applications as opposed to systems based on

information models have resulted in an increasing interest in

the definition of conceptual models for any kind of domain.

Software Engineering is one of those domains that have

received high attention in that respect [9, 10, 11]. Current

research studies by knowledge engineering scholars on

requirement acquisition, for example, use domain ontology

to support software requirements description [12, 13, 14].

These studies leverage the existing knowledge of the

relationship between the software requirements and the

information in the related domain. According to this

relationship, the domain knowledge influences the result of

requirements acquiring [2]. International Software

Engineering standards such as IEEE [15] provide a

foundation for the development of ontology for software

engineering in terms of common vocabulary and concepts.

Nonetheless, the process of analysis of the standards to

come up with a logical coherent ontology is by no means a

simple process [10]. Moreover, NFRs have received little or

no attention from the ontology research groups due to

inherent challenges imposed by the semantic imprecision of

NFRs conceptual schemas [10].

Building on the above discussion, a knowledge-based

representation is necessary to support the description of

NFRs within a system and to provide practitioners and

researchers with a valuable alternative to current

442Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

requirements engineering techniques. In [16], a

systematically developed ontology which provides the

definitions of the general concepts relevant to NFRs was

presented. The aim of our research reported in this paper is

to present an updated version of the NFRs ontology with: 1)

updated and more comprehensive rules which define the

semantics of the defined concepts; and 2) an extension to

the NFRs’ refinements relating to software architecture

concepts without reference to any particular application

domain. The general concepts can then act as a common

foundation for describing particular non-functional

attributes as well as providing a conceptual model for NFRs

(including e.g., entity definitions, relations, etc.).

The paper is organized as follows. Section II provides

the background on ontologies and the Web Ontology

Language. We describe in details the NFRs ontology in

Section III. Section IV evaluates the NFRs ontology.

Section V discusses related work and finally, Section VI

concludes the paper.

II. ONTOLOGIES IN SOFTWARE ENGINEERING

The software engineering community has recognized

ontologies as a promising way to address current software

engineering problems. Researchers have so far proposed

many different synergies between software engineering and

Ontologies. For example, ontologies are proposed to be used

in requirements engineering, software modeling, model

transformations, software maintenance, software

comprehension, software methodologies, and software

community of practice.

Ontology can be defined as “a specification of a

conceptualization” [17]. More precisely, ontology is an

explicit formal specification of how to represent the objects,

concepts, and other entities that exist in some area of

interest and the relationships that hold among them. In

general, for ontology to be useful, it must represent a shared,

agreed upon conceptualization. The use of ontologies in

computing has gained popularity in recent years for two

main reasons: i) they facilitate interoperability and ii) they

facilitate machine reasoning. In its simplest form, ontology

is taxonomy of domain terms. However, taxonomies by

themselves are of little use in machine reasoning. The term

ontology also implies the modeling of domain rules. It is

these rules, which provide an extra level of machine

“understanding”.

Holsapple [18] describes a number of approaches to

ontology design: inspiration, induction, deduction, synthesis

and collaboration. We chose to follow the deductive

approach. Deductive approach to ontology design is

concerned with adopting some general principles and

adaptively applying them to construct an ontology geared

toward a specific case. This involves filtering and distilling

the general notions so they are customized to a particular

domain subset. It can also involve filling in details,

effectively yielding an ontology that is an instantiation of

the general notions.

The constructs used to create ontologies vary between

ontology languages. One class of ontology languages is

those which are based upon description logics [19]. OWL is

one such language. OWL [20] is the Web Ontology

Language, an XML-based language for publishing and

sharing ontologies via the web. OWL originated from

DAML+OIL both of which are based on RDF (Resource

Description Framework) triples. There are three ‘species’ of

OWL – but the most useful for reasoning - OWL-DL -

corresponds to a description logic. Editing OWL manually

can be equally difficult for the very same reason. We used

Protégé and its OWL plug-in for NFRs ontology

development.
OWL ontology consists of Classes; also referred to by

concepts, and their Properties; also referred to by relations.
The Class definition specifies the conditions for individuals
to be members of a Class. A Class can therefore be viewed
as a set. The set membership conditions are usually
expressed as restrictions on the Properties of a Class. For
instance the allValuesFrom and someValuesFrom property
restrictions commonly occur in Class definitions. These

correspond to the universal quantifier () and existential

qualifier () of predicate logic. More precisely, in OWL such
restrictions form anonymous Classes of all individuals
matching the corresponding predicate. A key feature of
OWL and other description logics is that classification (and
subsumption relationships) can be automatically computed
by a reasoner which is a piece of software able to infer
logical consequences from a set of asserted facts or axioms.
For the purpose of the NFR ontology, we will use a semantic
web reasoning system and information repository Renamed
Abox and Concept Expression Reasoner (RACER) [21].

III. NFRS ONTOLOGY

Most of the terms and concepts in use for describing

NFRs have been loosely defined, and often there is no

commonly accepted term for a general concept [22]. As

indicated in the Introduction, common foundation is

required to enable effective communication and to enable

integration of activities within the RE community. This

common foundation is realized by developing an ontology,

i.e. the shared meaning of terms and concepts in the domain

of NFRs.

There are many resources for setting up a glossary for

NFRs. In addition, there are many different perspectives

from where NFR terms are defined, (e.g., NFRs in product-

oriented perspective vs. process-oriented perspective [6]). In

this paper, the NFRs glossary is developed based on

commonality analysis and generalization from the previous

publications in requirements engineering and software

engineering communities.

The NFRs ontology has an important core about NFRs

model, but also addresses areas such as software

architectures. It contains many concepts. In order to cope

with the complexity of the model we use views of the

443Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

model. A view is a model which is completely derived from

another model (the base model). A view cannot be modified

separately from the model from which it is derived. Changes

to the base model cause corresponding changes to the view

[23]. Three views of the NFRs ontology are identified: The

first view concerns the NFRs relation with the other entities

of the software system being developed (intermodel

dependency view). The second contains the classes and

properties intended to structure NFRs in terms of

interdependent entities (intramodel dependency). The third

view represents the measurement process and contains the

concepts used to produce measures to measurable NFRs.

The measurement view will not be discussed in this paper as

it maintains the same structure from the earlier version of

the NFRs ontology [16].

A. Intermodel Dependency View

Figure 1 illustrates the structure of the NFRs intermodel
dependency view by means of a simplified UML class
diagram. The core of this structure relies on the fact that
NFRs are not stand-alone goals, as their existence is always
dependent on other concepts in the project context. If a
requirement is a member of the class
NonFunctionalRequirement, it is necessary for it to be a
member of the class Requirement and it is necessary for it to
be a member of the anonymous class of things that are linked
to at least one member of the class AssociationPoint through
the hasAssociationPoint property. On the other hand,
isAssociatingNfrTo links the AssociationPoint to a range of:
FunctionalRequirement union Element union Process union
Product union Resource. The AssociationPoint can be
thought of as an interface from the perspective of the
association to the individuals from the above range. Thus, if
an individual is a member of the AssociationPoint Class, it is
necessary for it to be linked to one and only one individual
from: the (FunctionalRequirement class through the
isAssociatingNfrTo property) OR (Element through
isAssociatingNfrTo property) OR (Process through
isAssociatingNfrTo property) OR (Product through
isAssociatingNfrTo property) OR (Resource though the
isAssociatingNfrTo property).

An individual from AssociationPoint class can be linked
to many individuals from the NonFunctionalRequirement
class through hasAssociationPoint property.

1) Association to FR (or derived elements)

Functionality-related NFRs refer to individuals
instantiated from the NonFunctionalRequirement class and
that participate in hasAssociationPoint relation with an
individual from the AssociationPoint class which in its turn
participates in isAssociatingNfrTo relation with an individual
from the FunctionalRequirement class (see Figure 1). In fact,
a subset of NFRs, namely functionality quality requirements,
is defined with an existential restriction to have at least one
association point with FR as it represents a set of attributes
that bear on the existence of a set of functions and their
properties specified according to the ISO 9126 definition to

the functionality quality [8]. Valid example of functionality-
related NFRs is: “the interaction between the user and the
software system while reading email messages must be
secured”.

The FunctionalRequirement class is further specialized
into PrimaryFunctionalRequirement and
SecondaryFunctionalRequirement . A NFR can be associated
to either type of FRs.

Functional Requirement is further realized through the
various phases of development by many functional models
(e.g., in the object-oriented field, a use-case model is used in
the requirements analysis and specification phase, a design
class model is used in the software design phase, etc.). Each
model is an aggregation of one or more artifacts (e.g., a use-
case diagram and a use-case for the use-case model, a
domain model diagram and a system sequence diagram for
the analysis model, a class diagram and a communication
diagram for the design model). The artifact by itself is an
aggregation of elements (e.g., a class, an association, an
inheritance, etc. for the class diagram). Modeling artifacts
and their elements in this way gives us the option of
decoupling the task of tracing NFRs from a specific
development practice or paradigm.

If an NFR is associated with functionality, then some or
all the offspring elements that refine this functionality will
inherit this association. More specifically:

((NFRi hasAssociationPoint AssociationPointj)
(AssociationPointj isAssociatingNfrTo

FunctionalRequirementk)) ==>  Elementn ((NFRi

hasAssociationPoint AssociationPointm)

(AssociationPointm isAssociatingNfrTo Elementn)
(FunctionalRequirementk FrIsMappedInto Elementn))

When hasAssociationPoint property links an individual
NFR to an individual AssociationPoint which is further
linked to an individual FunctionalRequirement or Element
through isAsscoatingNfrTo property, then the
AssociationPoint can be further specified through one of
three subclasses. These subclasses specify the type of
association between an individual from the
NonFunctionalRequirement class and an individual from the
FunctionalRequirement and Element classes. We adopt the
concepts of overlapping, overriding and wrapping,
commonly used in various separations of concerns
approaches [24] to define these three subclasses:

• Overlapping: the NFR requirement modifies the FRs it
transverses. In this case, the NFR may be required before the
functional ones, or it may be required after them. For
example, the implementation of security requirement (e.g.,
user’s authorization) needs to be executed before the user
can access “read email messages” functionality.

• Overriding: the NFR superposes the FRs it transverses.
In this case, the behavior described by the NFR substitutes
the FRs behavior.

• Wrapping: NFR “encapsulates” the FRs it transverses.
In this case, the behavior described by the FR is wrapped by
the behavior described by the NFRs.

444Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

FuntionalRequirement

PrimaryFunctionalRequirement

SecondaryFunctionalRequirement

AssociationPoint

-isAssociatingNfrTo

Resource-isAssociatingNfrToModel

Phase

-elementIsRefinedInto

1

-belongsToDevelopmentPhase

-isAssociatingNfrTo

OverlappingOverridingWrapping

Requirement

-hasAssociationPoint

Element

Artifact

1

*

-FrIsMappedInto

Process Product

-isAssociatingNfrTo

-isAssociatingNfrTo

NonFunctionalRequirement

-isRealizedThrough

Figure 1. NFRs Intermodel Dependency View.

2) Association to Process

A software development process is a structure imposed
on the development of a software product. Synonyms include
software life cycle and software process. There are several
models for such processes, each describing approaches to a
variety of tasks or activities that take place during the
process.

From the above definition to the software process,
process-related NFRs specify concerns relative to the scope
of the development process. Examples of such NFRs are
“The project will follow the Rational Unified Process
(RUP)” and “Activities X, Y, Z will be skipped for this
project”.

3) Association to Product

Product-related NFRs refer to those NFRs which have a
global impact on the system as whole. Example of such
NFRs are: “The system should be easy to maintain”.

4) Association to Resource

Resources serve as input to the processes used on a
project. They include people, tools, materials, methods, time,
money, and skills [25]. An example of an NFR associated
with a resource is illustrated through a requirement like “The
software maintainers should have at least 2 years of
experience in Oracle database.” This is an operating
constraint that is associated with candidates for the
maintenance position for the system (another type of
resources).

 It is to be noted that the inter-relationships among the
above five concepts (e.g., the relation between the product
and the process) is out of the scope of this paper.

B. Intramodel Dependency View

The intramodel dependency view is concerned with the
refinement of NFRs into one or more offspring; through
either decomposition or operationalization, and the
correlation among the concepts of the NFRs model. The

view is depicted in the UML class diagram in Figure 2 and it
is discussed through the concepts and properties referring to:
NFRs type, NFRs decomposition, NFRs operationalization
and NFRs interactivity.

1) NFRs Type
Specifying NFR through types is a particular kind of

refinement for NFRs [6]. This allows for the refinement of a
parent on its type on terms of offspring, each with a subtype
of the parent type. Each subtype can be viewed as
representing special cases for the NFR. Five subclasses are
identified as a candidate for the root node for an NFR type
refinement hierarchy; namely, QualityRequirement,
DevelopmentConstraint (e.g., implementation language
constraint, constraints on system architecture),
EconomicConstraint (e.g., allocated budget),
OperatingConstraint and PoliticalCulturalConstraint (e.g.,
law imposing to support bilingual system user interface).
These in fact are not mutual exclusive classes.

 A special type of Development constraints is the
architectural concern which presents an architectural
requirement on the system under development. A concern is
an area of interest or focus in a system. Concerns are the
primary criteria for decomposing software into smaller,
more manageable and comprehensible parts that have

445Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

NonFunctionalRequirement

-nfrIsDecomposedTo

Operationalization

-hasOperationalization

EconmicConstraint

OperatingConstraint

PoliticalCulturalConstraint

QualityRequirement

FunctionOp

-OpDecomposedTo

DevelopmentConstraint

ArchitecturalConcern

SystemArchitecture
ArchitecturalPattern

-implements
PatternParticipant

1 *

Component

Connector

TacticDesignConcern -categorizes

-Incorporatedin

InfluencerNFR

LogicalErrorMinorConflict

InfluencedNFR

-isInteractingWith

ConstructiveInteraction
NegativeInteraction

Figure 2. NFRs Intramodel Dependency View.

meaning to a software engineer. From this, architectural
concerns are defined as those concerns that significantly
influence the architecture [26]. An example of an
architectural concern could be the need for coordination
between distributed entities within the system.

On other hand; a special type of architectural concern is
QualityRequirement [27] (e.g., security guarantees for the
system). This implies that quality requirements are in fact
development constraints themselves; as the development
process should bear in mind the required qualities while
taking architectural; design or implementation decisions.

2) Decomposition
This refers to the NfrIsDecomposedTo property that

decomposes a high-level NFR into more specific sub-NFRs.
In each decomposition, the offspring NFRs can contribute
partially or fully towards satisfying the parent.
NfrIsDecomposedTo is a transitive property. The
decomposition can be carried either across the type
dimension or the association point dimension. For example,
let us consider the requirement “read an email message with
high security”. The security requirement constitutes quite a
broad topic [6]. To deal effectively with such a requirement,
the NFR may need to be broken down into smaller
component using the knowledge of the NFR type; discussed
in the previous subsection, so that an effective solution can
be found. Thus, the requirement states as “read an email

with a high security” can be decomposed into “read an
email with high integrity”, “read an email with high
confidentiality”, and “read an email with high availability”.
An example of decomposition across the association point
is: “read inbox folder messages with high security”, “read
system-created folder messages with high security”. The
decomposition can be “ANDed” (all NFR offspring are
required to achieve the parent NFR goal) or “ORed” (it is
sufficient that one of the offspring be achieved instead, the
choice of offspring being guided by the stakeholders).

3) Operationalization
This refers to the hasOperationalization property that refines
the NFR into solutions in the target system that will satisfy
the NFR [6]. One type of operationalizations is
“FunctionOp” which corresponds to functionalities to be
implemented. For example, “Authorization” and
“Authentication” are potential instances of FunctionOp class
to implement Security quality. Similar to decomposition,
operationalization can be ANDed or ORed.

In the inferred taxonomy; the taxonomy after the
reasoner impact, the reasoner classifies FunctionOp based
on the imposed assertions as a subclass for
FunctionalRequirement. This classification is consistent
with many arguments in the requirements engineering
community on the tight link between the FRs and NFRs
[28]. The ontology brings formalism and a concrete
understanding to this link.

446Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

The second type of operationalizations is “Tactic” which
represents design decisions aiming at satisfying some
quality requirements. Indeed, when designing software, an
architect relies on a set of idiomatic patterns commonly
named architectural styles or patterns. A software
architectural pattern defines a family of systems in terms of
a pattern of structural organization and behavior [29]. More
specifically, an architectural pattern determines the
vocabulary of components and connectors that can be used
in instances of that style, together with a set of constraints
on how they can be combined [30]. Common architectural
patterns include Layers, Pipes and Filters and Model View
Controller (MVC). As shown in Figure 2, an instance of
SystemArchitecture class is an implementation of one or
more instances of ArchitecturalPattern class. While
architectural patterns embody high level design decisions,
an architectural tactic [31] is a design strategy that addresses
a particular quality attribute. Tactics are a special type of
operationalization that serves as the meeting point between
the quality attributes and the software architecture. Tactics
are the building blocks of patterns [31] and implementing a
tactic within a pattern may affect the pattern by modifying
some of its components, adding some components and
connectors, or replicating components and connectors [32].
An instance of class Tactic is linked to an instance of classes
Component / Connector through one of the following
properties which define the semantics of impact of
incorporating the tactic into the pattern (adopted from [27]):

 Implemented in: The tactic is implemented within a
component of the pattern. Actions are added within the
sequence of the component.

 Replicates: A component is duplicated. The
component’s sequence of actions is copied intact, most
likely to different hardware.

 Add, in the pattern: A new instance of a component is
added to the architecture while maintaining the integrity
of the architecture pattern. The new component comes
with its own behavior while following the constraints of
the pattern.

 Add, out of the pattern: A new component is added to
the architecture which does not follow the structure of
the pattern. The added actions do not follow the pattern.

 Modify: A component’s structure changes. This implies
changes or additions within the action sequence of the
component that are more significant than those found in
“Implemented in”.

 Delete: A component is removed.

Tactics which have relatively a similar impact can be
grouped together into categories which are instances of
DesignConcern class. For example, a design concern towards
the architectural concern “high performance for the system”
is how to “manage resources demands”. This design concern
is a group of four tactics that aim to improve the
performance quality: increase computation efficiency, reduce
computational overhead, manage event rate and control

frequency of sampling. It’s worth to point out that
FunctionOp and Tactic are not mutual exclusive classes.

4) Interactivity
An individual NFR may participate in isInteractingWith

property which links it to another NFR. This refers to the fact
that the achievement of one NFR; InfluencerNfr, at a certain
association point can hinder (through
isNegativelyInteractingWith property) or help (through
isPositivelyInteractingWith property) the achievement of
other NFR; InfluencedNfr, at the same association point, e.g.,
security and performance at “read an email message”
functionality. isInteractingWith is not a symmetric property.

The negative interaction is further specialized through the
two sub-properties, which help classifying the negative
interaction into: hasLogicalErrorWith and
hasMinorContradictionWith.

Logical Error: This is a fundamental conflict which must
be resolved immediately. It occurs when the achievement of
NFR1 will prevent the achievement of NFR2. This is
expressed by means of the proposition LogicalError (NFR1,
NFR2)  NFR1  NOT NFR2. Logical Error demonstrates
a direct contradiction between two requirements. For
example, NFR1 is stated as “Security has to be high at read
email functionality”; while NFR2 is stated as “There should
be no security constraints at read email functionality”!

Minor Contradiction: This is one of the best-known cases
of conflict [6]. Associating a win condition with an NFR (say
NFR1) triggers a search of the operationalization that has
positive and/or negative effects on NFR1. For example, the
Portability NFR, the win condition of which is “portable to
Windows”, has positive effects (i) on the portability layers
and separation of data generation and (ii) on the presentation,
but has negative effects on the use of fast platform-
dependent user interface functionalities that would be
affected with the layering strategy. The operationalizations,
that are found to have negative effects on other NFRs sharing
the same association points with their parents NFRs, are used
to identify potential conflicts.

IV. EVALUATION

We evaluated our ontology according to three criteria: 1)
is it generally acceptable? 2) is it consistent? and 3) is it
accurate?. ‘Generally accepted’ means that the knowledge
and practices described are applicable to most projects most
of the time, and that there is widespread consensus about
their value and usefulness. ‘Generally accepted’ does not
mean that the knowledge and practices described are or
should be applied uniformly on all projects [33].

Clearly, the evaluation of the acceptance and the
accuracy of the ontology as such ultimately rely upon its
application by the research community. For the purpose of
this evaluation, we have used our ontology within three
different projects. These projects helped refining the initial
NFRs ontology. Indeed we have instantiated the ontology
against the set of requirements from the settings of the
NOKIA Mobile Email Application System and the IEEE
Montreal Website. Further, we worked closely with experts

447Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

from SAP-Montreal to use the NFRs Ontology as a
repository for the requirements of some of the projects which
are under development. From the experiences and the
participants’ feedback developed from instantiating the
NFRs Ontology against the three real-life projects (the Nokia
project, the IEEE Montreal website project and the SAP
project), the ontology has proven to be easy to instantiate and
links the concepts efficiently. Each individual captured NFR
was instantiated from its corresponding concept in the
Ontology. We make the note here that we did not meet the
case in which an individual NFR was not instantiated from a
corresponding concept. Finally the consistency of this
ontology has been demonstrated through the usage of a
semantic web reasoning system and information repository
RACER [21].

V. RELATED WORK

Even though there is no formal definition of the term
‘NFR’, there has been considerable work on characterizing
and classifying NFRs. In a report published by the Rome
Air Development Center (RADC) [34], NFRs (“software
quality attributes” in their terminology) are classified into
consumer-oriented (or software quality factors) and
technically-oriented (or software quality criteria). The former
class of software attributes refers to software qualities
observable by the consumer, such as efficiency, correctness
and interoperability. The latter class addresses system-
oriented requirements such as anomaly management,
completeness and functional scope.

Earlier work by Boehm et al. [35] structured quality
characteristics of software within a quality characteristics
tree of 25 nodes, noting that merely increasing designer
awareness would improve the quality of the final product. A
well-known and more recent approach to representing NFRs
using a graphical method is the NFRs framework by Chung
et al [6]. A cornerstone of the framework is the “softgoal”
concept for representing the NFR. A softgoal is a goal that
has no clear-cut definition or criteria to determine whether or
not it has been satisfied. The operation of the framework can
be visualized in terms of the incremental and interactive
construction, elaboration, analysis and revision of a softgoal
interdependency graph (SIG). High-level softgoals are
refined into more specific subgoals or operationalizations. In
each refinement, the offspring can contribute fully or
partially, and positively or negatively, towards satisfying the
parent. However, the particular graphical notations make it
difficult to coordinate with mature UML tools and be
integrated with existing models of FRs. This integration has
been tackled in [24, 36, 37] by extending UML models to
integrate NFRs to the functional behavior. Although the
integration process must be considered at the meta-level,
these approaches only model certain NFRs (e.g., response
time, security) in a way that is not necessarily applicable for
other requirements.

On a different track, Hauser et al. [38] provide a
methodology for reflecting customer attributes in different
phases of design. Dobson et al [23] describe an approach to
specifying the Quality of Service (QoS) requirements of
service-centric systems using an ontology for Quality of

Service. The above approaches address only a subset of
NFRs; namely quality requirements, and sometimes within a
specific context; (e.g., service computing in [24] and
automotive industry in [38]). On contrast, our work aims at
providing a more generic solution to all types of NFRs with
independence from any context.

Al Balushi and Dabhi [39] used an ontology-based
approach to build NFR quality models with the objective to
gather reusable requirements during NFR specification. We
agree with these authors on the usefulness of ontology,
however, the research objectives of their research efforts and
ours differ, which in turn, leads to essential difference in the
research outcomes. While the conceptual model in [1] is
geared towards solving requirements reuse problems, our
ontology covers a broader spectrum of NFR issues. This is
achieved by using multiple views, which explicate
requirements phenomena by complementing the strengths of
multiple conceptualizations of NFRs.

VI. CONCLUSION AND FUTURE WORK

Although non-functional requirements are receiving more
and more attention in the requirement and software
engineering communities, little progress has been made in
using ontologies for NFRs. This is mainly because NFRs are
too abstract and affected by a large number of subjective
factors, which makes it difficult for users to describe their
own NFRs accurately and precisely. In this paper, we
proposed a NFRs ontology that we developed by analyzing
and generalizing concepts from the literature. We used a
disciplined approach to ontology development, with explicit
requirements, ontology design, and implementation. This
ontology describes glossaries and taxonomies for NFRs. We
used these glossaries for generalization to the common NFRs
concepts. To evaluate the ontology, we have used it within
the context of three projects. This initial evaluation proved
that the ontology is consistent and easy to use.

Clearly, the evaluation of the acceptance and the
accuracy of the NFRs ontology, as such, ultimately rely upon
its application by the research community. The authors of
this are hoping to soon benefit from interaction with a
number of interested parties in this topic. In particular, we
plan to explore the way in which NFRs ontology could be
further leveraged in more complex requirements
specification scenarios in real-life settings. In order to
ground the concept further, we plan to develop tools to
leverage the benefits of ontology for NFRs and evaluate our
results against scenarios designed to test the capabilities of
the ontology. One potential tool of our interest will aim at
facilitating the investigation of studying the impact of
incorporating the quality tactics into the software
architectural patterns. In addition, we will investigate further
to which degree having the NFRs ontology adopted in the
requirements engineering activities guarantees the
compliance of the final product with the captured NFRs.

448Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

REFERENCES

[1] IEEE Std. 830-1998. (1998), “IEEE recommended practice for
software requirements specifications”, IEEE Transactions on
Software Engineering.

[2] T. Jingbai, H. Keqing, W. Chong, and L. Wei, “A Context Awareness
Non-functional Requirements Metamodel Based on Domain
Ontology”, IEEE International Workshop on Semantic Computing
and Systems, 2008, Huangshan, China, pp.1-7.

[3] K. K. Breitman, J. C. S. P. Leite, and A. Finkelstein, “The World's
Stage: A Survey on Requirements Engineering Using a Real-Life
Case Study”, Journal of the Brazilian Computer Society, 1(6), 1999,
pp. 13-37.

[4] A. Finkelstein and J. Dowell, “A Comedy of Errors: The London
Ambulance Service Case Study”, proceedings of the 8th International
Workshop Software Specifications and Design, 1996, pp. 2-5.

[5] L. Leveson and C. S. Turner, “An Investigation of the Therac-25
Accidents”, IEEE Computer, 26(7), 1993, pp. 18-41.

[6] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, “Non-functional
Requirements in Software Engineering”, Kluwer Academic
Publishing, 2000.

[7] P. M. O. O. Sack, M . Bouneffa, Y. Maweed, and H. Basson, “On
Building an Integrated and Generic Platform for Software Quality
Evaluation”, 2nd IEEE International Conference on Information and
Communication technologies: From Theory to Applications. April 24
- 28, 2006, Umayyad Palace, Damascus, Syria.

[8] International Standard ISO/IEC 9126-1. Software engineering –
Product quality – Part 1: Quality model. ISO/IEC 9126-1:2001, 200.

[9] O. Mendes and A. Abran, “Software Engineering Ontology: A
Development Methodology”, Metrics News, 9, 2004, pp. 68-76.

[10] M. A. Sicilia and J. J. Chadrado-Gallego, “Linking Software
Engineering concepts to upper ontologies”, Proceedings of the First
Workshop on Ontology, Conceptualizations and Epistemology for
Software and Systems Engineering, 2005, Alcalá de Henares, Spain.

[11] C. Wille, A. Abran, J. M. Desharnais, and R. R. Dumke, “The quality
concepts and subconcepts in SWEBOK: An ontology challenge”, In
Proceedings of the 17th International Conference on Software
Engineering and Knowledge Engineering, 2003, Taipei, Taiwan.

[12] K. Haruhiko and S. Motoshi, “Using domain ontology as domain
knowledge for requirements elicitation”, proceedings of the 14th
IEEE International Requirements Engineering Conference, 2006,
Minneapolis, USA, pp. 186 – 195.

[13] Z. Jin, “Ontology-based requirements elicitation automatically”,
Chinese J. Computers, Vol.23, No.5, 2000, pp. 486 – 492.

[14] H. Kaiya and M. Saeki M, “Ontology based requirements analysis:
lightweight semantic processing approach”, proceedings of the 5th
International Conference on Quality Software (QSIC), 2005,
Melbourne, Australia, pp. 223 – 230.

[15] IEEE (1990). Standard Glossary of Software Engineering
Terminology. IEEE Standard 610.12-1990.

[16] M. Kassab, O. Ormandjieva, and M. Daneva, “An Ontology Based
Approach to Non-Functional Requirements Conceptualization”,
Proceedings of the 4th International Conference on Software
Engineering Advances, ICSEA 2009, September 20-25, 2009 - Porto,
Portugal.

[17] T. R. Gruber, “A Translation Approach to Portable Ontology
Specifications”, Knowledge Acquisition, 1993, pp. 199 – 220.

[18] C. W. Holsapple and K. D. Joshi, “A Collaborative Approach to
Ontology Design”, Communication of the ACM, February 2002, Vol
45, No 2, pp. 42 - 47.

[19] F. Baader, I. Horrocks, and U. Sattler, “Description logics as ontology
languages for the semantic web”, in Lecture Notes in Artificial
Intelligence. Springer, 2003,

http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/Ba
HS03.pdf. [retrieved: 11,2012].

[20] W3C, "Web Ontology Language (OWL)",
http://www.w3.org/2004/OWL.

[21] Racer: Renamed Abox and Concept Expression Reasoner.
http://www.sts.tu-harburg.de/~r.f.moeller/racer/

[22] M. Glinz, "On Non-Functional Requirements", 15th IEEE
International Requirements Engineering Conference (RE 2007), 2007,
Delhi, India, pp.21-26.

[23] R. Lock, G. Dobson, and I. Sommerville, “Quality of Service
Requirement Specification using an Ontology”, Conference
Proceedings 1st International Workshop on Service-Oriented
Computing: Consequences for Engineering Requirements
(SOCCER'05), Paris, France, 30th August 2005.

[24] J. Araujo, A. Moreira, I. Brito, and A. Rashid, “Aspect-Oriented
Requirements With UML”, Workshop on Aspect-Oriented Modeling
with UML (held with UML 2002).

[25] S. Whitmire, “Object Oriented Design Measurement”, John Wiley &
Sons, 1997.

[26] N. Bouck´e and T. Holvoet, “Dealing with concerns ask for an
architecture-centric approach”, In European Interactive Workshop,
2005.

[27] N. B. Harrison and P. Avgeriou, “How do architecture patterns and
tactics interact? A model and annotation”, Journal of Systems and
Software, vol. 83, Issue 10, pp. 1735-1758, 2010.

[28] B. Paech, A. Dutoit, D. Kerkow, and A. von Knethen, “Functional
requirements, non-functional requirements and architecture
specification cannot be separated – A position paper”, 8th
International Workshop on Requirements Engineering: Foundation
for Software Quality, 2002, Essen, Germany.

[29] D. Garlan and M. Shaw, “An Introduction to Software Architecture”,
Technical Report, CMU, Pittsburgh, PA, USA, 1994.

[30] Microsoft Application Architecture Guide: Patterns & Practices, 2nd
Edition, http://msdn.microsoft.com/en-us/library/ff650706.aspx.

[31] L. Bass, P. Clements, and R. Kazman, “Software architecture in
practice”, Addison-Wesley, 2003.

[32] N. B. Harrison, P. Avgeriou, and U. Zdun, “On the Impact of Fault
Tolerance Tactics on Architecture Patterns”, In proceedings of 2nd
International Workshop on Software Engineering for Resilient
Systems (SERENE 2010), London, UK, 2010.

[33] PMBOK (2000). Project Management Body of Knowledge Guide
2000. See http://www.cs.bilkent.edu.tr/~cagatay/cs413/PMBOK.pdf.
[retrieved: 11, 2012].

[34] T. P. Bowen, G. B. Wigle, and J. T. Tsai, “Specification of Software
Quality Attributes”, Volume 2, Software Quality Specification
Guidebook, 1985.

[35] B. W. Boehm, J. R. Brown, M. Lipow, “Quantitative Evaluation of
Software Quality”. In proceeding of the 2nd Int. Conference on
Software Engineering, San Francisco, CA, Oct. 1976. Long Branch,
CA: IEEE Computer Society, 1976, pp. 592-605.

[36] A. Moreira, J. Araujo, and I. Brito, “Crosscutting Quality Attributes
for Requirements Engineering”, In 14th Int. Conf. on Soft. Eng. and
Knowledge Engineering, Ischia, Italy, 2002, pp. 167-174.

[37] D. Park, S. Kang, and J. Lee, “Design Phase Analysis of Software
Performance Using Aspect-Oriented Programming”, In 5th Aspect-
Oriented Modeling Workshop in Conjunction with UML 2004,
Lisbon, Portugal, 2004.

[38] J. R. Hauser and D. Clausing, “The House of Quality”, Harvard
Business Review, May – June 1988, (pp. 63- 73).

[39] T. H. Al Balushi, P. R. Sampaio, D. Dabhi, and P. Loulopoulos,
“ElicitO: A Quality Ontology-Guided NFR Elicitation Tool”, Proc.
Of REFSQ 2007, Requirements Engineering: Foundations for
Software Quality, Trondheim, Norway, June 11-12 2007, pp. 306-
319.

449Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

http://users.encs.concordia.ca/~moh_kass/ICSEA2009.doc
http://users.encs.concordia.ca/~moh_kass/ICSEA2009.doc
http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/BaHS03.pdf
http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/BaHS03.pdf
http://www.sciencedirect.com/science/journal/01641212
http://www.sciencedirect.com/science/journal/01641212
http://msdn.microsoft.com/en-us/library/ff650706.aspx
http://www.cs.bilkent.edu.tr/~cagatay/cs413/PMBOK.pdf

