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Abstract— Case-Based Reasoning (CBR) has been widely used 

to generate good software effort estimates. The predictive 

performance of CBR is a dataset dependent and subject to 

extremely large space of configuration possibilities. Regardless 

of the type of adaptation technique, deciding on the optimal 

number of similar cases to be used before applying CBR is a 

key challenge. In this paper we propose a new technique based 

on Bisecting k-medoids clustering algorithm to better 

understanding the structure of a dataset and discovering the 

optimal cases for each individual project by excluding 

irrelevant cases. Results obtained showed that understanding 

of the data characteristic prior prediction stage can help in 

automatically finding the best number of cases for each test 

project. Performance figures of the proposed estimation 

method are better than those of other regular K-based CBR 

methods. 

Keywords- Software Effort Estimation; Case-Based 

Reasoning; Adjustment Techniques. 

I.  INTRODUCTION 

Estimating the likely software project effort is a vital task 
for project planning, control and assigning resources [5, 23, 
26, 28]. Although a variety of software effort estimation 
models have been proposed so far, the Case Based 
Reasoning (CBR) method is still the most widely 
investigated method. CBR is a knowledge management 
method based on premise that history almost repeats itself 
which leads to problem solving can be based upon retrieval 
by similarity [30]. It has been favored over regression 
techniques since software datasets often exhibit complex 
structure with a lot of discontinuities [2, 6, 20, 21].  

The predictive performance of CBR suffers from 
common problems such as very large performance deviations 
as well as being highly dataset dependent. This is due to a 
large space of configuration possibilities and design 
decisions induced for each individual dataset [16]. Recent 
publications reported the importance of discovering the 
optimal K closest cases for generating better estimates in 
CBR [11, 27]. Conventional K-based CBR methods start 
with a single analogy and increase this number depending on 
the overall performance of the whole dataset then it uses the 
K value that produces the overall best performance. 
However, a fixed K value that produces overall best 
performance does not necessarily provide the best 
performance for individual projects. Our claim is that we can 
avoid sticking to a fixed best performing number of cases 

which changes from dataset to dataset or even from a single 
project to another within the same dataset. We propose an 
alternative technique to calibrate CBR by using Bisecting k-
medoids (BK) clustering algorithm. The k-medoids is a 
clustering algorithm related to the centroid-based algorithms 
which groups similar individual instances within a dataset 
into N clusters known a priori [29, 30]. This enables us to 
discover the structure of dataset efficiently and automatically 
come up with the best number of K closest cases as well as 
excluding irrelevant cases for each individual test instance.  

  The rest of the article is organized as follows:  Section 2 
provides the Background of Case-Based Effort Estimation. 
Section 3 defines the Research question and introduces main 
problem. Section 4 presents the proposed technique. Section 
5 presents experimental design. Section 6 presents the results 
we obtained. Section 7 presents threats to validity of this 
study. Lastly, Section 8 summarizes our conclusions and 
future work. 

II. BACKGROUND 

Case-Based effort estimation is a variant of CBR which 
makes prediction for a new project by retrieving previously 
completed successful projects that have been encountered 
and remembered as historical projects [12, 13]. The data 
driven CBR method involves four major stages [25]: (1) 
retrieve the most similar training projects using Euclidean 
distance function as depicted in Eq. 1. Then (2) reuse the 
past solutions from the set of retrieved analogues to solve the 
new problem. (3) revise the proposed solution and to better 
adapt the target problem. Finally, (4) retain the solved 
problem for future problem solving. 
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where d is the similarity measure. m is the number of 
predictor features, t is the index of feature, pi and pj are 
projects under investigation and: 
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Although CBR generates successful performance figures 

in certain datasets, it still suffers from local tuning problems 
when they were to be applied in another setting [3]. Local 
tuning requires mainly learning appropriate K cases that fits 
procedure of adjustment and reflects dataset characteristics 
[16]. The classical approach uses a fixed number of cases 
(K=1, or 2 or…etc.) for all test projects, which is somewhat 
considered simpler but it relies heavily on the estimator 
intuitions [3]. In this direction, Kirsopp et al. [15] proposed 
making predictions from the K=2 nearest cases as it was 
found as the best value for their investigated datasets. In a 
further study Kirsopp et al. have increased their accuracy 
values with case and feature subset selection strategies. On 
the other hand, Idri et al. [9] proposed using all projects that 
fall within a certain similarity threshold. This approach could 
ignore some useful projects which might contribute better 
when similarity between selected and unselected cases is 
negligible. Li et al. [17] performed rigorous trials on actual 
and artificial datasets and they observed effect of various K 
values. However, we believe that reflection on dataset prior 
applying to different algorithms under multiple settings is of 
more significance. But, this is not enough because the 
selection of K cases is not only a dataset dependent but also 
adjustment method dependent. In this study we focus only on 
discovering the best number of cases to be used for each 
individual test project from the characteristics of the dataset. 

 

III. RESEARCH QUESTIONS 

Finding the appropriate number of cases to be used in 
CBR is a challenge on its own, and has a strong impact on 
the overall predictive performance. Conventional K-based 
CBR methods start with a single analogy and increase this 
number depending on the overall performance of the whole 
dataset then it uses the K value that produces the overall best 
performance. However, a fixed K value that produces overall 
best performance does not necessarily provide the best 
performance for individual projects. Furthermore, previous 
studies reported that the proper selection of K cases is a 
dataset dependent and subject to underlying distribution of 
the dataset [16]. For these reasons, we propose a new 
technique based on Bisecting k-medoids clustering algorithm 
to find the optimal number of cases to tune and configure 
CBR method. To the best of our   knowledge, it has not been 
used previously in software effort estimation domain. Unlike 
regular K-based CBR methods, the proposed technique starts 
with all projects in the train dataset and gradually excludes 
irrelevant projects on the basis of compactness degree. The 
proposed work attempts to answer the following research 
questions: 
1. How can we better understand the characteristics of a 
particular dataset and dynamically come up with optimum K 
number of analogies? 
2. Does the performance of CBR improve with automatic 
dynamic selection of K cases for each individual project? 

 

IV. THE PROPOSED CBR BASED BISECTING K-MEDOIDS 

ALGORITHM CBR(BK) 

The k-medoids is a clustering algorithm related to the 
centroid-based algorithms which groups similar individual 
instances within a dataset into N clusters known a priori [29, 
30].  It is more robust to noise and outliers as compared to k-
means because it minimizes the sum of pairwise 
dissimilarities instead of a sum of squared Euclidean 
distances. A medoid can be defined as the instance of a 
cluster, whose average dissimilarity to all the instances in the 
cluster is minimal i.e. it is a most centrally located point in 
the cluster. The popularity of making use of k-medoids 
clustering is its ability to use arbitrary dissimilarity or 
distances functions, which also makes it an appealing choice 
of clustering method for software effort data as software 
effort datasets also exhibit very dissimilar characteristics.  

Regardless of the k-medoids algorithm advantages it still 
has some challenges such as guessing the number of clusters 
that can be used to find the partitions that best fits the 
underlying data [30]. To avoid this challenge we employed 
bisecting procedure with k-medoids algorithm and propose 
Bisecting k-medoids algorithm (BK). BK is a variant of k-
medoids algorithm that can produce hierarchical clustering 
by recursively applying the basic k-medoids. It starts by 
considering the whole dataset to be one cluster. At each step, 
one cluster is selected and bisected further into two sub 
clusters using the basic k-medoids. Note that by recursively 
using a bisecting k-medoids clustering procedure, the dataset 
can be partitioned into any given number of clusters in which 
the so-obtained clusters are structured as a hierarchical 
binary tree. The decision whether to continue clustering or 
stop it depends on the comparison of compactness degree 
between childes and their direct parent in the tree. If the 
maximum of compactness of child clusters is smaller than 
compactness of their direct parent then clustering is 
continued. Otherwise it is stopped and the parent cluster is 
considered as a leaf node. This criterion enables the BK to 
uniformly partition the dataset into homogenous clusters. In 
this paper the average cluster compactness as a measure of 
homogeneity of each cluster is used, it is defined as:  

Compactness= 
2
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where || • || is the usual Euclidean norm, xj is the j

th
 data 

object, vi is the center of i
th
 cluster (Ci) and k is the number of 

clusters. A smaller value of this measure indicates a high 
homogeneity (less scattering).  

 
 

Figure 1. Illustration of Bisecting k-medoids algorithm 
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Figure 1 is a very simple BK tree that can be formed on a 
simple dataset of 15 projects. It shows how the main cluster 
is bisected recursively into four leaf clusters are: C2, C3, C5 
and C6. Tricky point here is that unlike K-based CBR 
methods, BK does not need any expert interference to 
discover dataset characteristics so as to decide on the number 
of trees to be built or the number of cases to be used in 
estimation. To better understand the BK algorithm, see the 
pseudo code in Figure 2. 

 
1: Input: The dataset X 

2: Output: The set of k clusters S={C1, C2, C3, C4, ..Ck} 

3: Initialization: Let V=X , S={}, NextLevl={} 

4: Repeat while size(V)> 0  

5:  foreach Cluster C in V 

6:  Comp compactness (C) 

7: [C1,C2]   k-medoids(C,2)  

8; Comp1 compactness(C1)  

9: Comp2 compactness(C2) 

10: If(max(Comp1,Comp2)<Comp)             

11:  NextLevel NextLevel  {C1,C2} 

12: Else 

13:  S S  {C} 

14: End 

15: VNextLevel 

16: NextLevel  {} 

17: End 

Figure 2. Bisecting k-medoids algorithm 
 

Finally once BK tree is built, the estimation process 
starts.  The un-weighted mean effort of the train projects of 
the leaf cluster whose medoid is closest to the test project 
becomes the estimated effort value for that test project as 
shown in Eq. 4. i.e. we choose to use K-many cases for 
estimation where K is the number of train instances that are 
in the selected cluster.  

 

 


K

i
it pEffort

K
pEffort

1
)(

1
)(     (4) 

 

V. EXPERIMENTAL DESIGN 

As it was reported [16] most of the methods in literature 

were tested on a single or a very limited number datasets, 

thereby reducing the credibility of the proposed method. To 

avoid this pitfall, we included nine datasets from two 

different sources namely PROMISE [4] and ISBSG [10]. 

PROMISE is an on-line publically available data repository 

and it consists of datasets donated by various researchers 

around the world. The datasets come from this source are: 

Desharnais [7], Kemerer [14], Albrecht [1], COCOMO [4], 

Maxwell [19], Telecom [4] and NASA93 [4] datasets. The 

other dataset comes from ISBSG data repository (release 10) 

which is a large data repository consists more than 4000 

projects collected from different types of projects around the 

world. Since many projects have missing values only 500 

projects with quality rating “A” are considered. 14 useful 

features were selected, 8 of which are numerical features and 

6 of which are categorical features. The descriptive statistics 

of such datasets are summarized in Table 1.  

TABLE 1 Statistical properties of the datasets 

Dataset Cases # 
Effort 

min 

Effort 

max 

Effort 

mean 

ISBSG 500 668 14938 2828.5 

Desharnais 77 546 23940 5046.3 

COCOMO 63 5.9 11400 683.5 

Kemerer 15 23.2 1107.3 219.2 

Albrecht 24 0.5 105.2 21.87 

Maxwell 62 583 63694 8223.2 

NASA93 18 8.4 824 624.4 

China 499 26 54620 3921 

Telecom 18 23.45 1115.5 284.3 

 

For each dataset we follow the same testing strategy, we 

used Leave-one-out cross validation to identify test and train 

projects such that, in each run, we select one project as test 

set and the remaining projects as training set. This 

procedure is performed until all projects within dataset are 

used as test projects. In each run, The prediction accuracy of 

different techniques is assessed using MMRE, PRED(0.25) 

performance measure as shown in Eqs. 5 and 6. MMRE 

computes mean of the absolute percentage of error between 

actual and predicted project effort values. PRED(0.25) is 

used as a complementary criterion to count the percentage 

of estimates that fall within less than 0.25 of the actual 

values.  
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where )p(Effort i and )p(Effort i are the actual value and 

predicted values of project pi. 

100250 
N

).(PRED


 (6) 

where  is the number of projects that have magnitude 

relative error less than 0.25, and N is the number of all 

observations. We also used Wilcoxon sum rank test to 

investigate the statistical significance of all the results, 

setting the confidence limit at 0.05. The Wilcoxon sum rank 

test is a nonparametric test that compares the medians of 

two samples. The reason behind using these tests is because 

all absolute residuals for all models used in this study were 

not normally distributed. In turn, the obtained results from 

the proposed approach have benchmarked to other regular 

K-based CBR methods that use a fixed number of K cases. 

 

VI. RESULTS 

A. Results for Research Question 1 

This study explores the feasibility of learning best K 

analogy number from the dataset structure prior building 
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CBR method. The previous results and conclusions indicate 

that a single best performing K value that is producing the 

lowest MRE values for the whole dataset does not 

necessarily produce lowest MRE value for every single 

project. To illustrates our viewpoint and better understand 

this problem we carried out an extensive search to find the 

mean effort value of the best K number of analogies that 

produces lowest MRE value for every single test project as 

shown in Figure 3. For a dataset of size n, the best K value 

can range from 1 to n − 1. Since a few number of datasets 

were enough to illustrate our viewpoint, we selected 3 

datasets that vary in the size (i.e. one small dataset 

(Albrecht), one medium (Maxwell) and one large 

(Desharnais)). Figure 3 shows the histogram of best selected 

K numbers for the three examined datasets, where x-axis 

represents K analogy number and y-axis represents 

frequency of K number (i.e. number of projects that chose 

that K value). It is clear that there is no global K number for 

all projects, for example in Albrecht dataset, two projects 

selected only the closest case (K=1), whilst four projects 

selected two closest cases (K=2) and so on. This indicates 

that every single project favors different number of closest 

analogies. The conclusion can be drawn here that using a 

fixed K number of cases for all test projects will far from 

optimum and there is provisional evidence that choosing of 

best K analogy for each individual project is relatively 

subject to data structure. 

The conclusion can be drawn from previous empirical 

results that the optimum K number of analogies is not global 

and every project favors different K number. However, our 

first research question was how can we better understand the 

characteristics of a particular dataset and dynamically come 

up with optimum K number of analogies? In this paper we 

proposed Bisecting k-medoids algorithm to better 

understand the characteristics of software datasets and 

automatically come up with the optimum K number. To 

illustrate that, we executed CBR(BK) over all employed 

datasets and we recorded the best obtained K for every test 

project. Figure 4 shows the histogram of K number of 

analogies for every test project. This demonstrates the 

capability of BK technique to dynamically discovering the 

various K values for every test project that takes into 

account the characteristics of each dataset on the basis of 

compactness degree. The procedure of selecting has become 

easier than first (i.e. where the estimator intuition is heavily 

used to choose the optimum number of analogy) since the 

entire best K selection process has been left to the BK. The 

performance figures of the proposed technique are discussed 

in the next section. 

 

B. Results for Research Question 2 

The second research question was whether the predictive 

performance of CBR method can be improved when using 

BK algorithm? Apart from being able to choose the number 

of cases for each test instance on its own, BK outperforms 

all the other K-based CBR methods as can be seen in Table 

2. 

 
 

 
 

 
 

Figure 3. Distribution of K-cases 

TABLE 2 MMRE results 

Dataset CBR 

(BK) 

CBR 

(K=1) 

CBR 

(K=2) 

CBR 

(K=4) 

CBR 

(K=8) 

CBR 

(K=16) 

Albrecht 45.4 71.0 66.5 73.9 89.1 146.5 

Kemerer 41.9 55.9 77.7 86.2 91.5 N/A 

Desharnais 29.4 60.2 51.5 50.2 61.0 79.9 

COCOMO 60.43 157.1 363.2 327.3 401.8 606.55 

Maxwell 41.3 182.6 132.7 149.3 138.2 145.6 

China 27.7 45.2 44.2 48.5 53.8 63.0 

Telecom 35.7 60.0 45.2 77.4 115.3 175.3 

ISBSG 37.0 72.6 73.2 74.7 71.7 71.7 

NASA 39.4 81.2 97.5 77.6 77.1 227.6 

 

When we look closer at the MMRE values in Table 2, we 

can see that in all 9 datasets, BK has never been 

outperformed by other methods with the lowest MMRE 

values, which suggest that BK has attained better predictive 

performance values than all other regular K-based CBR 

methods. This also shows the capability of BK to support 

small-size datasets such as in Kemerer and Albrecht. 

However, although it proved inaccurate in this study, the 

strategy of using fixed K-analogy the effort values may be 
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appropriate in situations where a potential analogues and 

target project are similar in size feature and other effort 

drivers. On the other hand, There may be little basis for 

believing that either increasing or decreasing the K-cases 

effort values of K-based CBR methods will not improve the 

accuracy of the estimation.  

Table 3 shows that the proposed technique has achieved 

larger PRED values over eight datasets, which demonstrated 

that most of the predictions have very good accuracy with 

MRE vales are less than 0.25. However, overall results from 

Tables 2 and 3 revealed that there is reasonable believe that 

using dynamic K-cases for every test project has potential to 

improve prediction accuracy of CBR in terms of PRED. 

Concerning discontinuities in the dataset structure, there is 

clear evidence that the proposed method has capability to 

group similar projects together in the same cluster as 

appeared in the results of Maxwell, COCOMO, Kemerer 

and ISBSG. 

 

 

 

 

 

 

 

 

 

Figure 4. Histogram of K analogies obtained by 

 CBR(BK) for all employed datasets 
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TABLE 3 PRED results 

Dataset CBR 

(BK) 

CBR 

(K=1) 

CBR 

(K=2) 

CBR 

(K=4) 

CBR 

(K=8) 

CBR 

(K=16) 

Albrecht 40.8 29.2 33.3 37.5 37.5 33.3 

Kemerer 43.3 40.0 20.0 13.3 20 N/A 

Desharnais 40.3 31.2 31.2 37.6 32.5 22.1 

COCOMO 19.3 12.7 19.1 15.9 12.7 12.7 

Maxwell 22.6 9.7 19.4 14.5 16.1 29 

China 52.7 38.3 43.5 41.9 38.1 33.7 

Telecom 53.3 33.3 50 44.4 38.9 22.2 

ISBSG 38.4 39.6 30.7 29.7 25.7 22.2 

NASA 39.3 33.3 38.9 22.2 11.1 0 

 
The variants of CBR methods are taken and compared 

using Wilcoxon sum rank test. The results of Wilcoxon sum 

rank test of absolute residuals are presented in Table 4. 

Surprisingly, predictions based on CBR(BK) model 

presented statistically significant but necessarily accurate 

estimations than others, confirmed by the results of MMRE 

as shown in Table 2. Except for small datasets such as 

Albrecht, Kemerer, Telecom and NASA, the statistical test 

results demonstrate that there is no significant difference if 

the predictions generated by any CBR(BK) and other 

regular K-based CBR methods. So it seems that the small 

datasets are the most challenging ones. These datasets have 

relatively small number of instances and large degree of 

heterogeneity between projects so it is difficult to obtain a 

cluster of sufficient number of instances. 

TABLE 4 Wilcoxon sum rank test results 

Dataset CBR 

(K=1) 

CBR 

(K=2) 

CBR 

(K=4) 

CBR 

(K=8) 

CBR 

(K=16) 

Albrecht 0.8 0.64 0.39 0.45 0.69 

Kemerer 0.7 0.17 0.07 0.07 0.69 

Desharnais 0.01* 0.01* 0.03* 0.01* 0.01* 

COCOMO 0.03* 0.01* 0.02* 0.03* 0.01* 

Maxwell 0.01* 0.01* 0.01* 0.01* 0.04* 

China 0.01* 0.01* 0.01* 0.01* 0.01* 

Telecom 0.79 0.76 0.42 0.91 0.03* 

ISBSG 0.04* 0.01* 0.01* 0.01* 0.01* 

NASA 0.68 0.84 0.19 0.04* 0.01* 

 

VII. THREAT TO VALIDITY 

This section presents the comments on threats to 
validities of our study based on internal, external and 
construct validity. Internal validity is the degree to which 
conclusions can be drawn with regard to configuration setup 
of BK algorithm including: 1) the identification of initial 
medoids of BK for each dataset, 2) determining stopping 
criterion. Currently, there is no efficient method to choose 
initial medoids so we used random selection procedure. So 
we believe that this decision was reasonable even though it 
makes the k-medoids is computationally intensive. For 
stopping criterion we preferred to use the compactness 
performance measure to see when the BK should stop. 
Although there are plenty of compactness measures we 
believe that the used measure is sufficient to give us 

indication of how instances in the same clusters are strongly 
related. 

Concerning construct validity which assures that we are 
measuring what we actually intended to measure. However, 
despite special emphasis was placed on the effectiveness of 
the performance measures, complete certainty with regard to 
this issue was challenged and we had to rely on common 
estimation-error based performance measures such as 
MMRE and PRED, which we no longer believe to be a 
completely trustworthy accuracy indicator [8, 24]. We do not 
consider that choice was a problem because (1) They are 
practical options for majority of researchers [2, 11, 13, 16, 
22], and (2) using such measures enables our study to be 
benchmarked with previous effort estimation studies. On the 
other hand, in order to make apple-to-apple comparisons 
between different adaptation techniques we preferred to use 
Leave-one cross-validation strategy, though some authors 
favored n-Fold cross validation. The principal reason is that, 
the Leave-one cross-validation has been used in some 
previous studies and recommended to do comparison 
between different estimation models. 

With regard to external validity, i.e. the ability to 
generalize the obtained findings of our comparative studies, 
we used 8 datasets from 2 different sources to ensure the 
generalizability of the obtained results. The employed 
datasets contain  a wide  diversity of projects  in terms  of 
their  sources,  their  domains and  the  time  period they 
were  developed in. We also believe that reproducibility of 
results is an important factor for external validity. Therefore, 
we have purposely selected publicly available datasets. 
However, we consider that some datasets are very old to be 
used in software cost estimation because they represent 
different software development approaches and technologies. 
The reason for this is that these datasets are publically 
available, and still widely used for benchmarking purposes. 

 

VIII. CONCLUSION AND FUTURE WORK 

This paper proposed a new technique based on utilizing 

Bisecting k-medoids clustering algorithm and compactness 

degree to find the best K analogies number from the structure 

of dataset for each test project. Thus, rather than proposing a 

fixed best-K value a priori as the traditional CBR methods 

do, what CBR(BK) does is starting with all the training 

samples in the dataset, learning the dataset to form BK 

binary tree and excluding the irrelevant cases on the basis of 

compactness degree and then discovering the best-K value 

for each individual project. The proposed technique has the 

capability to support different-size datasets that have a lot of 

categorical features. Empirical results on various datasets 

indicate the performance of the proposed method over other 

regular K-based CBR methods. So the conclusion can be 

drawn that the choice of best K value is subject to the 

characteristics of a software dataset, and this value should be 

discovered from the structure of dataset. A future work is 

planned to study the impact of feature selection and 

weighting on discovering the optimal K value.  

346Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances



ACKNOWLEDGMENT 

The authors are grateful to the Applied Science 
University, Amman, Jordan, for the financial support granted 
to cover the publication fee of this research article. 

 

REFERENCES 

[1] A. J. Albrecht and J. Gaffney, “Software function, source 
lines of code, and development effort prediction”, IEEE Trans 
on Software Engineering 9:639–648, 1983. 

[2] M. Azzeh, “A replicated assessment and comparison of 
adaptation techniques for analogy-based effort 
estimation”, Empirical Software Engineering 17(1-2): 90-127, 
2012.   

[3] M. Azzeh, D. Neagu and P. Cowling, “Fuzzy grey relational 
analysis for software effort estimation”, Empirical Software 
Engineering, 15: 60-90, 2010.  

[4] G. Boetticher, T. Menzies, T. Ostrand, PROMISE Repository 
of empirical software engineering data http://promisedata.org/ 
repository, West Virginia University, Department of 
Computer Science, 2010. 

[5] L. C. Briand, K. El-Emam, D. Surmann and I. Wieczorek, K. 
D. Maxwell. An assessment and comparison of common cost 
estimation modeling techniques. Proceeding of the 1999 
International Conference on Software Engineering, pp. 313–
322, 1999. 

[6] N. H. Chiu and S. J. Huang, “The adjusted analogy-based 
software effort estimation based on similarity distances”, 
Journal of Systems and Software 80:628–640. 
doi:10.1016/j.jss.2006.06.006, 2007. 

[7] J. M. Desharnais, Analyse statistique de la productivitie des 
projets informatique a partie de la technique des point des 
foncti on. University of Montreal, 1989. 

[8] T. Foss, E. Stensrud, B. Kitchenham and I. Myrtveit, “A 
simulation study of the model evaluation criterion MMRE”, 
IEEE Trans Softw Eng 29:985–995, 2003.  

[9] A. Idri, A. Abran and T. Khoshgoftaar, Fuzzy Analogy: a 
New Approach for Software Effort Estimation, In: 11th 
International Workshop in Software Measurements, pp. 93-
101, 2001. 

[10] ISBSG, International software benchmark and standard group, 
Data CDRelease 10, www.isbsg.org, 2007 

[11] M. Jorgensen, U. Indahl and D. Sjoberg Software effort 
estimation by analogy and “regression toward the mean”. 
Journal of Systems and Software 68:253–262, 2003. 

[12] G. Kadoda, M. Cartwright, L. Chen and M. Shepperd, 
Experiences using case based reasoning to predict software 
project effort, in proceedings of EASE: Evaluation and 
Assessment in Software Engineering Conference, Keele, UK, 
2000. 

[13] J. Keung, B. Kitchenham and D. R. Jeffery, Analogy-X: 
Providing Statistical Inference to Analogy-Based Software 
Cost Estimation. IEEE Transaction on Software Engineering. 
34(4): 471-484, 2008. 

[14] C. F. Kemerer, “An empirical validation of software cost 
estimation models”, Comm. ACM 30: 416–429, 1987. 

[15] C. Kirsopp, E. Mendes, R. Premraj, M. Shepperd, An 
empirical analysis of linear adaptation techniques for case-
based prediction. International Conference on CBR. pp.231–
245, 2003. 

[16] E. Kocaguneli,  T. Menzies,  A. Bener and J. Keung,  
“Exploiting the Essential Assumptions of Analogy-based 
Effort Estimation”, IEEE transaction on Software 
Engineering.  ISSN: 0098-5589,  2011. 

[17] J. Z. Li, G. Ruhe, A. Al-Emran and M. Richter, “A flexible 
method for software effort estimation by analogy”, Empirical 
Software Engineering 12(1):65–106, 2007.  

[18] Y. F. Li, M. Xie and T. N. Goh, “A study of the non-linear 
adjustment for analogy based software cost estimation”, 
Empirical Software Engineering 14:603–643, 2009. 

[19] K. Maxwell, Applied statistics for software managers. 
Englewood Cliffs, NJ, Prentice-Hall, 2002. 

[20] E. Mendes, N. Mosley and S. Counsell, Web metrics—
Estimating design and authoring effort. IEEE Multimedia, 
Special Issue on Web Engineering, 50–57, 2001. 

[21] E. Mendes, N. Mosley and S. Counsell, A replicated 
assessment of the use of adaptation rules to improve Web cost 
estimation, International Symposium on Empirical Software 
Engineering, pp. 100-109, 2003. 

[22] E. Mendes, I. Watson, C. Triggs, N. Mosley and S Counsell, 
“A comparative study of cost estimation models for web 
hypermedia applications”, Empirical Software Engineering 
8:163–196, 2003.  

[23] T. Menzies, Z. Chen , J. Hihn and K. Lum, “Selecting Best 
Practices for Effort Estimation”, IEEE Transaction on 
Software Engineering. 32:883-895, 2006. 

[24] I. Myrtveit, E. Stensrud and M. Shepperd, “Reliability and 
validity in comparative studies of software prediction 
models”, IEEE Trans on Software Engineering 31(5):380–
391, 2005. 

[25] M. Shepperd and C. Schofield, “Estimating software project 
effort using cases”, IEEE Transaction Software Engineering 
23:736–743, 2006.  

[26] M. Shepperd and G. Kadoda, “Comparing software prediction 
techniques using simulation”, IEEE Trans on Software 
Engineering 27(11):1014–1022, 2001.  

[27] M. Shepperd and M. Cartwright, A Replication of the Use of 
Regression towards the Mean (R2M) as an Adjustment to 
Effort Estimation Models, 11th IEEE International Software 
Metrics Symposium (METRICS'05), pp.38, 2005. 

[28] F. Walkerden and D. R. Jeffery, “An empirical study of 
analogy-based software effort Estimation”, Empirical 
Software Engineering 4(2):135–158, 1999.  

[29] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An 
Introduction to Cluster Analysis.  Wiley, New York, 1990. 

[30] H-S. Park and  C-H. Jun, “A simple and fast algorithm for K-
medoids clustering”, J. Expert Systems with Applications, 
Volume 36, Issue 2, Part 2, Pages 3336-3341, 2009.

 

347Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances


