
Learning Best K analogies from Data Distribution for Case-Based Software Effort

Estimation

Mohammad Azzeh, Yousef Elsheikh
Faculty of Information Technology

Applied Science University

Amman, Jordan

e-mail: {m.y.azzeh, y_elsheikh}@asu.edu.jo

Abstract— Case-Based Reasoning (CBR) has been widely used

to generate good software effort estimates. The predictive

performance of CBR is a dataset dependent and subject to

extremely large space of configuration possibilities. Regardless

of the type of adaptation technique, deciding on the optimal

number of similar cases to be used before applying CBR is a

key challenge. In this paper we propose a new technique based

on Bisecting k-medoids clustering algorithm to better

understanding the structure of a dataset and discovering the

optimal cases for each individual project by excluding

irrelevant cases. Results obtained showed that understanding

of the data characteristic prior prediction stage can help in

automatically finding the best number of cases for each test

project. Performance figures of the proposed estimation

method are better than those of other regular K-based CBR

methods.

Keywords- Software Effort Estimation; Case-Based

Reasoning; Adjustment Techniques.

I. INTRODUCTION

Estimating the likely software project effort is a vital task
for project planning, control and assigning resources [5, 23,
26, 28]. Although a variety of software effort estimation
models have been proposed so far, the Case Based
Reasoning (CBR) method is still the most widely
investigated method. CBR is a knowledge management
method based on premise that history almost repeats itself
which leads to problem solving can be based upon retrieval
by similarity [30]. It has been favored over regression
techniques since software datasets often exhibit complex
structure with a lot of discontinuities [2, 6, 20, 21].

The predictive performance of CBR suffers from
common problems such as very large performance deviations
as well as being highly dataset dependent. This is due to a
large space of configuration possibilities and design
decisions induced for each individual dataset [16]. Recent
publications reported the importance of discovering the
optimal K closest cases for generating better estimates in
CBR [11, 27]. Conventional K-based CBR methods start
with a single analogy and increase this number depending on
the overall performance of the whole dataset then it uses the
K value that produces the overall best performance.
However, a fixed K value that produces overall best
performance does not necessarily provide the best
performance for individual projects. Our claim is that we can
avoid sticking to a fixed best performing number of cases

which changes from dataset to dataset or even from a single
project to another within the same dataset. We propose an
alternative technique to calibrate CBR by using Bisecting k-
medoids (BK) clustering algorithm. The k-medoids is a
clustering algorithm related to the centroid-based algorithms
which groups similar individual instances within a dataset
into N clusters known a priori [29, 30]. This enables us to
discover the structure of dataset efficiently and automatically
come up with the best number of K closest cases as well as
excluding irrelevant cases for each individual test instance.

 The rest of the article is organized as follows: Section 2
provides the Background of Case-Based Effort Estimation.
Section 3 defines the Research question and introduces main
problem. Section 4 presents the proposed technique. Section
5 presents experimental design. Section 6 presents the results
we obtained. Section 7 presents threats to validity of this
study. Lastly, Section 8 summarizes our conclusions and
future work.

II. BACKGROUND

Case-Based effort estimation is a variant of CBR which
makes prediction for a new project by retrieving previously
completed successful projects that have been encountered
and remembered as historical projects [12, 13]. The data
driven CBR method involves four major stages [25]: (1)
retrieve the most similar training projects using Euclidean
distance function as depicted in Eq. 1. Then (2) reuse the
past solutions from the set of retrieved analogues to solve the
new problem. (3) revise the proposed solution and to better
adapt the target problem. Finally, (4) retain the solved
problem for future problem solving.

 


m

t
jtitji pp

m
ppd

1
),(

1
),((1)

where d is the similarity measure. m is the number of
predictor features, t is the index of feature, pi and pj are
projects under investigation and:

 































jtit

jtit

tt

jtit

jtit

ppandlcategoricaistif

ppandlcategoricaistif

continuousistif
pp

pp

≠1

0

min-max

-

),(

2

 (2)

341Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Although CBR generates successful performance figures

in certain datasets, it still suffers from local tuning problems
when they were to be applied in another setting [3]. Local
tuning requires mainly learning appropriate K cases that fits
procedure of adjustment and reflects dataset characteristics
[16]. The classical approach uses a fixed number of cases
(K=1, or 2 or…etc.) for all test projects, which is somewhat
considered simpler but it relies heavily on the estimator
intuitions [3]. In this direction, Kirsopp et al. [15] proposed
making predictions from the K=2 nearest cases as it was
found as the best value for their investigated datasets. In a
further study Kirsopp et al. have increased their accuracy
values with case and feature subset selection strategies. On
the other hand, Idri et al. [9] proposed using all projects that
fall within a certain similarity threshold. This approach could
ignore some useful projects which might contribute better
when similarity between selected and unselected cases is
negligible. Li et al. [17] performed rigorous trials on actual
and artificial datasets and they observed effect of various K
values. However, we believe that reflection on dataset prior
applying to different algorithms under multiple settings is of
more significance. But, this is not enough because the
selection of K cases is not only a dataset dependent but also
adjustment method dependent. In this study we focus only on
discovering the best number of cases to be used for each
individual test project from the characteristics of the dataset.

III. RESEARCH QUESTIONS

Finding the appropriate number of cases to be used in
CBR is a challenge on its own, and has a strong impact on
the overall predictive performance. Conventional K-based
CBR methods start with a single analogy and increase this
number depending on the overall performance of the whole
dataset then it uses the K value that produces the overall best
performance. However, a fixed K value that produces overall
best performance does not necessarily provide the best
performance for individual projects. Furthermore, previous
studies reported that the proper selection of K cases is a
dataset dependent and subject to underlying distribution of
the dataset [16]. For these reasons, we propose a new
technique based on Bisecting k-medoids clustering algorithm
to find the optimal number of cases to tune and configure
CBR method. To the best of our knowledge, it has not been
used previously in software effort estimation domain. Unlike
regular K-based CBR methods, the proposed technique starts
with all projects in the train dataset and gradually excludes
irrelevant projects on the basis of compactness degree. The
proposed work attempts to answer the following research
questions:
1. How can we better understand the characteristics of a
particular dataset and dynamically come up with optimum K
number of analogies?
2. Does the performance of CBR improve with automatic
dynamic selection of K cases for each individual project?

IV. THE PROPOSED CBR BASED BISECTING K-MEDOIDS

ALGORITHM CBR(BK)

The k-medoids is a clustering algorithm related to the
centroid-based algorithms which groups similar individual
instances within a dataset into N clusters known a priori [29,
30]. It is more robust to noise and outliers as compared to k-
means because it minimizes the sum of pairwise
dissimilarities instead of a sum of squared Euclidean
distances. A medoid can be defined as the instance of a
cluster, whose average dissimilarity to all the instances in the
cluster is minimal i.e. it is a most centrally located point in
the cluster. The popularity of making use of k-medoids
clustering is its ability to use arbitrary dissimilarity or
distances functions, which also makes it an appealing choice
of clustering method for software effort data as software
effort datasets also exhibit very dissimilar characteristics.

Regardless of the k-medoids algorithm advantages it still
has some challenges such as guessing the number of clusters
that can be used to find the partitions that best fits the
underlying data [30]. To avoid this challenge we employed
bisecting procedure with k-medoids algorithm and propose
Bisecting k-medoids algorithm (BK). BK is a variant of k-
medoids algorithm that can produce hierarchical clustering
by recursively applying the basic k-medoids. It starts by
considering the whole dataset to be one cluster. At each step,
one cluster is selected and bisected further into two sub
clusters using the basic k-medoids. Note that by recursively
using a bisecting k-medoids clustering procedure, the dataset
can be partitioned into any given number of clusters in which
the so-obtained clusters are structured as a hierarchical
binary tree. The decision whether to continue clustering or
stop it depends on the comparison of compactness degree
between childes and their direct parent in the tree. If the
maximum of compactness of child clusters is smaller than
compactness of their direct parent then clustering is
continued. Otherwise it is stopped and the parent cluster is
considered as a leaf node. This criterion enables the BK to
uniformly partition the dataset into homogenous clusters. In
this paper the average cluster compactness as a measure of
homogeneity of each cluster is used, it is defined as:

Compactness=
2

1 1

1
  


k

i

n

Cx,j
ij

ij

vx
n

 (3)

where || • || is the usual Euclidean norm, xj is the j

th
 data

object, vi is the center of i
th
 cluster (Ci) and k is the number of

clusters. A smaller value of this measure indicates a high
homogeneity (less scattering).

Figure 1. Illustration of Bisecting k-medoids algorithm

342Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Figure 1 is a very simple BK tree that can be formed on a
simple dataset of 15 projects. It shows how the main cluster
is bisected recursively into four leaf clusters are: C2, C3, C5
and C6. Tricky point here is that unlike K-based CBR
methods, BK does not need any expert interference to
discover dataset characteristics so as to decide on the number
of trees to be built or the number of cases to be used in
estimation. To better understand the BK algorithm, see the
pseudo code in Figure 2.

1: Input: The dataset X

2: Output: The set of k clusters S={C1, C2, C3, C4, ..Ck}

3: Initialization: Let V=X , S={}, NextLevl={}

4: Repeat while size(V)> 0

5: foreach Cluster C in V

6: Comp compactness (C)

7: [C1,C2]  k-medoids(C,2)

8; Comp1 compactness(C1)

9: Comp2 compactness(C2)

10: If(max(Comp1,Comp2)<Comp)

11: NextLevel NextLevel  {C1,C2}

12: Else

13: S S  {C}

14: End

15: VNextLevel

16: NextLevel  {}

17: End

Figure 2. Bisecting k-medoids algorithm

Finally once BK tree is built, the estimation process
starts. The un-weighted mean effort of the train projects of
the leaf cluster whose medoid is closest to the test project
becomes the estimated effort value for that test project as
shown in Eq. 4. i.e. we choose to use K-many cases for
estimation where K is the number of train instances that are
in the selected cluster.

 


K

i
it pEffort

K
pEffort

1
)(

1
)((4)

V. EXPERIMENTAL DESIGN

As it was reported [16] most of the methods in literature

were tested on a single or a very limited number datasets,

thereby reducing the credibility of the proposed method. To

avoid this pitfall, we included nine datasets from two

different sources namely PROMISE [4] and ISBSG [10].

PROMISE is an on-line publically available data repository

and it consists of datasets donated by various researchers

around the world. The datasets come from this source are:

Desharnais [7], Kemerer [14], Albrecht [1], COCOMO [4],

Maxwell [19], Telecom [4] and NASA93 [4] datasets. The

other dataset comes from ISBSG data repository (release 10)

which is a large data repository consists more than 4000

projects collected from different types of projects around the

world. Since many projects have missing values only 500

projects with quality rating “A” are considered. 14 useful

features were selected, 8 of which are numerical features and

6 of which are categorical features. The descriptive statistics

of such datasets are summarized in Table 1.

TABLE 1 Statistical properties of the datasets

Dataset Cases #
Effort

min

Effort

max

Effort

mean

ISBSG 500 668 14938 2828.5

Desharnais 77 546 23940 5046.3

COCOMO 63 5.9 11400 683.5

Kemerer 15 23.2 1107.3 219.2

Albrecht 24 0.5 105.2 21.87

Maxwell 62 583 63694 8223.2

NASA93 18 8.4 824 624.4

China 499 26 54620 3921

Telecom 18 23.45 1115.5 284.3

For each dataset we follow the same testing strategy, we

used Leave-one-out cross validation to identify test and train

projects such that, in each run, we select one project as test

set and the remaining projects as training set. This

procedure is performed until all projects within dataset are

used as test projects. In each run, The prediction accuracy of

different techniques is assessed using MMRE, PRED(0.25)

performance measure as shown in Eqs. 5 and 6. MMRE

computes mean of the absolute percentage of error between

actual and predicted project effort values. PRED(0.25) is

used as a complementary criterion to count the percentage

of estimates that fall within less than 0.25 of the actual

values.

 


N

i i

ii

)p(Effort

|)p(Effort)p(Effort|
MMRE

1

-
 (5)

where)p(Effort i and)p(Effort i are the actual value and

predicted values of project pi.

100250 
N

).(PRED


 (6)

where  is the number of projects that have magnitude

relative error less than 0.25, and N is the number of all

observations. We also used Wilcoxon sum rank test to

investigate the statistical significance of all the results,

setting the confidence limit at 0.05. The Wilcoxon sum rank

test is a nonparametric test that compares the medians of

two samples. The reason behind using these tests is because

all absolute residuals for all models used in this study were

not normally distributed. In turn, the obtained results from

the proposed approach have benchmarked to other regular

K-based CBR methods that use a fixed number of K cases.

VI. RESULTS

A. Results for Research Question 1

This study explores the feasibility of learning best K

analogy number from the dataset structure prior building

343Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

CBR method. The previous results and conclusions indicate

that a single best performing K value that is producing the

lowest MRE values for the whole dataset does not

necessarily produce lowest MRE value for every single

project. To illustrates our viewpoint and better understand

this problem we carried out an extensive search to find the

mean effort value of the best K number of analogies that

produces lowest MRE value for every single test project as

shown in Figure 3. For a dataset of size n, the best K value

can range from 1 to n − 1. Since a few number of datasets

were enough to illustrate our viewpoint, we selected 3

datasets that vary in the size (i.e. one small dataset

(Albrecht), one medium (Maxwell) and one large

(Desharnais)). Figure 3 shows the histogram of best selected

K numbers for the three examined datasets, where x-axis

represents K analogy number and y-axis represents

frequency of K number (i.e. number of projects that chose

that K value). It is clear that there is no global K number for

all projects, for example in Albrecht dataset, two projects

selected only the closest case (K=1), whilst four projects

selected two closest cases (K=2) and so on. This indicates

that every single project favors different number of closest

analogies. The conclusion can be drawn here that using a

fixed K number of cases for all test projects will far from

optimum and there is provisional evidence that choosing of

best K analogy for each individual project is relatively

subject to data structure.

The conclusion can be drawn from previous empirical

results that the optimum K number of analogies is not global

and every project favors different K number. However, our

first research question was how can we better understand the

characteristics of a particular dataset and dynamically come

up with optimum K number of analogies? In this paper we

proposed Bisecting k-medoids algorithm to better

understand the characteristics of software datasets and

automatically come up with the optimum K number. To

illustrate that, we executed CBR(BK) over all employed

datasets and we recorded the best obtained K for every test

project. Figure 4 shows the histogram of K number of

analogies for every test project. This demonstrates the

capability of BK technique to dynamically discovering the

various K values for every test project that takes into

account the characteristics of each dataset on the basis of

compactness degree. The procedure of selecting has become

easier than first (i.e. where the estimator intuition is heavily

used to choose the optimum number of analogy) since the

entire best K selection process has been left to the BK. The

performance figures of the proposed technique are discussed

in the next section.

B. Results for Research Question 2

The second research question was whether the predictive

performance of CBR method can be improved when using

BK algorithm? Apart from being able to choose the number

of cases for each test instance on its own, BK outperforms

all the other K-based CBR methods as can be seen in Table

2.

Figure 3. Distribution of K-cases

TABLE 2 MMRE results

Dataset CBR

(BK)

CBR

(K=1)

CBR

(K=2)

CBR

(K=4)

CBR

(K=8)

CBR

(K=16)

Albrecht 45.4 71.0 66.5 73.9 89.1 146.5

Kemerer 41.9 55.9 77.7 86.2 91.5 N/A

Desharnais 29.4 60.2 51.5 50.2 61.0 79.9

COCOMO 60.43 157.1 363.2 327.3 401.8 606.55

Maxwell 41.3 182.6 132.7 149.3 138.2 145.6

China 27.7 45.2 44.2 48.5 53.8 63.0

Telecom 35.7 60.0 45.2 77.4 115.3 175.3

ISBSG 37.0 72.6 73.2 74.7 71.7 71.7

NASA 39.4 81.2 97.5 77.6 77.1 227.6

When we look closer at the MMRE values in Table 2, we

can see that in all 9 datasets, BK has never been

outperformed by other methods with the lowest MMRE

values, which suggest that BK has attained better predictive

performance values than all other regular K-based CBR

methods. This also shows the capability of BK to support

small-size datasets such as in Kemerer and Albrecht.

However, although it proved inaccurate in this study, the

strategy of using fixed K-analogy the effort values may be

344Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

appropriate in situations where a potential analogues and

target project are similar in size feature and other effort

drivers. On the other hand, There may be little basis for

believing that either increasing or decreasing the K-cases

effort values of K-based CBR methods will not improve the

accuracy of the estimation.

Table 3 shows that the proposed technique has achieved

larger PRED values over eight datasets, which demonstrated

that most of the predictions have very good accuracy with

MRE vales are less than 0.25. However, overall results from

Tables 2 and 3 revealed that there is reasonable believe that

using dynamic K-cases for every test project has potential to

improve prediction accuracy of CBR in terms of PRED.

Concerning discontinuities in the dataset structure, there is

clear evidence that the proposed method has capability to

group similar projects together in the same cluster as

appeared in the results of Maxwell, COCOMO, Kemerer

and ISBSG.

Figure 4. Histogram of K analogies obtained by

 CBR(BK) for all employed datasets

345Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

TABLE 3 PRED results

Dataset CBR

(BK)

CBR

(K=1)

CBR

(K=2)

CBR

(K=4)

CBR

(K=8)

CBR

(K=16)

Albrecht 40.8 29.2 33.3 37.5 37.5 33.3

Kemerer 43.3 40.0 20.0 13.3 20 N/A

Desharnais 40.3 31.2 31.2 37.6 32.5 22.1

COCOMO 19.3 12.7 19.1 15.9 12.7 12.7

Maxwell 22.6 9.7 19.4 14.5 16.1 29

China 52.7 38.3 43.5 41.9 38.1 33.7

Telecom 53.3 33.3 50 44.4 38.9 22.2

ISBSG 38.4 39.6 30.7 29.7 25.7 22.2

NASA 39.3 33.3 38.9 22.2 11.1 0

The variants of CBR methods are taken and compared

using Wilcoxon sum rank test. The results of Wilcoxon sum

rank test of absolute residuals are presented in Table 4.

Surprisingly, predictions based on CBR(BK) model

presented statistically significant but necessarily accurate

estimations than others, confirmed by the results of MMRE

as shown in Table 2. Except for small datasets such as

Albrecht, Kemerer, Telecom and NASA, the statistical test

results demonstrate that there is no significant difference if

the predictions generated by any CBR(BK) and other

regular K-based CBR methods. So it seems that the small

datasets are the most challenging ones. These datasets have

relatively small number of instances and large degree of

heterogeneity between projects so it is difficult to obtain a

cluster of sufficient number of instances.

TABLE 4 Wilcoxon sum rank test results

Dataset CBR

(K=1)

CBR

(K=2)

CBR

(K=4)

CBR

(K=8)

CBR

(K=16)

Albrecht 0.8 0.64 0.39 0.45 0.69

Kemerer 0.7 0.17 0.07 0.07 0.69

Desharnais 0.01* 0.01* 0.03* 0.01* 0.01*

COCOMO 0.03* 0.01* 0.02* 0.03* 0.01*

Maxwell 0.01* 0.01* 0.01* 0.01* 0.04*

China 0.01* 0.01* 0.01* 0.01* 0.01*

Telecom 0.79 0.76 0.42 0.91 0.03*

ISBSG 0.04* 0.01* 0.01* 0.01* 0.01*

NASA 0.68 0.84 0.19 0.04* 0.01*

VII. THREAT TO VALIDITY

This section presents the comments on threats to
validities of our study based on internal, external and
construct validity. Internal validity is the degree to which
conclusions can be drawn with regard to configuration setup
of BK algorithm including: 1) the identification of initial
medoids of BK for each dataset, 2) determining stopping
criterion. Currently, there is no efficient method to choose
initial medoids so we used random selection procedure. So
we believe that this decision was reasonable even though it
makes the k-medoids is computationally intensive. For
stopping criterion we preferred to use the compactness
performance measure to see when the BK should stop.
Although there are plenty of compactness measures we
believe that the used measure is sufficient to give us

indication of how instances in the same clusters are strongly
related.

Concerning construct validity which assures that we are
measuring what we actually intended to measure. However,
despite special emphasis was placed on the effectiveness of
the performance measures, complete certainty with regard to
this issue was challenged and we had to rely on common
estimation-error based performance measures such as
MMRE and PRED, which we no longer believe to be a
completely trustworthy accuracy indicator [8, 24]. We do not
consider that choice was a problem because (1) They are
practical options for majority of researchers [2, 11, 13, 16,
22], and (2) using such measures enables our study to be
benchmarked with previous effort estimation studies. On the
other hand, in order to make apple-to-apple comparisons
between different adaptation techniques we preferred to use
Leave-one cross-validation strategy, though some authors
favored n-Fold cross validation. The principal reason is that,
the Leave-one cross-validation has been used in some
previous studies and recommended to do comparison
between different estimation models.

With regard to external validity, i.e. the ability to
generalize the obtained findings of our comparative studies,
we used 8 datasets from 2 different sources to ensure the
generalizability of the obtained results. The employed
datasets contain a wide diversity of projects in terms of
their sources, their domains and the time period they
were developed in. We also believe that reproducibility of
results is an important factor for external validity. Therefore,
we have purposely selected publicly available datasets.
However, we consider that some datasets are very old to be
used in software cost estimation because they represent
different software development approaches and technologies.
The reason for this is that these datasets are publically
available, and still widely used for benchmarking purposes.

VIII. CONCLUSION AND FUTURE WORK

This paper proposed a new technique based on utilizing

Bisecting k-medoids clustering algorithm and compactness

degree to find the best K analogies number from the structure

of dataset for each test project. Thus, rather than proposing a

fixed best-K value a priori as the traditional CBR methods

do, what CBR(BK) does is starting with all the training

samples in the dataset, learning the dataset to form BK

binary tree and excluding the irrelevant cases on the basis of

compactness degree and then discovering the best-K value

for each individual project. The proposed technique has the

capability to support different-size datasets that have a lot of

categorical features. Empirical results on various datasets

indicate the performance of the proposed method over other

regular K-based CBR methods. So the conclusion can be

drawn that the choice of best K value is subject to the

characteristics of a software dataset, and this value should be

discovered from the structure of dataset. A future work is

planned to study the impact of feature selection and

weighting on discovering the optimal K value.

346Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

ACKNOWLEDGMENT

The authors are grateful to the Applied Science
University, Amman, Jordan, for the financial support granted
to cover the publication fee of this research article.

REFERENCES

[1] A. J. Albrecht and J. Gaffney, “Software function, source
lines of code, and development effort prediction”, IEEE Trans
on Software Engineering 9:639–648, 1983.

[2] M. Azzeh, “A replicated assessment and comparison of
adaptation techniques for analogy-based effort
estimation”, Empirical Software Engineering 17(1-2): 90-127,
2012.

[3] M. Azzeh, D. Neagu and P. Cowling, “Fuzzy grey relational
analysis for software effort estimation”, Empirical Software
Engineering, 15: 60-90, 2010.

[4] G. Boetticher, T. Menzies, T. Ostrand, PROMISE Repository
of empirical software engineering data http://promisedata.org/
repository, West Virginia University, Department of
Computer Science, 2010.

[5] L. C. Briand, K. El-Emam, D. Surmann and I. Wieczorek, K.
D. Maxwell. An assessment and comparison of common cost
estimation modeling techniques. Proceeding of the 1999
International Conference on Software Engineering, pp. 313–
322, 1999.

[6] N. H. Chiu and S. J. Huang, “The adjusted analogy-based
software effort estimation based on similarity distances”,
Journal of Systems and Software 80:628–640.
doi:10.1016/j.jss.2006.06.006, 2007.

[7] J. M. Desharnais, Analyse statistique de la productivitie des
projets informatique a partie de la technique des point des
foncti on. University of Montreal, 1989.

[8] T. Foss, E. Stensrud, B. Kitchenham and I. Myrtveit, “A
simulation study of the model evaluation criterion MMRE”,
IEEE Trans Softw Eng 29:985–995, 2003.

[9] A. Idri, A. Abran and T. Khoshgoftaar, Fuzzy Analogy: a
New Approach for Software Effort Estimation, In: 11th
International Workshop in Software Measurements, pp. 93-
101, 2001.

[10] ISBSG, International software benchmark and standard group,
Data CDRelease 10, www.isbsg.org, 2007

[11] M. Jorgensen, U. Indahl and D. Sjoberg Software effort
estimation by analogy and “regression toward the mean”.
Journal of Systems and Software 68:253–262, 2003.

[12] G. Kadoda, M. Cartwright, L. Chen and M. Shepperd,
Experiences using case based reasoning to predict software
project effort, in proceedings of EASE: Evaluation and
Assessment in Software Engineering Conference, Keele, UK,
2000.

[13] J. Keung, B. Kitchenham and D. R. Jeffery, Analogy-X:
Providing Statistical Inference to Analogy-Based Software
Cost Estimation. IEEE Transaction on Software Engineering.
34(4): 471-484, 2008.

[14] C. F. Kemerer, “An empirical validation of software cost
estimation models”, Comm. ACM 30: 416–429, 1987.

[15] C. Kirsopp, E. Mendes, R. Premraj, M. Shepperd, An
empirical analysis of linear adaptation techniques for case-
based prediction. International Conference on CBR. pp.231–
245, 2003.

[16] E. Kocaguneli, T. Menzies, A. Bener and J. Keung,
“Exploiting the Essential Assumptions of Analogy-based
Effort Estimation”, IEEE transaction on Software
Engineering. ISSN: 0098-5589, 2011.

[17] J. Z. Li, G. Ruhe, A. Al-Emran and M. Richter, “A flexible
method for software effort estimation by analogy”, Empirical
Software Engineering 12(1):65–106, 2007.

[18] Y. F. Li, M. Xie and T. N. Goh, “A study of the non-linear
adjustment for analogy based software cost estimation”,
Empirical Software Engineering 14:603–643, 2009.

[19] K. Maxwell, Applied statistics for software managers.
Englewood Cliffs, NJ, Prentice-Hall, 2002.

[20] E. Mendes, N. Mosley and S. Counsell, Web metrics—
Estimating design and authoring effort. IEEE Multimedia,
Special Issue on Web Engineering, 50–57, 2001.

[21] E. Mendes, N. Mosley and S. Counsell, A replicated
assessment of the use of adaptation rules to improve Web cost
estimation, International Symposium on Empirical Software
Engineering, pp. 100-109, 2003.

[22] E. Mendes, I. Watson, C. Triggs, N. Mosley and S Counsell,
“A comparative study of cost estimation models for web
hypermedia applications”, Empirical Software Engineering
8:163–196, 2003.

[23] T. Menzies, Z. Chen , J. Hihn and K. Lum, “Selecting Best
Practices for Effort Estimation”, IEEE Transaction on
Software Engineering. 32:883-895, 2006.

[24] I. Myrtveit, E. Stensrud and M. Shepperd, “Reliability and
validity in comparative studies of software prediction
models”, IEEE Trans on Software Engineering 31(5):380–
391, 2005.

[25] M. Shepperd and C. Schofield, “Estimating software project
effort using cases”, IEEE Transaction Software Engineering
23:736–743, 2006.

[26] M. Shepperd and G. Kadoda, “Comparing software prediction
techniques using simulation”, IEEE Trans on Software
Engineering 27(11):1014–1022, 2001.

[27] M. Shepperd and M. Cartwright, A Replication of the Use of
Regression towards the Mean (R2M) as an Adjustment to
Effort Estimation Models, 11th IEEE International Software
Metrics Symposium (METRICS'05), pp.38, 2005.

[28] F. Walkerden and D. R. Jeffery, “An empirical study of
analogy-based software effort Estimation”, Empirical
Software Engineering 4(2):135–158, 1999.

[29] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley, New York, 1990.

[30] H-S. Park and C-H. Jun, “A simple and fast algorithm for K-
medoids clustering”, J. Expert Systems with Applications,
Volume 36, Issue 2, Part 2, Pages 3336-3341, 2009.

347Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

