
A Framework for Characterizing Usability Requirements Elicitation and Analysis
Methodologies (UREAM)

Jos J.M. Trienekens
IE&IS
TUE

Eindhoven, The Netherlands
j.j.m.trienekens@tue.nl

Rob J. Kusters
Management Sciences

Open University
Heerlen, The Netherlands

rob.kusters@ou.nl

Abstract—Dedicated methodologies for the elicitation and
analysis of usability requirements have been proposed in
literature, usually developed by usability experts. The usability
of these approaches by non-expert software engineers is not
obvious. In this paper, the objective is to support developers
and managers in a software development project in deciding
on which methodology to select, taking into account local
strengths and weaknesses. We define a framework based on a
set of criteria that allow for the comparison of methodologies.

Keywords-usability; usability requirements.

I. INTRODUCTION

In the development of interactive systems, usability is
increasingly considered to be a crucial factor for the success
of a software system [13]. However, identifying and
specifying usability requirements are not trivial tasks. It is
even further complicated by the existence of multiple,
different definitions of usability. Multiple approaches have
been proposed on how to elicit and analyze usability
requirements. Therefore, a need arises to compare the
available methodologies in order to make a well-founded
decision about which can be used in a project, based on the
specific characteristics of the project. In this paper, we
present a structured comparison of usability elicitation and
analysis approaches that is designed to help the stakeholders
of a project, e.g., project coordinators, managers, and
developers, decide on a methodology to use for usability
requirements elicitation and analysis. We define a
framework for extracting specific properties of a
methodology so as to allow for a direct comparison of
different approaches presented in literature. The selected
methodologies represent a selection of what we believe are
the most important approaches to usability requirements
elicitation and analysis.

In Section 2, we give definitions of terms required to
compare usability requirements elicitation and analysis
approaches. Section 3 describes the aforementioned
framework, and, in sections 4 to 7, this framework is applied
to each methodology. Section 8 gives a comparison of the
results obtained for each of the methodologies and section 9
concludes with an overview of the most relevant findings
from this comparison.

II. DEFINITIONS

The following section gives definitions for the most
relevant terms used throughout this paper:

 Usability: the extent to which a product can be used
by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a
specified context of use [7].

 UREAM: usability requirements elicitation and
analysis methodology.

 Methodology: a coherent and structured set of
procedures to carry out usability requirements
elicitation and analysis in a step-wise and well-
defined way.

 Method: a coherent set of steps in a methodology is
defined as a method.

 Technique: a systematic way to carry out a particular
procedure (for example: a survey and a questionnaire
are techniques for a method that focuses on an
analysis of user tasks.

 HCI: Human-Computer Interaction is a research area
that studies of how people interact with computers
and to what extent computers are or are not
developed for successful interaction with human
beings.

III. TOWARDS A FRAMEWORK FOR UREAM COMPARISON

As it is stated in the introduction, there are many
different methodologies to elicit and analyze usability
requirements. In order to support the developers or managers
to compare the methodologies and to provide them with the
criteria needed to select one to deploy, we propose the
following framework to compare the different
methodologies. The framework consists initially of three
steps. First, each methodology will be decomposed into
methods. Methods are coherent elements of a methodology.
They describe a single function resulting in a sub-deliverable
of the methodology. Examples are ‘pre-study’, ‘user
profiling’, ‘task analysis’ and ‘usability specification’. In
second step each method will be assessed using a set of
criteria. Finally, the results of the assessment of each method
will be combined to obtain the result for a methodology. This
combination can be done in several ways according to the
type of criterion. Some, such as required effort, can be added

308Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

across methods but if, e.g., a single method requires the
availability of an HCI expert, this requirement translates to
the methodology as a whole.

The reason we decompose the methodology into methods
is to achieve a more accurate and concrete comparison. The
methods employed are as will be shown easier to identify,
describe and therefore easier to assess while the
methodology as a whole will tend to be a fairly complex
amalgamation of these constituent parts, which makes direct
characterization of this combination much more difficult and
dubious. Using the criteria to assess the methods first and
then combining the result for each methodology will focus
each discussion on a manageable level, thus helping
developers to understand what the differences are and why
there is a difference between the methodologies. Reasons
may be, among others, that different methods or different
techniques are used. Methodologies containing different
methods will have different properties and therefore different
results, but methodologies that include the same methods
might also have different properties because the methods use
different techniques.

The proposed framework consists of a set of criteria that
can be used to assess the methodologies. This set of criteria
is divided into four categories, namely the external factors
(Section 3.1), the characteristics of the methodology (Section
3.2), the effort (Section 3.3) and the quality and effectiveness
(Section 3.4). In the following, a short description of each
criterion is given, and the arguments for selecting the criteria
are described. Moreover, it is explained how the score is
calculated and how the scores are combined for a particular
methodology.

A. External factors

The first category concerns external factors. Information
about the requirements of a methodology about the external
environment in which it is to function is crucial for
developers and managers to decide whether or not to apply
this methodology in a particular context (also mentioned by
Davis [8] as a first step of choosing a strategy for
requirement elicitation). The external factors category
consists of three criteria:

C1.1 Does a methodology / method need a human
computer interaction (HCI) expert?

This criterion answers whether an HCI expert is needed
to do this method or methodology properly. It is included in
the framework because there are projects that do not allow
for the involvement of an HCI-expert, e.g., due to budget
reasons or a lack of qualified personnel. This criterion is
mentioned in all four assessed methodologies [1], [2], [4],
[3]. Each method and the methodology can be given either a
plus or a minus for this criterion. A score of ‘+’ indicates that
the method/methodology needs an HCI-expert and a score of
‘-‘ indicates that it does not need one. If one of the methods
needs an expert then the methodology needs an expert as
well.

C1.2 Does a methodology / method need access to
representative users?

This criterion indicates whether the methodology /
method requires access to representative users. Involving

users in the project increases the dependencies on external
factors. Having access to the representative users and
working with them is not a simple task. This property is also
mentioned in all four assessed methodologies. Each method
gets a plus or minus for this criterion to indicate whether or
not it involves representative users. If the methodology does
not involve users, a score of ‘-‘ is assigned. If there is some
user involvement in a methodology, ‘+’ is the result. A
methodology that very strongly relies on user involvement
gets a score of ‘++’.

C1.3 Does a methodology / method work with non-
experienced users?

Some methods/methodologies require a certain level of
knowledge or experience of the users to ensure an efficient
communication and collaboration with them [8].
Inexperienced users might have difficulties with articulating
their requirements [9], [10]. If this criterion is applicable for
the method, then a score between 1 and 5 is assigned. If a
method does not involve the user, this criterion is not
applicable. For the methodology, a combined score on the
same scale is calculated. However, this is not necessarily the
arithmetic mean of the results for the methods because some
methods may have greater influence on the overall score than
others.

B. Characteristics

The second category focuses on the characteristics of the
methodology. The characteristics provide the developers
with insight whether a methodology is appropriate.

C2.1 Does a methodology / method give strict guidance
to help the developers to carry it out?

The methods of the given methodology are assessed on
how accurately they are described. Or in other words,
whether a non-experienced developer can execute it well
based on the description. A scale of ‘- -‘ to ‘++’ is the range
of the evaluation for this criterion. A combined score for the
methodology (also‘- -‘ to ‘++’) is assigned.

C2.2 Does a methodology / method take the user
feedback into account for further improvement?

It is very important to take the user feedback into account
for further improvement with respect to usability of the
system design [11]. A score of ‘+’ or ‘-‘ is assigned to
indicate whether feedback from users is taken into account.
We consider user feedback as the input from the user that is
based on a proposal made to the user or a prototype
presented to them. If the methodology contains a certain
number of methods which take the user feedback for further
improvement, then it is argued that the methodology will
also get a plus for this criterion.

C. Maintaining the Integrity of the Specifications

The third category is the effort, i.e., the time and the cost
that is needed for a methodology. This helps the developer to
make tradeoffs.

C3.1 Is a methodology / method time consuming?
This criterion indicates how time-consuming the methods

are. A score between ‘- -‘ and ‘++’ is the result of this
criterion applied on the methods. A score of ‘++’ indicates
the method is very time consuming, while a ‘- -‘ indicates

309Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

that executing the method can be completed in a very short
time. A cumulative score of each method is assigned to the
methodology. If a project has a time constraint within which
it needs to be finished, the cumulative score will help the
developers to decide on a methodology.

C3.2 Is a methodology / method common in the software
development process?

Time consumption is not an absolute value. It is also
related to the degree of integration in common software
engineering methods. Integration means less additional work
and also will promote more experience with the approach
among software engineers, impacting positively on the
amount of effort required. The methods that are used in the
elicitation and analysis process of the usability requirements
might already be included or commonly used in the
development process of the product for other reasons. Then
the methods might be easily adapted such that it would not
take any additional time. A list of commonly used functional
requirements elicitation techniques indicate the answer to
this criterion [12]. A value between ‘–‘ and ‘+’ is assigned to
each method to assess whether the method is common or not
for software development processes. Of course, this provides
only a guideline. Actual fit with a local process will still need
to be determined when actually adopting an approach.

D. Quality and effectiveness

The last category is the quality and effectiveness of each
method and the methodology. This will also help the
developers to make the trade-offs. The objective of this set of
criteria is to indicate the level of detail that is elicited.

C4.1 Does a methodology / method elicit enough
information to help the developer specify the fit criterion?

Because it is hard to measure the non-functional
requirements, eliciting information to specify the fit criterion
of the usability requirement might be a crucial factor for
selecting a certain methodology [12]. Juristo et al. argued
that some proposed methodologies in the literature did not
derive enough information to help the developers design and
implement the elicited requirements [4]. The methods get a ‘-
‘, a neutral or ‘+’ for this criterion depending on whether
they do not elicit enough information, it depends or it does
(explicitly) elicit enough information, respectively. An
average within the same range is given to the corresponding
methodology.

C4.2 Does a methodology / method elicit the
dependencies between the usability requirements and other
functional and non-functional requirements?

Usability requirements are sometimes related to specific
functional requirements [12]. Knowing the
interdependencies between requirements is important for the
system design and change management. Therefore, this
criterion can be an important factor when selecting a
methodology. A scale including ‘+’, neutral, and ‘-‘ is used
to indicate that dependencies are completely, partially, or not
elicited, respectively. The proposed framework is applied to
four selected methodologies of respectively Nielsen [1],
Carlshamre et al. [2], Seffah et al. [3] and Juristo et al. [4].

IV. METHODOLOGY 1: THE USABILITY ENGINEERING

LIFECYCLE (EUL)

The methodology, Usability Engineering Lifecycle
(UEL) [1], was proposed in 1992 as one of the first
approaches to usability engineering. It presents a practical
usability engineering process that can be incorporated into
the product development process. This methodology
provides a very comprehensive set of methods that can be
applied to elicit and analyze the usability requirements.
Some of the other methodologies select a subset of the
methods that are presented in this methodology. Therefore,
this methodology is chosen to be assessed first and the
framework is applied.

Ten methods are included in this methodology. Each
method will be described shortly.
1. “Know the user”. This is used to analyze the individual

user’s characteristics (e.g., work experience, knowledge
level, work environment and social context), the user’s
current task (e.g., the overall goals, how they approach
the task, the needed information, the way of dealing
with exceptional circumstances or emergencies), to do
functional analysis (e.g., the underlying functional
reason for the task) and to have the evolution of the user
(e.g., an educated guess about future users and uses).

2. “Doing competitive analysis”. This analyzes the existing
products heuristically according to established usability
guide lines (e.g., usability goals and levels) and
performs empirical user tests with these products.

3. “Setting usability goals”. This is specified according to
the five main usability characteristics (i.e., learnability,
efficiency, ability of infrequent users to return to the
system without having to learn it all over, frequency and
seriousness of user errors and user satisfaction).

4. “Participatory design”. This involves users in the design
process through regular meetings to help the designer by
asking questions and reacting to the designs that they do
not like.

5. “Coordinated design of the total interface”. This is to
achieve consistency of the total interface. This can be
approached by using interface standards and the product
identity statement (a high-level description of what kind
of product it is).

6. “Doing guidelines and heuristic analysis”. A list of well-
known principles of guidelines for user interface design
should be followed. And a heuristic evaluation can be
performed on the basis of the guidelines. Prototyping
and empirical testing should be combined into iterative
design to capture the design rationale, analyze the trade-
offs, make the right decision and evolve the design. This
combination will be considered as a method.

7. “Prototyping”. This is commonly known and often
deployed in software engineering.

8. “Empirical testing”.
9. “Collect feedback from field use”. This method is

similar to empirical testing.
Each method is first analyzed separately. The result of

applying the framework for all methods and methodologies
can be found in Table 1.

310Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

TABLE I. RESULTS PER METHOD AND METHODOLOGY

Methods / Methodologies External factors Characteristics Effort Qual. and Effectiv.
C1.1
HCI

expert

C1.2
User

access

C1.3
Non

experts

C2.1
Strict

guidance

C2.2
User

feedback

C3.1
Effort

C3.2
Common
in SRM

C4.1
Info for fit

C4.2
Depend-
dencies

Know the user - + 5 + - 0 + 0 -
Competitive analysis - + 5 0 + 0 - 0 -
Setting usability goals - - n/a + + 0 - + -
Participatory design - ++ 3 + + - - 0 -
Coordinated design - - n/a - - + 0 + -
Guidelines and heuristic
analysis

+ - n/a 0 - + - - 0

Prototyping - - n/a - 0 0/++ + - +
Empirical testing - ++ 5 + + +/++ 0 + +
Collect feedback from field use - ++ 5 0 + + 0 + +

Total for UEL + +/++ 5 0 + ++ - + +
Pre-study - - n/a - - - + - -
User profiling - + 4 + - - + - -
Task analysis - + 2 + + ++ 0 - -
Usability specification - - n/a + - - + + -
Prototype and usability testing - + 2 - + ++ - + -

Total for Delta - + 3 + + - + + -
System summary form - + 4 + - + + - -
Compile system summary
form

+ - n/a - - + - - -

Context of use portfolio + - n/a -- - + - - -
Frs portfolio - - n/a -- - +/- + - +
Review and validate integrated
picture

+ + 3 -- + ? - - -

Total for ACUDUC + + 4 -- + + + - +
Apply the patterns - - n/a ++ - 0 - + -
IFR table - + 2 ++ + + - + ++

Total for GEUF - + 2 ++ 0 0 - + +

Combining the results from the individual methods
allows us to judge the methodology as a whole. In order to
deploy this methodology, the following criteria for the
external factors have to be fulfilled: The developers need to
have access to an HCI expert to do the guidelines and
heuristic analysis properly (C1.1: +). The methodology needs
frequent and reliable access to the representative users in
order to perform some of the methods (C1.2: +/++), but it
does not require the users to be experienced (C1.3: 5). The
methodology does not give very strict guidance to help the
developers (C2.1: 0). It suggests a set of techniques to do
some of the methods. And the methodology includes
methods such as participatory design and empirical testing to
elicit the user feedback and take it into account to improve
the usability (or the specification of requirements) (C2.2: +).
The effort that needs to be put into the methodology is high.
Because of the comprehensive set of methods, the
methodology is very time consuming. And only a small part
of methods are a part of the regular software engineering
process (C3.2: -). The rest needs to be added (C3.1: ++). But,
the quality of the methodology is fair. It gives enough
information about the quantities of usability requirement to
specify the fit criterion and it gives an indication about the
dependencies between the requirements (C4.1, C4.2: +).

V. METHODOLOGY 2: THE DELTA METHOD

The Delta method [2] is a task-based and usability-
oriented approach to requirement engineering. This method

was applied in a project to improve the overall usability of
the systems delivered. The results prove that the delta
method rendered usable systems and helped in eliciting
functional requirements in a natural way. This methodology
derives its method from the usability definitions in ISO
25062 [7]. Each method corresponds to the users, goals and
context of use in the usability definition. This methodology
consists of five methods.
1. “Pre-study”. Here the scope of the prospective system,

the customer categories, and the fundamental services of
the system are identified.

2. “User profiling”. This provides an overview of the
prospective users by means of questionnaire.

3. “Task Analysis”. This captures the work tasks of the
users through interviews.

4. “Usability specification”. This defines an agreed level of
usability that the system should supply.

5. “Prototype and usability testing”. This tests the results
of the last method.

The results for all methods can be found in Table 1.
Combining the results from the individual methods delivers
the following results. This methodology does not involve
usability experts in any of its methods (C1.1: -).
Representative users are accessed in most of the methods and
this methodology works well with users of moderate level of
experience (C1.2: +; C1.3: 3). Guidance is provided by
means of questionnaire, activity graph and usability levels
(C2.1: +), but most of the methods do not give quantitative

311Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

results and users feedback is considered only in prototype
testing method (C4.1: +). This methodology proves not to be
very time consuming (C3.1: -).

VI. METHODOLOGY 3: APPROACH CENTERED ON

USABILITY AND DRIVEN BY USE CASES (ACUDUC)

Seffah, Djouab and Antunes [3] present a method that
combines usability-centered requirements engineering
processes with those based on use cases. They compare
similar approaches in both processes and define their own
method, called ACUDUC, Approach Centered on Usability
and Driven by Use Cases. This is based on the Unified
Software development Process [5] as a representative of use-
case-driven software engineering methodologies and the
RESPECT framework (Requirements Specification in
Telematics) [6], a user-centered requirements process. They
use the definitions of usability given by ISO 9241 and ISO
9126. The methodology involves five methods.
1. “System Summary form”. Here, the stakeholders fill in a

form about general characteristics of the system.
2. “Compile System Summary forms”. A usability expert

combines the stakeholder’s forms into a summary form.
3. “Creating the context of use portfolio”. This results in a

document, which describes all the aspects that have an
important impact on the system usability [3].

4. “Creating the functional requirements portfolio”. This
document consists of use cases and system
functionalities as well as characteristics and constraints
of the system and UI-prototypes.

5. “Review”. Here, all artifacts are being reviewed to
ensure integrity and consistency among them.

The results can be found in Table 1. Combining the
results from the individual methods delivers the following
results. As some of the methods involve usability experts and
need representative users, the overall methodology does so
as well (C1.1: + and C1.2: +). However, most of the methods
do not directly involve users. Those methods that do involve
users, can deal with inexperienced users and therefore the
overall methodology can be considered to work with
inexperienced users rather well (C1.3: 4). The description of
the methodology is rather vague in parts and therefore it does
not provide the stakeholders of the software engineering
project with strict guidance (C2.1: ‘- -‘). There is only one
method that takes the user feedback into account. However,
we consider this sufficient to conclude that the methodology
takes the user feedback into account (C2.2: +). Many of the
methods can be assumed to be rather time consuming and so
is the complete methodology (C3.1: +). However, it
combines, as stated earlier, the elicitation and analysis of
functional and usability requirements in a single
methodology. Therefore, the methodology overall can be
considered to be common for requirements elicitation and
analysis because no work is done exclusively for elicitation
and analysis of usability requirements (C3.2: +). From the
methods as they are described by the methodology’s authors,
it can be doubted that the non-functional requirements are
quantified very precisely as there is no method that does so.
Therefore, the whole methodology is judged as not eliciting
enough information about quantity (C4.1: -). Because of its

integrative (functional and nonfunctional) approach, the
methodology can elicit the relation between functional and
non-functional requirements rather well (C4.2: +).

VII. METHODOLOGY 4: GUIDELINES FOR ELICITING

USABILITY FUNCTIONALITIES (GEUF)

The methodology Guidelines for Eliciting Usability
Functionalities (GEUF) was proposed in 2007 [4]. It refines
the method guidelines and heuristic analysis of the first
methodology (UEL). The methodology addresses usability
requirements as functional requirements during the
requirements engineering stage. Based on the guidelines that
are provided in the usability literature, the authors have listed
a list of functional usability features as a starting point for
identifying usability features with an impact on software
system functionality. Based on the HCI literature about each
feature (if enough is found), the subtypes are listed for each
of the features (called usability mechanisms). For each
mechanism, the elicitation and specification guides are
defined from a development perspective. A set of issues is
derived from the elicitation process and needs to be
discussed with stakeholders. An initial common vision of
system functionality is built before the developers and the
users can discuss whether and how specific usability
mechanisms affect the software. Two methods are used.
1. “Apply the patterns”. Here a template derived from the

research is applied to the specific situation.
2. “Applying the Issue/Functionality/Requirement (IFR)

table to the issues”.
The results for all methods can be found in Table 1.

Combining the results delivers the following results.
The result of the methodology is combined as follows. If

the developers select this methodology, there is no
requirement for having access to an HCI expert (C1.1: -).
The methodology does require the involvement of users to
discuss the issues (C1.2: +). Therefore, the users should have
a high level of knowledge and/or experience to help the
developers find correct answers to the issues (C1.3: 2). It was
already indicated that the methodology does take the user
feedback into account. But this happens only once, there is
no iterative design and continuous involvement of the users,
therefore it only gets a neutral (C2.2: 0). The methodology is
well explained and makes it easy to systematically apply the
templates and the table. Hence, it does give a very strict
guidance (C2.1: ++). It is not time consuming as it is a one-
time task and only considered the proposed mechanisms
(C3.1: 0). It does not elicit other functional requirements nor
analyze other aspects (e.g., task analysis). But it does take
some effort to learn it because it is a new methodology and
needs patience to apply it. The template helps the developers
to specify the fit criterion using standardized sentences and
using the results of IFR table to fill in the specification
(C4.1: +). It also explicitly captures the dependencies
between requirements in the table (C4.2: +).

VIII. DISCUSSION

For the external factors, there are only few differences.
Both methodologies Delta Method and GEUF can be used

312Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

without access to an HCI expert or with only little
involvement of such an expert. Unsurprisingly, all
methodologies rely on having access to representative users.
This can be attributed to the fact that usability requirements
are very individual and therefore cannot be properly
identified and analyzed without contacting the prospective
users. The biggest difference within this category can be
identified for criterion C1.3. While the UEL methodology
works especially well with inexperienced users, the GEUF
methodology should not be used with inexperienced users
because it is likely that their needs would not be captured
correctly within this methodology. Within the category
characteristics, the most noticeable difference lies in C2.1.
While Delta method and GEUF give good guidance and
UEL earns a neutral score, the ACUDUC methodology
scores poorly. The only methodology that does not
sufficiently take user feedback into account is GEUF. The
third category, time and effort, shows notable differences in
results for both of the criteria. The results for criterion C3.1
have great variance. While we consider the Delta method
methodology to be least time consuming, the UEL
methodology is considered most time consuming. This can
be attributed to its comprehensive set of methods. Overall,
ACUDUC and Delta method are considered to mainly
consist of methods that are common in software
development. For ACUDUC, this can at least partially
outweigh the relatively high effort in time needed for this
methodology. For Delta method, it points to a comparatively
small overall effort. Within the category of effectiveness,
only the Delta method cannot elicit dependencies between
functional requirements and usability requirements. All
methodologies except ACUDUC have the potential to
analyze the requirements in enough detail to be able to
specify a fit criterion.

IX. CONCLUSIONS AND FUTURE WORK

By comparing the four different methodologies for
usability requirement elicitation and analysis on the basis of
our UREAM framework we could reach the following
conclusions. In terms of external factors (like the need of
usability experts, access to representative users and their
experience) the Delta method and GEUF are probably most
cost-efficient as they can be executed without the help of an
HCI expert. All methodologies need access to representative
users. However, the Delta method and GEUF can be applied
well even with non-experienced users. In terms of
characteristics of the methodology, the internal factors like
taking user feedback into account is considered in all
methodologies except GEUF. Both the Delta method and
GEUF provide a strict guidance to the developer for
executing the methods. So the Delta method obtains a better
score in characteristics compared to the other methodologies.
In terms of effort, the Delta method is probably more
effective as it can handle a tight project schedule and most of
the methods are in common to functional elicitation and
analysis, so that the effort to capture them is minimized. In
terms of quality and effectiveness, GEUF scores well as the

developers can do a quantitative analysis with respect to
most of the methods, and the methods support the developers
to understand the dependencies between other functional
requirements. We suggest that regarding UREAM selection
for a concrete project, first the individual characteristics of
the project have to be considered, and subsequently the
framework-based tables can be used. We are convinced that
the (initial) UREAM framework has been validated in this
research project. However, further research is needed to
elaborate the UREAM framework further so that it (i.e.,
dimensions and criteria) can also offer a structured basis for
the development of new and advanced usability requirements
elicitation and analysis methodologies.

ACKNOWLEDGMENT

We would like to acknowledge the support of X. Lu, P.
Meenakshy, and T. Milde in preparing this paper.

REFERENCES
[1] J. Nielsen, “The usability engineering life cycle”’ IEEE

Computer vol. 25, nr. 3 (March) 1992, pp. 12-22.
[2] P. Carlshamre and J. Karlsson, “Usability-oriented approach

to requirements engineering”, Proc. ICRE96, IEEE Computer
Society Press, Los Alamitos, CA, pp. 145-152., 1996.

[3] A. Seffah, R. Djouab, and H. Antunes, “Comparing and
Reconciling Usability-Centered and Use Case-Driven
Requirements Engineering Processes”, Australian Computer
Science Communications, Vol. 23, nr. 5, 2001, pp. 132 – 139.

[4] N. Juristo, A.M. Moreno, and M. Sanchez-Segura,
“Guidelines for eliciting usability functionalities”, IEEE
Trans Softw Eng 2007; Vol. 33, nr. 11, pp. 744-758.

[5] Jacobson I., Booch G., Rumbaugh J. The Unified Software
Development Process. Object Technology Series. Addison
Wesley, 1999.

[6] M.C. Maguire, User-centred requirements handbook. EC
Telematics Applications Programme, Project TE 2010
RESPECT (Requirements Engineering and Specification in
Telematics), WP4 Deliverable D4.2, version 3.3, May 1998.

[7] ISO IEC 25062 Software engineering — Software
productQuality Requirements and Evaluation(SQuaRE) —
Common Industry Format(CIF) for usability test reports,
Geneva, International Organization for Standardization

[8] G.B. Davis, “Strategies for information requirements
determination”, IBM Systems Journal, Vol. 21, nr. 1, pp. 4-
30, 1982.

[9] B. Nuseibeh, and S. Easterbrook, “Requirements Engineering:
A Roadmap”, The Future of Software Engineering, Special
Issue 22nd International Conference on Software
Engineering, ACMIEEE, pp. 37-46, 2000.

[10] S. Adikari, C. McDonald, and N. Lynch, “Usability in
Requirements Engineering”, Proc. ACIS 2006, Adelaide,
Paper 76.

[11] K. Van de Berg, J.M. Conejero, and R. Chitchyan, AOSD
Ontology 1.0 - Public Ontology of Aspect-Orientation, Report
UTwente, 2005.

[12] H. van Vliet, Software engineering: principles and practice.
Wiley, 2008.

[13] A.E. Bayraktaroglu, F. Calisir, and C.A. Gumussoy,
“Usability and functionality: A comparison of project
managers' and potential users' evaluations”, Procs. IEEE
IEEM, 8-11 Dec. 2009, Hongkong, pp. 2019 – 2023.

313Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

