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Abstract—Software variability can be supported by providing adap-
tations on top of a program’s core behavior. For defining and compos-
ing adaptations in a program, different paradigms have been proposed.
Two of them are feature-oriented programming and context-oriented
programming. This paper compares an exemplar implementation of
each paradigm. For the comparison, a common case study is used in
which we detail how adaptations are defined, expressed, and composed
in each paradigm. Based on the case study, we uncover similarities and
differences of each implementation, and derive a set of characteristics
that identify each of them. The experiment shows several overlapping
similarities between the two implementations, which is an indicator that
there is a similar core set of characteristics for each paradigm. This
finding brings the two seemingly disjoint research directions together,
and can stimulate future research both in the direction of merging
features and context as well as to improve the characteristic strengths
of each paradigm.

Keywords-feature-oriented programming; context-oriented program-
ming; language paradigms

I. INTRODUCTION

Software variability is an important factor in design and imple-
mentation of programs. Software programs are often developed for
high customizability, for example to provide individual variants for
particular clients. The implementation of such programs consists
of core behavior and of different adaptions that add or modify
the functionality. Program variability can be realized by using
language level abstractions as introduced by different paradigms
tailored to express program adaptations. Two such paradigms
are feature-oriented programming (FOP) [1] and context-oriented
programming (COP) [2].

The FOP paradigm is concerned with identifying functionality
in the form of features. A feature is a stakeholder-relevant func-
tionality [3] that can be implemented coarsely as a module or
fine-granular as different lines of code scattered over the source
code [4]. In FOP, adaptations are provided by features that can be
expressed in several ways, for example by annotating the core pro-
gram, or by defining adaptations as refinements. To yield different
program variants, features are composed with the core program.
Normally, feature composition is done statically at compile time,
but recent approaches also offer runtime composition [5].

The COP paradigm is concerned with runtime behavior mod-
ifications in order to provide functionality that is adapted with
respect to the execution environment of a program. In most COP
implementations, adaptations are defined as first-class entities,

to which context-dependent behavior is associated in a modular
fashion. Adaptations are dynamically activated and deactivated at
runtime to provide and undo context-dependent behavior [2].

Our objective is to identify the similarities and differences for
realizing variability in these two paradigms. To this end, we use
the expression product line (EPL) case study, providing an example
implementation in each paradigm. For FOP we use rbFeatures,
a versatile extension of the Ruby programming language that
introduces features as first class entities [6][5][7]. For COP we
use Subjective-C [8], a COP implementation for mobile devices
that is based on the Objective-C programming language. From a
comparison in the expression and implementation of the variability
concerns of the EPL case study, we derive a set of characteristics
that describe how each paradigm introduces variability.

A clear identification of the core characteristics between the two
paradigms is a first result to help in forming a joined research for
implementing variability. As we will see, the overlapping set of
characteristics is an indicator that the FOP and COP paradigms
could be brought together as a hybrid language for software
variability.

The paper is organized as follows. We provide background to
FOP and COP in Section II. Then in Section III, we provide a
side-by-side comparison between the FOP (using rbFeatures) and
COP (using Subjective-C) implementations of the case study. We
compare both implementations with the help of the Expression
Product Line (EPL) case study. Based on the case study, we discuss
the similarities and differences of both implementations in Section
IV. Sections V and VI respectively present the related work, and
the conclusion and future work.

II. BACKGROUND

This section introduces the feature-oriented programming and
context-oriented programming paradigms.

A. Feature-Oriented Programming

The concept of features initially emerged with the goal to
express distinct functionality that is targeted towards a specific
stakeholder [3]. This notion of a feature is called conceptual
[6], because it only regards the end-user visible behavior, but
not its implementation. How to implement such conceptual fea-
tures is considered in the feature-oriented programming paradigm.
Basically, a program consists of different artifacts that provide
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the program’s functionality. Features encompass different parts
of these artifacts, and are therefore distinguished into coarse-
grained and fine-grained features [4]. Coarse-grained features can
be represented with conventional mechanisms provided by a pro-
gramming language, such as modules and packages. These can
then be composed conveniently with the program’s core behavior.
Fine-grained features are more difficult to represent and compose,
because they can consist of individual classes, methods, or even
parts of method bodies. Related work shows a diversity of FOP
implementation approaches [9]. Each approach differentiates how
features are represented, expressed, and composed. We distinguish
these approaches as follows:

• Annotations – These approaches use the existing program
source code and mark the occurrences of feature-related
source code. One type of annotations are source code anno-
tations such as “#ifdef” statements in C++, which are native
preprocessor directives. Before the program gets compiled,
all parts of the source code that do not belong to the current
feature configuration are pruned. Then, a program variant is
created by compiling the remaining source code [10]. Another
option is to use virtual annotations. In this case, the source
code itself is not annotated, but a suitable intermediate pro-
gram representation, such as the abstract syntax tree [10]. This
approach requires tool support for representing the annotations
and for generating a program variant.

• Modules – These approaches use the programming language
modularization concepts to represent features. Among these
approaches are traits in Scala [11], atoms and units in Jiazzi
[11], Classboxes [12], CaesarJ [13], and Object Teams/Java
[14]. The capabilities of modules constraint the level to
which especially fine-grained features can be represented and
composed.

• Refinements – These approaches separate a program into a
fixed base program and extensions that are called refinements.
Refinements are added to a program, where they change
the behavior and the structure. Typically, these approaches
add specific language constructs to express these refinements.
Some approaches as the AHEAD tool suite [15], for example,
use the keyword refine as a language construct, other
approaches introduce concepts similar to refinements, such as
aspects from aspect-oriented programming [16].

We use rbFeatures [6][5][7] as the FOP example language.
rbFeatures is a versatile, pure language of Ruby, that allows features
to be defined as first-class entities, giving a close integration of
features and other application code. In order to express which
part of the source code belongs to a feature, semantic annotations,
called feature containments in rbFeatures, are used. Containments
consist of a condition and a body. A containment condition is a
logical expression determining which features need to be active or
inactive in order for the body to be included in the program. The
containment body is any piece of code: modules, classes, methods,
and even individual lines and characters. rbFeatures allows to
express the hierarchy and constraints of features with an expressive
rule language. A program that is feature-refactored with rbFeatures
allows both runtime and compile-time composition. At runtime,
features can be activated and deactivated to immediately affect the
program behavior, even allowing different variants of a program to

exist at runtime [5]. At compile-time, the semantic annotations can
be preprocessed to derive a static variant. This is done by pruning
source code not define within the configured containments.

B. Context-Oriented Programming

Context-oriented programming paradigm [2] allows software
systems to be modularized into behavioral adaptations that can
be activated, deactivated and composed at runtime. Adaptations
are triggered by changing properties of the execution environment,
such as device presence, battery level, or user settings. COP
languages typically provide dedicated constructs for the definition
of behavior adaptations in a modularized fashion, as well for the
composition and execution of such adaptations [2][17]. Program
entities in which adaptations are defined are called layers [2] or
contexts [17], which are normally defined as first-class entities of
the program. We will refer to them as contexts.

Contexts may specify either behavioral or structural adaptations.
The former case focuses in modifying functionality of the program
with more suited behavior to particular situations of the execution
environment. The later case concerns with providing new entities or
adapting existing entities in the program for a particular situation.

Behavioral adaptations are the key concepts of COP. Adaptations
rely in the dynamic activation and deactivation of context entities.
When a context is activated, its associated behavioral adaptations
become available in the current scope of the application. Simi-
larly, whenever contexts are deactivated the behavior adaptations
become unavailable to the execution environment, and the observed
behavior of the program is restored to its former state. Behavioral
adaptations can be associated with more than one context, in such
a case, a new context entity is created implicitly, representing the
combination of the contexts, to which the adaptation is associ-
ated [18]. Combined contexts are made available if and only if all
of its components are active.

If not dealt with careful, dynamic activation and deactivation
of contexts may lead to unexpected or inconsistent behavior. To
manage such situations it is possible to define different dependency
relations among contexts [8][19]. Constraints imposed by the
dependency relations are verified at runtime when a particular
context is to be activated or deactivated.

Contexts are stateful objects, state of variables and objects
defined within a context are always preserved between context
activations [2][8][20]. Moreover, within a context it is possible to
extend the definition of objects already existing in a program by
dynamically adding state properties to them. As with behavioral
adaptations, these structural adaptations also become available and
unavailable as the context in which they are defined is respectively
activated or deactivated.

In the remainder of this paper we use Subjective-C [8] a full
context-oriented language extension of Objective-C whose design
is influenced by the Ambience language [18]. Contexts are defined
as first-class entities. Context-dependent behavior adaptations need
to be defined as methods in a class. These methods are annotated
with the name of the context they belong to. Context-dependent
behavior is not accessible by the core program until the context to
which they are associated is activated. When a context is activated,
a method replacement mechanism (from Objective-C’s meta-object
protocol) replaces original methods with their context version at
runtime. Subjective-C uses a context manager to maintain a record
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Figure 1: Feature diagram of the Expression Product Line.

of all context objects at runtime, whether they are active or not,
and the dependency relations between contexts.

III. CASE STUDY: EXPRESSION PRODUCT LINE

The expression product line (EPL) [11] is a well known case
study concerned with finding suitable modularization concepts for
representing different types of integers, expressions, and operations
over them. All possible program variations of the EPL are shown in
Figure 1 – this notation is called a feature diagram, as it depicts the
constraints between different features of a program [21]. For the
EPL all its features are optional, meaning that they can be build in
any combination. We conduct a side-by-side implementation of the
case study providing first the rbFeatures example, and subsequently
the Subjective-C one. The two implementations are compared
based on the principal techniques each uses to realize software
adaptations, specifically we are concerned with: (a) The way in
which adaptations are declared, (b) The way in which adaptation’s
behavior is declared, and (c) The way in which modification to the
core program is done.

A. Adaptation Declaration

The implementation of the product line starts with its top down
definition. As originally expressed in the case study, expressions
like ADD and NEG, as well as the operations for PRINT and
EVAL are defined as features, shown in the following snippet for
rbFeatures.�
c l a s s Add
is Feature

end

c l a s s Print
is Feature

end� �
In Subjective-C, LIT, ADD, NEG and the other expression

elements are defined as regular (behavior-less) objects, taking
advantage of the polymorphic abilities of the language. The PRINT

and EVAL operations are defined as contexts providing behavior
for expression objects. Operations are declared as named context
objects and added to the context manager.�
@interface Add : Exp {

Exp *left, *right;
}
@end

SCContext* Print = [[SCGlobalContext alloc]
initWithName:@"print"];

[[SCContextManager sharedContextManager] addContext:
Print];� �

B. Behavioral Declaration

Once all adaptations have been defined, the next step is to define
the specific behavior added by the features to other objects of the
program. We consider enhancing Add expressions with the printing
behavior provided by the PRINT adaptation.

In rbFeatures, adaptations are introduced by forming feature
containments around a pice of feature-specific code, which can be
for example a method declaration. In the following example, the
containment condition is the PRINT adaptation, and the contain-
ment body is the method declaration. When the PRINT adaptation
is activated, a call to the print method will behave as shown in
the snippet, otherwise the method will return an error message.�
c l a s s Add
Print.code do

def print
Kernel.print(@left.print + " + " + @right.print)

end
end

end� �
In Subjective-C, behavioral adaptations are also introduced by

adding context-dependent methods within the body of the object
that defines it. This is shown in the following snippet.�
@implementation Add {
@contexts Print
- (NSString) print {

return [NSString stringWithFormat:@"%@ + %@", [left
print], [right print]];

}
@end
}� �

Unlike rbFeatures, in Subjective-C it is not possible to define
specific lines within a method as context-dependent. However, this
is possible in other COP languages [2][18].

C. Behavioral Modification

Behavior defined for the different EPL expressions and oper-
ations is available to the program through the explicit activation
of the related feature. For example, in order to have the PRINT
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Figure 2: Morphologic scheme of all implementation characteristics.

adaptation, in rbFeatures a call to the Print.activate method
must be made to activate the adaptation. In Subjective-C the
@activate(Print) keyword is used to process the context
activation.

However, there is a difference in the processing of the two
activation messages. In rbFeatures the source code enclosed by
the feature definition is re-executed, that is, with every activation
the code gets redefined and because of changed containment
conditions, new behavior is eventually added to the program.
Subjective-C, on the other hand, does not re-execute any code.
Instead, activation of a context allows its associated methods,
variables, objects, and so on, to be visible by the method dispatcher.
This is the main reason context-dependent variables are stateful.
Whichever the state of a variable is, it remains untouched as long
as the context in which the variable is defined is inactive, since it
cannot be found by the program.

IV. COMPARISON OF FEATURE-ORIENTED PROGRAMMING

AND CONTEXT-ORIENTED PROGRAMMING

In this section, the similarities and differences encountered
between our FOP and COP implementations are made explicit.
Then we define them as specific characteristics of the implemented
paradigm.

We summarize the observed similarities as follows:
• Features and contexts are declared as first-class entities of the

program.
• Features and contexts add adaptions on top of the core behav-

ior by annotating source code at the place where adaptations
would normally be defined in.

• Features and contexts can both be activated and deactivated
at runtime, immediately changing the program behavior.

• Both implementations offer a runtime representation of the
dependencies between adaptions.

The differences are the following:
• There is no automatic adaptation of the dependent features in

rbFeatures, while Subjective-C uses the dependency relations
defined between contexts to automatically activate or deacti-
vate related contexts.

• Feature activation is externally triggered by the user in rbFea-
tures, while Subjective-C uses internal triggers based on the
program state to activate contexts.

• There is no stateful composition of adaptations in rbFeatures:
while instances of objects with feature-dependent behavior
retain their state, class variables will be overridden during

the program adaptation. Subjective-C uses a stateful represen-
tation of contexts. Variables declared in a context cannot be
accessed or modified unless the context that defines them is
available. Maintaining there state between activations.

• Features can be composed at compile-time and runtime in
rbFeatures, while Subjective-C only offers runtime composi-
tion.

We use this comparison and related work as the frame of refer-
ence for FOP and COP to define a set of characteristics that identify
our implementations of each paradigm. These characteristics, also
illustrated in Figure 2, are the following ones:

• ENTITY REPRESENTATION [ANNOTATIONS, MODULES, RE-
FINEMENTS, FIRST-CLASS ENTITIES] – Specifies how adap-
tations are represented. On the one hand are pure annotations
that are external to the program and receive their meaning as
contexts or features from the processing tool. On the other
hand we see first-class entities that are high-level abstractions
and can be fully integrated with the program.

• ADAPTATION CONSTRAINTS [HIERARCHY, RULES] – The
availability of composition constraints, for example in the
form of a hierarchy (a hierarchically higher adaptation is only
available if its children are) or rules (arbitrary expressions
that state which adaptions need to be active or inactive for a
particular adaption to be composed with the program).

• ADAPTATION TRIGGER [INTERNAL, EXTERNAL] – The
adaptation process is triggered by an internal signal, like a
certain program state upon which it reacts, or by an external
signal, for example a change in environment that is detected
by a sensor or through a command by the user.

• ADAPTATION ACTIVATION [COMPILE-TIME, RUNTIME] –
The adaptation can occur statically at runtime, usually loosing
the information about the adaptation and producing a program
with fixed behavior, or fully dynamically at runtime.

• COMPOSITION PROCESS [ORDER-DEPENDENT, ORDER-
INDEPENDENT, NON-BLOCKING, BLOCKING] – An impor-
tant difference in the adaptation process is whether the ac-
tivation order influences the adaptation result, for example
when adaptations provide different composition of source
code pieces. Furthermore, the adaptation process can block
activation of other adaptations during the composition.

• ADAPTATION PROPERTIES [STATEFUL, EXTENSIBLE, CAS-
CADING] – In a stateful adaptation, defined objects and vari-
ables retain their states between deactivations and activations.
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Extensible means to modify existing adaptations or to add new
ones at the program runtime. Finally, cascading denotes the
capability that if an adaptation needs to be added or removed
from the program, all dependent adaptations are automatically
removed or added.

In terms of these characteristics, we can identify our imple-
mentations as shown in Figure 3. As we see, there are 6 com-
mon characteristics shared between the implementations, and 6
unique ones. Judging from this representation, the main difference
between features and contexts is the availability of compile-time
composition of program and the availability of stateful, cascading
adaptations.

Subjective-C rbFeatures

Annotations
Refinements First-class

EntitiesModules

Runtime
External

Order-dependent

Hierarchy

Internal

Non-blocking

Blocking
Rules

Compile
Time

Stateful

Cascading

Figure 3: rbFeatures and Subjective-C characteristics.

V. RELATED WORK

To the best of our knowledge, a structured comparison of COP
and FOP paradigms as proposed in this paper has not been done.
However, several COP ideas are used to build FOP programs and
vice versa. We discuss such proposals here.

A first close relation can be seen from the concept of super-
imposition, which is the process of merging software artifacts by
merging their substructures [22]. This mechanism lies at the heart
of introducing adaptations of programs, and it is used by several
implementations for feature-oriented programming and context-
oriented programming.

Context-oriented languages borrow several concepts of feature-
oriented programming, at both the implementation and design
level. The ContextL [2] COP language uses the concept of mixin-
layers [23] normally used as an implementation technique for
FOP. Specifically, ContextL uses layers as the main abstraction to
define adaptations [24]. Based on the need to express dependencies
between layers, and to better control their interaction, a Feature
Description Language (FDL) was introduced in ContextL [25] to
automatically enforce dependencies between layers.

Additionally, an extension of feature-oriented domain analysis
has been used for the design of context-oriented systems, namely
Context-Oriented Domain Analysis (CODA) [19]. In this approach,
feature diagrams are extended to express resolution strategies
whenever there are multiple adaptations available that provide
behavior for the same functionality. The CODA approach also
introduces inclusion and exclusion relations between adaptations.
The former relation expresses that if an adaptation can be activated
all included adaptations are also activated. The later one, expresses

that if an adaptation can be activated, all its excluded adaptations
are deactivated.

VI. CONCLUSION AND FUTURE WORK

This paper shows how feature-oriented programming and
context-oriented programming paradigms provide closely related
strategies for realizing software variability. To understand the
differences and similarities between the two paradigms, we imple-
mented a common case study with an FOP language (rbFeatures)
and a COP language (Subjective-C). Based on analyzing how
behavioral adaptations are expressed and implemented, we derived
a set of characteristic properties constituting each paradigm. We
found that six characteristics are common in both paradigms, and
six a are different. In essence, the difference lies in the availability
of compile time and/or runtime adaptations and in the stateful
transition of the program’s behavior.

This contribution helps to clarify the commonalities of the two
seemingly disjoint research directions, and can help to stimulate
research both towards the merging of features and contexts, as
well as to improve the characteristic strength of each paradigm.

In future work, the next step is to extend this study with an
in-depth analysis of other FOP and COP languages. We wish to
further refine the characteristics, and based on it, it would be
possible to think about how FOP and COP can be merged in
hybrid languages for variability, for example, by adding stateful
representation of features or to add compile-time composition to
COP implementations that restrict the amount of runtime contexts
deployed in devices.
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