
Case Study for a Quality-Oriented Service Design Process

Michael Gebhart, Suad Sejdovic, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{gebhart | sejdovic | abeck} @kit.edu

Abstract—Due to the usage of distributed information, such as
sensor information, geographical information systems are
designed according to service-oriented principles. Thus, the
development of new solutions within this context requires a
design of necessary services. These services have to follow
certain quality attributes that have evolved as important for
services, such as loose coupling and autonomy. In this paper, a
quality-oriented design process is considered and its
applicability and effectiveness are shown within the
Personalized Environmental Service Configuration and
Delivery Orchestration project of the European Commission.

Keywords-service; design; quality; geographical information
system; case study

I. INTRODUCTION

Today, geographical information systems use distributed
information, such as sensor information, that measures
environmental data, such as air temperature, or presume
precipitation. This information is provided by public
authorities or private sectors in form of services [8]. The
geographical information system acts as service consumer,
thus sends requests to the services and receives according
responses. Additionally, functionality of the geographical
information system can also be provided in form of services
in order to enable the realization of systems at a higher level.

Accordingly, the development of such geographical
information systems requires a design of necessary services
in order to support the usage of distributed information and
the provision of functionality that bases on this information.
The design of services consists of two elementary phases, the
identification and the specification [1, 2, 9, 10, 11, 25].
During the identification phase service candidates as
proposals for services and their dependencies are formalized
[5, 6]. Each service candidate includes a set of operation
candidates that represent preliminary operations. A
dependency between service candidates describes that a
service requires another service for fulfilling its
functionality. Within the specification phase, the final
specifications of the services are created. Each specification
constitutes a so-called service design and consists of a
specification of the service interface and the realizing service
component. The service interface describes provided and
required operations, message and data types, interacting roles
and the interaction protocol [7]. The specification of the
service component determines the services provided by the

realizing component and the services required for fulfilling
the provided functionality. Additionally, the internal
behavior in form of a composition of own functionality and
functionality provided by other services is formalized.

For services several quality attributes have been
identified that should be fulfilled in order to attain goals that
are associated with the application of service-orientation,
such as an increased flexibility [5, 6, 12, 14, 15, 20, 30],
reusability [5, 21], or maintainability [19] of provided
functionality. Wide-spread quality attributes that support
these goals are a unique categorization, loose coupling,
discoverability, and autonomy [2, 6, 13, 16, 17, 18, 19].
Since these goals are also important for geographical
information systems, the quality attributes should be
considered when designing new services in the context of a
geographical information system. This requires a quality-
oriented service design process when developing a service-
oriented geographical information system.

In the context of the project Personalized Environmental
Service Configuration and Delivery Orchestration
(PESCaDO) [3, 4] of the European Commission, a service-
oriented geographical information system has to be
developed in cooperation with the Fraunhofer Institute of
Optronics, System Technologies and Image Exploitation.
This system enables getting personalized information
regarding the personal profile and environmental conditions.
Since the services should fulfill quality attributes, such as
loose coupling, a quality-oriented service design process has
to be applied. For this purpose, the design process created by
the authors of this paper as introduced in [1] has been
applied. This design process includes a transfer of artifacts of
the business analysis phase into artifacts of the design phase
and considers a certain set of quality attributes. In this case,
the quality attributes of a unique categorization, loose
coupling, discoverability and autonomy are regarded using
the quality indicators as introduced in [2]. This case study
shows how to apply the design process for a geographical
information system of a real world project and demonstrates
the applicability and effectiveness of the design process.

The paper is structured as follows: Section 2 introduces
the PESCaDO project and the considered service design
process. In Section 3, the design process is performed in
order to design the necessary services for PESCaDO. In this
context, the artifacts of the design phase are systematically
derived and revised subsequently. Section 4 concludes the
paper and offers suggestions for future research.

92

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

II. FUNDAMENTALS

In the following, the PESCaDO project and the
considered scenario of this project are introduced.
Additionally, the quality-oriented service design process that
is applied for designing the required services is described.

A. Personalized Environmental Service Configuration and
Delivery Orchestration

Nowadays, more and more people are aware of the
influence that environmental conditions can have on the
quality of their life. Since each individual has the need for
specific information about the environment that is affecting
him and his life, information personalization plays a major
role.

The PESCaDO project of the European Commission [3,
4] takes up this issue and aims at developing a platform for
getting personalized information regarding the personal
profile, such as health status, mode of presentation or
language of an individual, and also takes into consideration
the intention of the individual. PESCaDO covers the
discovery of services providing the data, their orchestration,
the processing of the data and the delivery of the gained
information. In terms of reusability, technology
independence and the flexible usage of existing
functionalities, a service-oriented approach should be
pursued [5, 6, 12, 14, 15]. The resulting services are
expected to consider the quality attributes of a unique
categorization, loose coupling, discoverability, and
autonomy. These attributes are chosen, because they can be
evaluated during design time [1, 2]. Quality attributes, such
as statelessness, require implementation information.

Within a first prototype, the data access functionality has
to be developed. One special requirement is the semantic
support for accessing environmental data. Thus, the system
has to be capable to identify all related data sources for a
requested phenomenon like temperature. For this purpose, it
has to be able to extend a single requested phenomenon by
other related ones. For example, if the system has identified
the phenomenon “Pollen” as relevant, it also will have to
retrieve information about more specific phenomena, like
“Birch Pollen”. For achieving this goal, the system uses a
knowledge base, which contains a related ontology. The
focus in the development of the first prototype lies on the
extension of the requested phenomenon and accessing the
related data in the background.

B. Quality-Oriented Service Design Process

The quality-oriented service design process, which is
illustrated in Figure 1, starts with the business analysis phase
that yields artifacts that constitute the input for the service
design phase. The primary goal of this phase is the
identification and modeling of the considered business use
cases and the realizing business processes [9, 10]. The
artifacts use terms as introduced within the domain model for
a common understanding. The business processes can
consider already existing services in order to increase the
reuse of functionality. This means, that the activities within
the business process are aligned with the operations of
existing services regarding their granularity and names.

Existing
Services

Business Analysis

Analysis and
Revision

Service
Candidate

Service
Candidate

Service
Candidate

Service
Candidate

Existing Service

1

2

SpecificationIdentification

Analysis and
Revision

Service Design
Provided

Service Interface

Service Component

Required
Service

Interface

Required
Service

Interface

Business Process
Business
Use Case

Domain Model

Service

Service

Figure 1. Quality-oriented service design process.

Within the service design phase, two activities have to be
performed. In a first step service candidates are
systematically identified by using the modeled business
processes of the analysis phase. Afterwards, these service
candidates are analyzed and revised according to the quality
attributes unique categorization, loose coupling,
discoverability, and autonomy [1]. In a second step the
service specification is performed. The service specification
uses the identified and revised service candidates as input
and defines service design, i.e., the service interfaces and
service components. After a systematic derivation, the
service designs are revised with regard to the previously
mentioned quality attributes. This additional revision is
necessary as service designs include more information than
service candidates.

III. CASE STUDY FOR A QUALITY-ORIENTED SERVICE

DESIGN PROCESS

Within PESCaDO the business use case for getting an
observation has to be considered. The business use case can
be modeled using use case diagrams of the Unified Modeling
Language (UML) [34]. Furthermore, the UML profile for
business modeling as introduced by IBM [22, 23] can be
applied with its adapted notation for use case diagrams as
shown in the following figure.

Get
Observation

User
Figure 2. Considered business use case.

 For the derivation of service candidates, especially the
internal behavior of the business use case is required. This
behavior is represented by a business process and can be
modeled using the Business Process Model and Notation
(BPMN) [31]. Figure 3 shows the business process as main
artifact for deriving service candidates as first step of the
service design phase.

93

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

User

O
b

se
rv

a
tio

n
P

ro
vi

d
e

r

Query Inferior
Concept

D
at

a
P

ro
vi

d
e

r

Get
Sensor

Description

Provide
Sensor

Information

Provide
Observation

Data

Get
Observation

Data
Needed area

covered?

no
yes

K
no

w
le

dg
e

P
ro

vi
de

r

Describe
Sensor

Get Data

Get Observation

Provide
Capability

Information

Get
Capabilities

Determine
Inferior

Capabilities

Get
Capabilities

Query Superior
Concept

Create
Capability
Response

Process
Query

Query
Ontology

Query Inferior
Concept

Figure 3. Considered business process.

Each term within the business use case and business
process bases on a common domain model for avoiding
ambiguity and misunderstandings. This domain model can
be described using an ontology based on the OWL 2 Web
Ontology Language (OWL) [32, 33]. It determines the
concepts and their relations within the considered domain.

A. Identification

For the derivation of service candidates each pool within
the BPMN business process is transformed into one
capability element of the Service oriented architecture
modeling language (SoaML), for this element represents a
collection of capabilities that corresponds to the
understanding of service candidates. Each capability element
contains operations that represent operation candidates as
preliminary operations of the service [7, 24, 26]. Figure 4
shows the derived service candidates.

«Capability»

Data Provider

+ Get Capabilities()
+ Describe Sensor()
+ Get Data()

«Capability»

Observation Provider

+ Get Capabilities()
+ Get Observation()

«use»

«Capability»

Knowledge Provider

+ Get Capabilities()
+ Query Ontology()

«use»

Figure 4. Derived service candidates.

The operation candidates within the service candidates, i.e.,
capability elements, are derived from the business process
and its contained message start events. The usage
dependencies are determined by means of the interaction
between the pools. The names of the service candidates and
operation candidates are taken from the business process.

In a next step, the service candidates have to be analyzed
and revised with regard to the quality attribute unique
categorization, loose coupling, autonomy and discoverability
using the quality indicators introduced in [2].

1) Unique Categorization: According to Erl [5, 6, 28,
29], business-related and technical functionality should be
divided. This quality indicator is fulfilled because all
services only provide business-related functionality.
Similarly, agnostic and non-agnostic functionality should be
separated. Also this quality indicator is fulfilled, for all
services only provide agnostic functionality, which is not
specific for certain business proesses. Another quality
indicator for the unique categorization addresses the
sovereignity of data. If a service manages a business entity,
it should be explicitly managing this business entity for
ensuring consistent and clear responsibility [5, 6, 12].
Within the busines process there are two types of data:
ontology data and observation data. The former are
accessed by the knowledge provider and the latter by the
data provider, which is why this quality indicator is fulfilled
optimally. The last quality indicator for a unique
categorization describes that the operations within one
service should use common business entities. The data
provider and knowledge provider only operate on ontology

94

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

data or observation data. However, the observation provider
uses both observation data and ontology data, which may
result in a split of these two operation candidates into two
seperate service candidates. Since the ontology data
describes the observation data in more detailed, the ontology
data does not represent an own business entity. Thus, the
operation candidates can be grouped within one service
candidate. As result, the derived service candidates best
fulfill the quality indicators for a unique categorization.

2) Loose Coupling: According to Josuttis [15], long-
running operations should be able to be invoked
asynchonously. Since there are no long-running operations,
respectively operations candidates, within the derived
service candidates, this quality indicator does not have to be
considered. Additionally, the parameters within the
operations should be preferably simple types if they are used
across several services. Complex types that are used within
several services should be avoided. Since during the
identification phase the parameters are not defined, this
quality indicator can not be determined. Instead, this quality
indicator will be considered during the specification phase.
A further quality indicator describes that the operations
should be abstract [5, 6, 15, 17]. This means that they
should hide implementation details. The operation
candidates are on a high-level of abstraction, which is why
this quality indicator is fulfilled. Also if there is an state-
changing operation, a compensating operation should be
provided [17]. Since there is no data written or created,
there is no state-changing operation.

3) Discoverability: The discoverability is only of
interest during the specification phase, when the names of
services and operations are finally determined. During the
identification phase the artifacts are only preliminarily
named.

4) Autonomy: One quality indicator for the autonomy of
services focuses on the direct dependencies between
services [5], which should be minimal for a maximum
autonomy. Within the derived service candidates, the only
service candidate with dependencies is the observation
provider. However, due to the requirement of using
distributed functionality, this quality indicator can not be
improved. Another quality indicator addresses the
overlapping of functionality [5, 28]. Services should have a
certain functional scope. Since the service candidates do not
have any overlapping functionality.

As result, the derived service candidates optimally fulfill
the quality indicators for the considered quality attributes and
thus do not have to be further revised.

B. Specification

The subsequent phase, the specification phase, focuses on
the creation of service designs. A service design consists of a
service interface, which describes the service from an
external point of view, and a service component, which
performs the provided functionality [2]. First, the service
candidates of the identification phase are used to generate
preliminary service designs that can be further revised in
order to fulfill the desired quality attributes. Figure 5 shows
the derived service interface for the Observation Provider.

«interface»

Observation Provider

«ServiceInterface»

Observation Provider

observationProviderRequester :
«interface» Observation ProviderRequester

observationProvider :
«interface» Observation Provider

+ Get Capabilities(: GetCapabilitiesRequest) : GetCapabilitiesResponse
+ Get Observation(: GetObservationRequest) : GetObservationResponse

+
Interaction Protocol

: observationProvider : observationProviderRequester

Get Capabilities

Get Observation

«interface»

Observation ProviderRequester

«use»

Figure 5. Derived service interface.

The service interface is formalized using the
ServiceInterface modeling element of SoaML [7]. A service
interface includes operations provided by the service and
operations that have to be provided by the service consumer
in order to receive callbacks. In SoaML these aspects are
modeled using UML interfaces that are associated with the
ServiceInterface element by generalizations and usage
dependencies. Additionally, it defines the participating roles
and an interaction protocol, which determines the possible
orders of operation calls that result in valid results. Latter is
modeled using a UML Activity that is added as
ownedBehavior. The derivation of a service interface from
service candidates transforms the operation candidates into
provided operations. Also the name of the service candidate
is used for the name of the service interface. Additionally,
messages, roles and the interaction protocol are added
systematically.

The service component includes provided services,
services that are required to fulfill the functionality, and the
internal behavior of the component in form of a flow of
operation calls. The service component is represented by a
Participant in SoaML. A Participant can be an organization,
a system or a component within a system. It contains
ServicePoints for provided services and RequestPoints for
required services. Each ServicePoint and RequestPoint is
typed by the describing ServiceInterface element. In Figure
6, the service component for the Observation Provider is
shown. The name of the service component is directly
derived from the name of the service candidate. The internal
behavior is added as ownedBehavior in form of a UML
Activity. It will be illustrated in context of the subsequent
revision phase.

95

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

«Participant»
Observation Provider

Component

«ServicePoint»
observationProvider :
Observation Provider

«RequestPoint»
knowledgeProvider :
Knowledge Provider

«RequestPoint»
dataProvider :
Data Provider

Figure 6. Derived service component.

In a next step, the subsequent analysis and revision
phases can be performed considering the quality attributes
unique categorization, loose coupling, discoverability, and
autonomy.

1) Unique Categorization: Since the quality indicators
that influence the unique categorization have already been
optimal on basis of service candidates and the service
designs were derived from these service candidates, the
unique categorization is also optimal on basis of service
designs. Thus, there is no revision required.

2) Loose Coupling: In contrast to the identification
phase, during the specification phase, the parameters are
formalized. For geographical information systems, standard
data types, such as the Keyhole markup language (KML)
[35], exist. Also within PESCaDO, standardized data types
are expected to be used. Since complex types that are used
across several services should be avoided, the data types are
modeled within single UML packages for each service
design. This ensures that changing data types does not
necessarily affect other services. The infrastructure, for
instance in form of an enterprise service bus, can handle the
transformation between similar data types. The other quality
indicators are still optimal, for the affecting artifacts have
not changed during the specification phase.

«interface»

ObservationRetrievalService

«ServiceInterface»

ObservationRetrievalService

observationRetrievalServiceRequester :
«interface» ObservationRetrievalServiceRequester

observationRetrievalService :
«interface» ObservationRetrievalService

+ Get Capabilities(: GetCapabilities) : GetCapabilitiesResponse
+ Get Observation(: GetObservation) : GetObservationResponse

+
Interaction Protocol

: observationRetrieval
Service

: observationRetrieval
ServiceRequester

getCapabilities

getObservation

«interface»

ObservationRetrievalServiceRequester

«use»

Figure 7. Revised service interface.

3) Discoverability: During the specification phase, the
final names of the services and data types are determined.
According to Josuttis [15] and Maier et al. [17], the names
of the visible artifacts should be functionally named.
Additionally, the names should follow naming conventions.
Thus, during the specification phase, the names of the
artifacts should be inspected in detail. Exemplarily naming
conventions are the usage of the english language and
beginning operation names with a lower-case character. In
Figure 7, a revised service interface is shown that considers
the naming conventions of the PESCaDO project.
Additionally, the service has been renamed regarding its
actual functionality for improving its discoverability.

This revision also affects the service component that uses
this service interface. Figure 8 shows the revised service
component of the Observation Provider. The service
component and the ServicePoints and RequestPoints have
been adapted to the revised service interfaces and the naming
conventions for PESCaDO. Additionally, the internal
behavior of the service component for one of the provided
operations is shown.

: observationRetrieval

Service

getCapabilities

: dataRetrieval

Service

: knowledgeBaseAccess

Service

getCapabilities queryOntology

queryOntology
Create Capability

Response

«Participant»

ObservationRetrieval

ServiceComponent

«ServicePoint»
observationRetrievalService :
ObservationRetrievalService

«RequestPoint»
knowledgeBase
AccessService :
KnowledgeBase
AccessService

«RequestPoint»
dataRetrievalService :
DataRetrievalService

Figure 8. Revised service component.

4) Autonomy: Since the autonomy has already been
optimized during the identification phase, there is no
revision necessary regarding this quality attribute.

By finishing the revision of the initial service designs, the
specification phase ends. The results for developing a
prototype for the PESCaDO project are three revised service
specifications, which now can serve as an input for the
implementation phase [27]. The service designs have been
revised that the resulting services optimally fulfill the chosen
quality attributes of a unique categorization, loose coupling,
discoverability and autonomy.

IV. CONCLUSION AND OUTLOOK

In this paper, we applied a quality-oriented service design
process to the Personalized Environmental Service
Configuration and Delivery Orchestration project of the
European Commission. The design process enabled the

96

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

systematic derivation and revision in order to gain service
designs that fulfill both the functional requirements and the
quality attributes of a unique categorization, loose coupling,
discoverability and autonomy. The service designs result in
services that support the strategic goals that are associated
with service-oriented architectures, such as an increased
flexibility and maintainability. Due to the application on a
concrete scenario, the usage of the design process in terms of
its applicability and effectiveness for real-world projects is
demonstrated.

The case study also showed shortcomings of the service
design process that are expected to be solved in the future:
The used quality indicators that were derived from common
and wide-spread descriptions of quality attributes use terms
that are not exactly defined. For example, the meaning of
agnostic functionality is not clear. The IT architect has to
interpret these terms in order to determine the quality
indicators and the quality attributes. This may result in
wrong measures.

Thus, this case study showed the applicability and
effectiveness of the service design process. However, in the
future, we plan to further refine the definitions of terms used
within the quality indicators and quality attributes to reduce
ambiguities, thus increase the correctness of the results.
Additionally, we plan to apply the design process on further
scenarios.

REFERENCES
[1] M. Gebhart, M. Baumgartner, and S. Abeck, “Supporting service

design decisions”, Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, August 2010, pp.
76-81.

[2] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,
“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[3] The PESCaDO Consortium, “Service-based infrastructure for user-
oriented environmental information delivery”, EnviroInfo, 2010.

[4] Fraunhofer Institute of Optronics, System Technologies and Image
Exploitation, “D8.3 Specification of the pescado architecture”,
Version 1.0, 2010.

[5] T. Erl, Service-Oriented Architecture – Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[6] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[7] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.0 Beta 1, 2009.

[8] The European Parliament and the Council of the European Union,
“INSPIRE”, Directive 2007/2/EC, 2007.

[9] IBM, “RUP for service-oriented modeling and architecture”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
downloads/06/rmc_soma/, 2006. [accessed: June 04, 2011]

[10] U. Wahli, L. Ackerman, A. Di Bari, G. Hodgkinson, A. Kesterton, L.
Olson, and B. Portier, “Building soa solutions using the rational sdp”,
IBM Redbook, 2007.

[11] A. Arsanjani, “Service-oriented modeling and architecture – how to
identify, specify, and realize services for your soa”, IBM Developer
Works, http://www.ibm.com/developerworks/library/ws-soa-design1,
2004. [accessed: June 04, 2011]

[12] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J.-P. Richter,
M. Voß, and J. Willkomm, Quasar Enteprise, dpunkt.verlag, 2008.
ISBN 978-3-89864-506-5.

[13] A. Erradi, S. Anand, and N. Kulkarni, “SOAF: An architectural
framework for service definition and realization”, 2006.

[14] R. Reussner and W. Hasselbring, Handbuch der Software-
Architektur, dpunkt.verlag, 2006. ISBN 978-3898643726.

[15] N. Josuttis, SOA in der Praxis – System-Design für verteilte
Geschäftsprozesse, dpunkt.verlag, 2008. ISBN 978-3898644761.

[16] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Die soa-service-kategorienmatrix“, SOA-Spezial,
Software & Support Verlag, 2009.

[17] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Was macht einen guten public service aus?“, SOA-
Spezial, Software & Support Verlag, 2009.

[18] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Formalising service-oriented design”, Journal of Software, Volume
3, February 2008.

[19] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling
metrics for predicting maintainability in service-Oriented design”,
Australian Software Engineering Conference (ASWEC 2007), 2007.

[20] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, “A metrics suite for
evaluating flexibility and complexity in service oriented architecture”,
ICSOC 2008, 2008.

[21] S. W. Choi and S. D. Kimi, “A quality model for evaluating
reusability of services in soa”, 10th IEEE Conference on E-Commerce
Technology and the Fifth Conference on Enterprise Computing, E-
Commerce and E-Services, 2008.

[22] S. Johnston, “Rational uml profile for business modeling”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
library/5167.html, 2004. [accessed: June 04, 2011]

[23] J. Heumann, “Introduction to business modeling using the unified
modeling language (UML)”, IBM Developer Works,
http://www.ibm.com/developerworks/rational/library/360.html, 2003.
[accessed: June 04, 2011]

[24] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language – part 1 – service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: January 04, 2011]

[25] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy, a
Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

[26] M. Gebhart and S. Abeck, “Rule-based service modeling”, The
Fourth International Conference on Software Engineering Advances
(ICSEA 2009), Porto, Portugal, September 2009, pp. 271-276.

[27] P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck,
“A model-driven development approach for service-oriented
integration scenarios”, 2009.

[28] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.
ISBN 978-0-13-613516-6.

[29] T. Erl, Web Service Contract Design & Versioning for SOA, Prentice
Hall, 2008. ISBN 978-0-13-613517-3.

[30] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[31] OMG, “Business process model and notation (BPMN)”, Version 2.0
Beta 1, 2009.

[32] W3C, “OWL 2 web ontology language (OWL)”, W3C
Recommendation, 2009.

[33] M. Horridge, “A practical guide to building owl ontologies using
protégé 4 and co-ode tools”, http://owl.cs.manchester.ac.uk/tutorials/
protegeowltutorial/, Version 1.2, 2009. [accessed: January 04, 2011]

[34] OMG, “Unified modeling language (UML), superstructure”, Version
2.2, 2009.

[35] OGC, “Keyhole markup language (KML)”,
http://www.opengeospatial.org/standards/kml/, Version 2.2, 2008.
[accessed: June 04, 2011]

97

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

