

An Agile Method for Model-Driven Requirements Engineering

Grzegorz Loniewski, Ausias Armesto, Emilio Insfran

ISSI Research Group, Department of Computer Science and Computation

Universidad Politecnica de Valencia

Camino de Vera, s/n, 46022, Valencia, Spain

{gloniewski, einsfran}@dsic.upv.es, aarmesto@novasoft.es

Abstract - The complexity and pervasiveness of software

applications has increased over the last few years. In this

context, software development processes have also become

complex and difficult to use. It is widely recognized that

requirements engineering has become a critical activity within

this process. In this paper, we aim to provide a methodological

approach which focuses on requirements engineering within

the Model-Driven Development (MDD) context. Our approach

is an OpenUP extension in which the requirements discipline is

placed in the model-driven context. We believe that the

integration of requirements engineering and MDD into one

consistent process will provide practitioners with the benefits

of both. This paper presents the definition of the proposed

process, OpenUP/MDRE, including its activities, roles, and

work products. We also provide an example of its use in a

SOA-based software development project. The use of our

approximation guides the activities of requirements

engineering and promotes automation by means of model
transformations.

Keywords - Model-Driven Development, Requirements

Engineering, agile methodology, OpenUP.

I. INTRODUCTION

Software systems are becoming more and more complex,
and the success of their development should not depend on
individual efforts and heroics. Successful software
development can only be accomplished by using a well-
defined software development process. Requirements
Engineering (RE) is recognized as being one of the most
critical aspects of this process. Errors made at this stage may
have negative effects on subsequent development steps, and
on the quality of the resulting software.

Several software development approaches with which to
support the development of complex systems have been
proposed, of which Model-Driven Development (MDD) is
one of the most promising. MDD promotes the separation of
concerns between the business specifications and the
implementation of these specifications on specific platforms
[4]. This separation is obtained by using models that allow
the level of abstraction to be elevated [9]. In this context,
Model-Driven Architecture (MDA) [13] is the best known
realization of the MDD. It encourages the use of models and
model transformations, among several models: the
Computation Independent Model (CIM), the Platform
Independent Model (PIM), the Platform Specific Model
(PSM) and code.

However, most MDA-based approaches focus on the
transformation strategies from PIM to PSM and from PSM to

code. Unfortunately, less attention is paid to the CIM to PIM
transformations upon which requirements engineering places
emphasis. Loniewski et al. [7] have shown that there is no
systematized development process that applies RE
techniques in the MDD context. Although various techniques
for CIM to PIM model transformations exist, those software
development projects which attempt to use them often fail
owing to the lack of well-defined methods and processes
describing the entire development life cycle.

Another problematic issue as regards existing MDD
supporting approaches is that the clear assignation of the
methodology’s artifacts to the MDA abstraction levels is
frequently impossible. This situation arises as a result of the
unclear definition of CIM and PIM, which confuses
developers. It is consequently very difficult to apply the
MDA life cycle by starting from the CIM level, and thus
obtain most of the benefits that the MDD process should
provide, i.e., automation in model transformations and
traceability management.

In this paper, we introduce a methodology that provides
MDD processes with an agile method which incorporates the
RE activities. This method has been developed as an
extension of OpenUP [2], an agile methodology, which is a
minimally sufficient software development process that
provides only fundamental content for small or medium size
projects that deliver software as a main product. It mainly
focuses on the collaborative nature of software development.
The main extension is the replacement of the Requirements
discipline with Model-Driven Requirements with which to
elicit, model and manage requirements in the MDD context.
Although OpenUP was not initially created to support MDD
processes, it offers a flexible, agile and extensible means to
introduce a model-driven process integrated with RE
activities. This work may be an interesting contribution for
those software process engineers who are faced with the
challenge of guiding software development projects that
follow an MDD approach from the requirements elicitation.
Moreover, in projects already using the OpenUP method, the
agility feature of our method makes the incorporation of the
improved MDD-complaint OpenUP extension quite quick
and smooth.

The remainder of this work is as follows. Section 2
provides an overview of the software process as an
engineering process and also introduces some related
approaches. Section 3 introduces the improved OpenUP-
based methodological approach, presenting details of the
content and process elements of the new Model-Driven
Requirements discipline. Section 4 puts this approach into
practice, discussing an example of its application to a SOA-

570

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

based middleware platform development. Finally, Section 5
contains some conclusions and future work.

II. RESEARCH BACKGROUND

This section describes the background of software
process engineering along with other important approaches
related to OpenUP/MDRE.

A. Software Process Engineering

When methodologies first emerged, each software
development process used its own concepts and notations to
define the contents of the methodology. The need to unify all
these concepts and notations therefore emerged. The OMG
thus introduced the Software Process Engineering
Metamodel (SPEM) [12] standard. SPEM provides a
complete metamodel based on the Meta Object Facility
(MOF) [11] to formally express and maintain development
method content and processes.

Various tools supporting this standard currently exist,
one of which is the Eclipse Process Framework (EPF) [1].
EPF is a comprehensive process authoring tool which
provides extensive method authoring and publishing
capabilities. EPF uses the concept of a plug-in library to
allow process engineers to define and extend methodologies.
The fact that OpenUP is itself a plug-in library permits it to
define new processes or extend existing ones. In this paper,
this tool is used to extend OpenUP by incorporating a model-
driven requirements engineering approach.

B. Related Work

Various existing approaches provide model-based
requirements specifications incorporated into an agile
methodology. The Agile Unified Process (AUP) is a
simplified version of the RUP which applies agile techniques
to Agile Model-Driven Development (AMDD). This
approach considers the model as the principal artifact of the
requirements specifications. However, its use in the model-
driven context is not clear. There has been another attempt to
create a lightweight methodology upon the MDA principles:
OpenUP/MDD. However, its stable version has not been
released. This proposal was focused solely on the
transformations from the PIM to PSM level of the MDA
framework. In this respect, our proposal and the
OpenUP/MDD approach are complementary. The
methodological approach presented in this work focuses on
the CIM level transformations and generates the desired
model at the PIM level.

Several attempts to establish a methodology with model-
driven principles can be found in literature, but none of them
focuses on the CIM-level requirements and a complete
process to derive PIM-level specifications. Methods and
techniques that describe particular transformations of
requirements also exist (e.g., [5] or [15]), but they hardly
ever possess a well-defined description of their use in a
development process.

III. OPENUP EXTENSION FOR THE MODEL-DRIVEN RE

This section introduces an extension of OpenUP for
model-driven requirements engineering - OpenUP/MDRE,

signifying that it focuses on a discipline for requirements
engineering based on models in the model-driven context.
We believe that this new discipline will improve the
effectiveness of requirements engineering and will also make
a significant contribution towards supporting analysts and
developers by providing a well-defined process.

The first proposal of the methodology presented in [8]
was defined on a base method adapted from the Rational
Unified Process (RUP) [6]. This proposal was validated in a
case study in an academic context and some of its
weaknesses were identified. The RUP-based model-driven
requirements engineering proposal was too strict and
complex. This limitation has been solved by changing the
base process of our approach to the agile OpenUP. Both
RUP and OpenUP provide an iterative and incremental life
cycle. However, OpenUP decreases the ceremony of the
process, incorporating one of the strong points of agile
methodologies such as Extreme Programming and Scrum.
Our new method restricts neither the requirements elicitation
methods, nor their specification form. The tasks provided in
our approach allow an easy adaptation of any type of
requirements specifications when using them in a model-
driven process leading to PIM definition.

OpenUP is also available under the Eclipse Public
License and is developed as a plug-in library of the Eclipse
Process Framework (EPF) [2] tool, giving process engineers
a powerful mechanism with which to provide content
variability of its process elements by means of contribution,
extension and replacement.

Figure 1 illustrates the OpenUP hump chart in which the
Requirements discipline is redefined by the Model-Driven
Requirements discipline.

Figure 1. OpenUP Extension for Model-Driven Requirements

As is depicted in Figure 1, the redefined Model-Driven
Requirements discipline is a concern from the inception
phase to the construction. Since the hump chart emphasizes
the workload within disciplines, the diagram shows that the
new discipline is particularly important during the inception
and elaboration phase, in which the product vision is created
and the architecture is established.

In this new discipline, a CIM requirements model is first
created on the basis of the stakeholders’ needs, and this is
then transformed into an analysis model at the PIM level.
Specifying the CIM to PIM transformations reduces the
system analysts’ workload and responsibilities by including

571

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

domain experts and stakeholders in the system modeling.
The analyst’s workload therefore decreases, particularly in
the elaboration phase. Since we are concentrating on model
use in the MDD context, the workload in the Development
discipline in the elaboration phase also decreases, depending
on the degree of automation of the specification generation
tasks in the Model-Driven Requirements discipline.

The Architecture discipline (marked with a star) is only
performed if the architecture (adequate architectural
elements, models, or patterns) has not been defined.
However, once this architecture has been defined, the
Architecture discipline is optional and may be narrowed to
refine the reference architecture provided.

Owing to space constraints, we shall comment only
briefly on each activity of the main extensions of the
OpenUP methodology, which is the Model-Driven
Requirements discipline, pointing out the roles responsible
for each task, along with input and output artifacts.

Our approach maintains the roles originally defined by
OpenUP, but also introduces two roles related to the model-
driven context activities: Model Analyst and
Transformations Specifier.

A set of new activities has been provided and the
workflow has been replaced. Figure 2 shows the Model-
Driven Requirements workflow represented through a
tailored version of a UML activity diagram. It is based on the
OpenUP’s Requirements workflow tasks, but also introduces
new activities and tasks, which are crucial to the MDD
process.

Figure 2. Model-Driven Requirements workflow

The following subsections discuss each of the activities
of the proposed workflow, including a description of the new
activities, accompanied by a detailed diagram of tasks, their
input and output artifacts, and responsible roles. These
diagrams show not only the roles which are responsible for a
particular task, but also the roles who participate in its
realization.

A. Capture and Analyze Requirements

This activity, which is mainly composed of tasks taken
from the original OpenUP requirements discipline, involves
reaching an agreement on a statement of the problem to be
solved, identifying the stakeholders and clearly defining the
system’s boundaries and constraints.

Stakeholders’ needs and potential features, which
represent the high-level user or customer view of the system,
are captured and documented in the Vision document. The
potential for possible misunderstandings between the
Analyst and the other different domain background
stakeholders is minimized by establishing and maintaining a
common vocabulary in the Glossary.

The purpose of this activity is, amongst others, to identify
and capture functional and non-functional requirements for
the system. The idea is to initially understand and determine
the requirements at a high-level, and then describe these
requirements with enough detail to validate understanding of
the requirements, to ensure concurrence with stakeholder
expectations, and to permit software development to begin.

The artifacts that result from the tasks performed
constitute the principal input for further modeling tasks. The
tasks defined in this activity are shown in Figure 3.

Figure 3. Roles, tasks and work products of the Capture and Analyze

Requirements activity

B. Identify a Candidate Architecture

This activity is essential for the software development
process. It determines the content of artifacts in the RE
phase, which also conditions the MDD process to be
followed. In this activity, the main architectural elements are
identified and the metamodels for models at the CIM-level
and PIM-level of the MDD process are established. This
approach is architecture-centric, signifying that it is the
architecture that demands a certain type of model to be
created. The architectural pattern identified for the system
becomes a basis from which to derive further analysis
artifacts. For example, if the architecture chosen is Service
Oriented Architecture (SOA), the model that describes
requirements at the CIM-level may be given as Business
Process Modeling Notation (BPMN) and it is supposed that
the model at the PIM-level may be a service model. A
detailed diagram of particular tasks, roles and artifacts for
this activity is shown in Figure 4.

Figure 4. Roles, tasks and work products of the Identify a Candidate

Architecture activity

C. Develop Artifacts

This activity, like the Identify a Candidate Architecture,
is essential in our approach. The CIM-level requirements
model (RM) is created in this activity, and this model

572

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

conforms to the metamodel selected for this purpose in the
previous activity. Model-driven transformations are also
specified and planned. In particular, the transformation
language is chosen, along with the transformation
automation level and tool support that are specified.
Transformation rules are described in a specially prepared
Transformation Rules Catalog (TRC). This document is the
principal artifact supporting transformation execution, but it
is also essential for the requirements traceability, which is
the means used to control changes in requirements, maintain
agreements with the customer and set realistic expectations
as to what will be delivered. This requirements traceability is
performed in a new task, Manage Dependencies, and the
Model Dependencies Specification document is produced as
a result of this.

A Transformation Iteration Plan (TIP) is created in this
activity to describe not only the elements of a source model
to which the transformation applies, but also the order of the
transformation rule application. For example, if the
architecture chosen is SOA, the CIM model contains BPMNs
and the PIM model contains service models. An example of
the transformation iteration plan could specify that the
transformation rules between a BPMN of a higher level and
a BPMN of a lower level should be executed before the
transformations rules from a BPMN of a lower level to a
service model. The tasks defined within this activity are
shown in Figure 5.

Figure 5. Roles, tasks and work products of the Develop Artifacts activity

D. Generate and Validate Model

This activity concludes the entire requirements modeling
process by generating the principal artifact of the
requirements engineering process, which is the Generated
Analysis Model (GAM). GAM represents requirements
specification at the PIM-level of the MDA lifecycle. For
example, GAM can be specified by a UML sequence
diagram in the case of a client-server software project, or a
service model in the case of SOA platform development.

Artifacts, such as a requirements model (RM) or
transformation rules catalog (TRC), developed as a result of
the previously performed tasks, are the input artifacts for
performing model transformations in order to create the
GAM artifact. These transformations can be manual or
automated, depending on their level of complexity. Their
execution may be supported by appropriate tools. Although
the GAM is systematically obtained by the transformation
rules, we believe that it is necessary to validate it with regard

to its consistency and correctness. This type of validation
should be previously described while defining the
transformation rules in a separate Model Validation Plan
(MVP) document. The RM can also be validated against the
specific conceptual standards of the domain in which it is
applied. The validation result is stored in the Model
Validation Record (MVR) document. The tasks defined in
this activity are shown in Figure 6.

Figure 6. Roles, tasks and work products of the Generate and Validate

Model activity

IV. APPLYING OPENUP/MDRE

The main objective of this section is to show the
applicability and feasibility of the OpenUP/MDRE approach
in the development process of a SOA-based system. In this
example of methodology usage, the system specification is
developed on the basis of user requirements, which were
captured as user scenarios. We assume that the requirements
scenarios and use cases defined in the Capture and Analyze
Requirements activity have been correctly captured and
documented in the initial stages of the project. These artifacts
constitute the input for the subsequent model-driven process.

Each of the main tasks of the OpenUP/MDRE
application is commented on in the following subsections.

A. Identify the System Architecture

Our proposal for the OpenUP extension was applied to a
domain in which current systems have to deal with many
complex processes, multiple stakeholder views and users, a
distributed environment, changing requirements and many
other factors. These factors and the domain’s complexity
lead to system specifications of the same complexity, and the
principal issues to be considered are interoperability and
distributed use of the software functionalities. These
characteristics indicate that the Service-Oriented
Architecture (SOA) is a primary candidate architecture. SOA
strengthens such factors as reusability, scalability or
interoperability. In this case, the Architecture Notebook
(artifact from the architecture OpenUP’s discipline) contains
the SOA reference architecture description adapted to this
particular project.

B. Define Meta-Models

Since SOA is the selected architecture, it demands a
certain type of functionality specification. It also implies the
type of models that should be used in the RE process. The
Architecture Notebook therefore includes the metamodels
identified for the CIM-level requirements model and PIM-

573

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

level analysis model. In this example, requirements specified
as scenarios and use case models provided by stakeholders
and captured by the Analyst serve to create the requirements
model that conforms to the features metamodel (Figure 7.A).
The most important concept of this metamodel is the Service
Feature, with one of three refinement types (Decomposition,
Specialization, and Implemented-by).

Since SOA was chosen as the reference architecture for
the project, the PIM-level analysis models will cover the
business process and service layers of the architecture. In this
case, models that will be generated in the MDD process are
established to conform to the BPMN process metamodel
(Figure 7.B) and service metamodel (Figure 7.C).

Figure 7. Simplified metamodels used for requirements specification

The most important concepts of these models are the
service with its description containing operations, messages
and exceptions, and also the process with the flow of
activities.

C. Define and Plan Transformations

At this stage, the Transformations Specifier prepares the
TRC, which documents transformations from the CIM model
to the PIM-level model. In this case, these rules describe a
transformation from the features model to reach target
models such as BPMN and service specification. The
transformation described in this example is not straight
forward, but consists of two steps: one from the features

model to BPMN, and one BPMN to the service specification.
In this case, the TIP document describes the order of use of
specified transformations.

The transformations in this particular example are
performed manually by the Model Analyst. However, in
other cases they may be executed automatically through the
use of tools that support a particular transformation.

An example of this feature to BPMN transformation,
which is described in detail by Montero et al. [10], is shown
in Figure 8, in which the left-hand side of the transformation
presents an element of the source model and the right-hand
side presents a corresponding element of the target model.

The service specification is then obtained from the
BPMN model by applying one of existing techniques. In this
case, the services and their operations were identified using
the method described by Azevedo et al. [3].

Figure 8. Example of transformation rules

D. Develop Requirements Model

Once the architecture and the metamodels have been
identified, the Requirements Model is created. This is done
manually. The features model, which constitutes the input for
the CIM to PIM transformation, is created on the basis of
scenarios and use-cases previously described by the
stakeholders. Figure 9 shows an example of a features model
for the system’s Actor Management functionality. This
functionality contains three independent and optional
functionalities with which to manage actors.

Figure 9. Example of the requirements model

E. Run Transformations

Once the transformations have been defined and planned,
the Model Analyst generates the PIM-level models in order
to produce the Generated Analysis Model artifact. The
specification produced is the input for further design and
implementation in the Development discipline. Figure 10
shows a simplified specification of the Actor Management
business process represented as BPMN (Figure 10.A), along
with the Actor Management service specification (Figure
10.B) that conforms to the aforementioned metamodels.

The Model Dependencies Specification document, which
is prepared during the aforementioned process, includes the
traceability links between the requirements and all
subsequent models that are created as intermediate or final
products of the model-driven process.

574

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 10. Example of Generated Analysis Model for Actor Management

The example presented here shows how the requirements
specification process may be conducted for SOA-based
systems development. Taking advantage of the model-driven
requirements process signifies that it is systematized but also
agile when preparing different kinds of specifications. The
process is accompanied by a set of artifacts that provide
well-documented guidelines for all interested project
development members.

V. CONCLUSIONS AND FURTHER WORK

This paper presents an extension of OpenUP,
emphasizing the use of models as requirements
specifications in the context of MDD. This extension
redefines the original Requirements discipline in the
OpenUP and proposes a new discipline called Model-Driven
Requirements. Our methodological approach is an agile RE
method for project managers who would prefer to adapt a
MDD RE process to particular software architecture rather
than using another general approach. We believe that this
flexible MDD approach is a solution to the common "one
method fits all" problem of generic methodologies.

In our approach we apply model-driven techniques to
extend OpenUP to support different architectures and project
needs. It improves the development process defined by
OpenUP in that it is not only model-based, but also model-
driven. This makes OpenUP/MDRE more compliant to
maturity model approaches (such as that of the MDD
Maturity Model [14]) needed in industry for the incremental
adoption of MDD processes. The extension was developed
as a plug-in library for EPF. It includes new content
elements, such as: artifacts, roles, tasks, and process
elements, i.e., activities and capability patterns, to guide
software engineers who attempt to follow an MDD approach
in their software projects.

The application of this approach to an MDD project has
been described, and shows that the use of a model-driven RE
has an important influence on the entire development
process.

As further work, we plan to provide a tool support with
which to easily create the artifacts defined for this model-
driven development process (transformation rules,
transformations iteration plan, model validation plan, etc.).
This will be addressed by providing document templates and
creating artifacts with wizards.

Finally, we are involved in the redefinition of the
OpenUP/MDRE based on the artifact-driven approach
which, in our opinion, better covers the different aspects of
an MDD process definition.

ACKNOWLEDGEMENT

This research work is supported by the MULTIPLE
project (with ref. TIN2009-13838) funded by the "Ministerio
de Ciencia e Innovación (Spain)".

REFERENCES

[1] The Eclipse Process Framework (EPF) project,
www.eclipse.org/proposals/beacon/ (last accessed 8/8/2011)

[2] The OpenUP methodology web site (November 2010),
http://epf.eclipse.org/wikis/openup/ (last accessed 8/8/2011)

[3] L.G. Azevedo, F. Santoro, F. Baio, J. Souza, K. Revoredo, V.
Pereira, and I. Herlain, A Method for Service Identification
from Business Process Models in a SOA Approach. In:
Enterprise Business-Process and Information Systems
Modeling, Lecture Notes in Business Information Processing,
vol. 29, pp. 99-112. Springer Berlin Heidelberg (2009)

[4] M. Azoff, The Benefits of Model Driven Development. White
paper, Butler Group (March 2008),
http://www.ca.com/us/products/detail/CA-Gen.aspx (last
accessed 8/5/2011)

[5] P. Jamshidi, S. Khoshnevis, R. Teimourzadegan, A.
Nikravesh, and F. Shams, Toward Automatic Transformation
of Enterprise Business Model to Service Model. In: PESOS
'09: Proceedings of the 2009 ICSE Workshop on Principles of
Engineering Service Oriented Systems, pp. 70-74, IEEE CS,
Washington, DC, USA (2009)

[6] P. Kruchten, The Rational Unied Process: an Introduction.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1999)

[7] G. Loniewski, A. Armesto, and E. Insfran, Incorporating
Model-Driven Techniques into Requirements Engineering for
the Service-Oriented Development Process. In: ME’11:
Proceedings of the 2011 Conference on Method Engineering,
vol. 351, pp. 102-107, Springer Boston (2011)

[8] G. Loniewski, E. Insfran, and S. Abrahao, A Systematic
Review of the Use of Requirements Engineering Techniques
in Model-Driven Development. In: Petriu, D.C., Rouquette,
N., Haugen, (eds.) MoDELS. Lecture Notes in Computer
Science, vol. 6395, pp. 213-227, Springer (2010)

[9] T. Menzies, Editorial: Model-Based Requirements
Engineering. Requirements Eng. 8(4), 193--194 (2003)

[10] I. Montero, J. Pena, and A. Ruiz-Cortes, From Feature
Models to Business Processes. In: Proceedings of the 2008
IEEE Int. Conf. on Services Computing, vol. 2, pp. 605-608,
IEEE Computer Society, Washington, DC, USA (2008)

[11] OMG (Object Management Group): Meta Object Facility
(MOF) Core Specification Version 2.0 (2006),
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

[12] OMG (Object Management Group): Software Process
Engineering Metamodel (SPEM) (January)

[13] OMG (Object Management Group): Model Driven
Architecture: The Architecture of Choice for a Changing
World (2010), http://www.omg.org/mda

[14] E. Rios, T. Bozheva, A. Bediaga, and N. Guilloreau, MDD
Maturity Model: A Roadmap for Introducing Model-Driven
Development. In: ECMDA-FA. pp. 78-89 (2006)

[15] L. Zhang and W. Jiang, Transforming Business Requirements
into BPEL: A MDA-Based Approach to Web Application
Development. In: WSCS'08: IEEE Int. Workshop on
Semantic Computing and Systems, 2008, pp. 61-66 (2008)

575

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

