

Migrating Functional Requirements in SSUCD Use Cases to a More
Formal Representation

Mohamed El-Attar

Information and Computer Science Department
King Fahd University of Petroleum and Minerals

P.O. 5066, Al Dhahran 31261, Kingdom of Saudi Arabia
melattar@kfupm.edu.sa

James Miller
STEAM Laboratory

Department of Electrical and Computer Engineering
University of Alberta, Edmonton, Alberta, Canada

jm@ece.ualberta.ca

Abstract- Use case modeling is a popular technique to elicit and
model functional requirements of a software development
project. In a use case driven development methodology, use cases
are used as a basis to guide the development of UML design
models. In this paper, we provide a model transformation
approach to transform use cases descriptions written in a nearly
unstructured form to a more formal representation. A more
formal representation, which is machine-readable, can be used to
systematically generate other UML design models, in particular
UML activity diagrams. The main advantage of using this model
transformation approach is to avoid potential errors introduced
by modelers if they were to develop the UML design models while
depending solely on their skill and experience. The proposed
model transformation approach is applied to a library system to
demonstrate its applicability and to validate its correctness and
effectiveness.

Keywords – Use Cases; SSUCD; SUCD; Model
Transformation.

I. INTRODUCTION

Use case diagrams [3, 6] have become the de-facto modeling
tool to elicit and model functional requirements for object-
oriented software development projects. In a use case driven
development methodology, the use case model is developed at
the analysis phase used to drive the development of other UML
(Unified Modeling Language) [12] design artifacts at the
design phase. This is process is far from straightforward sine
naturally there is a gap between the analysis and design phases.
If the development of UML design artifacts based on use case
models is dependent solely on human skill, experience and
judgment, then there will be a great risk of developing design
artifacts that have a design view which is inconsistent with the
analytical view as presented by the use case model. As a result,
system architects may construct a design that provides different
functionality than that required (i.e., developing the ‘wrong’
system), leading to costly reworks and schedule overruns, in
addition to the intangible cost of unsatisfied customers.
 Model transformation provides a more rigorous approach
towards developing UML design artifacts based on use case
models. Model transformation greatly reduces the human factor
during the development process thus increasing the likelihood
of developing a system that satisfies its prescribed functional
requirements. To this end, this paper presents a model
transformation approach that transforms use cases written in a
form named SSUCD (Simple Structured Use Case
Descriptions) [2] to another more formal representation named
SUCD (Structured Use Case Descriptions) [5]. SUCD is a

language first introduced in [5] that is used to structure use case
descriptions by embedding enough structure within the use
case descriptions to facilitate the transformation of workflows
in use case descriptions into UML activity diagrams. Use cases
are ideally written by business analysts. In [1], an experiment
was conducted which revealed that the language SUCD was
too difficult to be used by its potential users (business
analysts). The experiment indicated that when using SUCD, the
majority of defects detected in the models developed were due
to syntax errors resulting from using of the SUCD language.
Consequently, the authors of the SUCD language developed a
simplified version of SUCD, which is SSUCD [2]. SSUCD
was intentionally designed to accessible to business analysts.
The usability of SSUCD was empirically evaluated in [1]. The
results of the experiment indicate that users of SSUCD develop
higher quality use case models. SSUCD was also intentionally
designed to help business analysts develop use case models
that are consistent to combat the issue of developing
inconsistent use case models when not utilizing any structure.

The remainder of the paper is organized as follows: Section 2
briefly outlines the related work and provides an introduction
to the SSUCD and SUCD languages. The proposed model
transformation technique is detailed in Section 3. In Section 4,
a library system case study is used to evaluate the correctness
and effectiveness of the proposed transformation technique.
Finally, Section 5 concludes and discusses future work.

II. BACKGROUND AND RELATED WORK

 There exist two tools that automate the generation of
activity diagrams from use case models such as “Catalyze
Suite” [8] and “TopTeam Analyst” [9]. Both tools produce
diagrams similar to UML activity diagrams, which their
developers refer to as ‘Flow diagrams’. However, such tools
and methods depend on the utilization of use case descriptions
with no structure, meaning that the source use case
descriptions used are vulnerable to inconsistencies. If
inconsistent use case models are used as a source to generate
UML activity diagrams, therefore these inconsistencies will
propagate onwards to the UML activity diagrams, which in
turn will propagate to the implementation source code where
the cost of fixing such inconsistency error escalates
significantly. Therefore, tools that generate UML activity
diagrams should be geared towards using the SSUCD
language to ensure that the source use case models used are
consistent. This approach presented in this paper uses use
cases written in the SSUCD form to contribute towards the

487

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

overall goal of generating UML activity diagrams that provide
a consistent and correct view of the system’s functional
requirements.

III. A BRIEF BACKGROUND TO SSUCD AND SUCD

The model transformation approach proposed in this paper

depends on using SSUCD use case descriptions as input and
produced SUCD use case descriptions as output. As a prelude
to outlining the model transformation mapping rules and
algorithms shown in Section 3, it is necessary to briefly
introduce the SSUCD and SUCD languages; the components
used in the model transformation. To this end, this section
provides a brief introduction to SSUCD and SUCD using a
use case description of a system outlined in [5]. The use case
is concerned with the functionality of borrowing a book from
a library. SSUCD and SUCD use cases do not mandate any
particular template to be used. SSUCD and SUCD use cases
however require a minimal set of fields to be present in a use
case description. The fields required are the (a) Use Case
Name section, (b) the Associated Actors section, (c) the
Description section, and (d) the Extension Points section.
SUCD use cases, being more formal that SSUCD, do contain
further subsections within some sections of its template. For
example, in the Extension Points section, SUCD use cases
case outline Public Extension Points and Private Extension
Points. A detailed description of the SSUCD and SUCD
languages are out of the scope of this paper. For detailed
descriptions of the SSUCD and SUCD languages as well as
their formal syntax, our interested readers are referred to [2]
and [5], respectively. However, to illustrate the difference
between using both languages, Figures 1 and 2 show the
textual description of the “Borrow Book” use case using
SSUCD and SUCD, respectively.

Use Case Name:
Borrow Book

Brief Description:
This use case is initiated by a Member to allow that member to
borrow a book. A Librarian is then involved to carry out the
transaction.

Preconditions:
The book must exist

Basic Flow:
The use case begins when a member brings a book they would
like to borrow. Information about the book is then retrieved
from the database by entering the book’s name or barcode.
The member then provides their library card for the librarian
to scan. The librarian needs to authenticate first before
scanning the book’s barcode. The librarian then updates the
member’s record with the newly borrowed book. The book’s
status is then changed in the database and set as ‘Borrowed’.

Alternative Flow:
When the librarian scans the book's barcode, if the barcode
cannot be scanned, then the book's barcode is entered
manually.

Postconditions:
The number of borrowed books in the member's record is
increased by one

Extension Points:
Balance overdue

Fig. 1. The description of the Borrow Book use case described in SSUCD

Use Case Name:
Borrow Book

Brief Description:
This use case is initiated by a Member to allow that member to
borrow a book. A Librarian is then involved to carry out the
transaction.

Preconditions:
The book must exist

Basic Flow:

{BEGIN Use Case}

{BEGIN bring book to borrow}
• Member -> Brings the book he/she would like to borrow
• PERFORM Retrieve book information (2)
• Member -> Provides library card
• Librarian -> Scans member's card
{END bring book to borrow}

{BEGIN authenticate librarian}
• INCLUDE Authenticate Librarian (1)
{END authenticate librarian}

{BEGIN scan book}
• Librarian -> Scan's book's barcode
RESUME {update member's record} {update book's status}
(5)
{END scan book}

{BEGIN update member's record}
• Librarian -> Updates the Member's record with the newly
borrowed book
RESUME {END}
{END update member's record}

{BEGIN update book's status}
• SYSTEM -> Changes the book's status in the database to
'Borrowed'
{END update book's status}

{END Use Case}

Alternative Flows:
FLOW Basic Flow (3)
AT {scan book} (4)
• Librarian -> Scans the book's barcode
IF barcode cannot be scanned
{BEGIN enter barcode manually}
• Librarian -> Enters the book's barcode number manually

488

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

{END enter barcode manually}
CONTINUE {update member's record} {update book's status}
Subflows:

SUBFLOW Retrieve book information
{BEGIN enter and retrieve book information}
• Librarian -> enters the book's name or barcode
• SYSTEM -> retrieve the given book's information from
database
{END enter and retrieve book information}

Postconditions:
The number of borrowed books in the member's record is
increased by one

PUBLIC EXTENSION POINT
Balance overdue

Fig. 2. The description of the Borrow Book use case described in SUCD

It can be easily deduced from Figures 1 and 2 that SUCD
use case descriptions contain far more structure that SSUCD
use cases. This is the chief motivation behind this work. Due
to the complexity of this transformation problem, if the
transformation is performed manually then there will be a
great risk of developing SUCD use cases that are inconsistent
with their corresponding source SSUCD use cases.

IV. TRANSFORMING USE CASES FROM SSUCD TO SUCD

 This section describes the preparation activities requisite for
the transformation process to take place. In this section, we
also present the model transformation rules and algorithms.
Automation support is important to ensure the syntactical
correctness of the models used and created and to ensure the
speed and accuracy of the application of the transformation
process and therefore the transformation rules and algorithms
were coded using two popular tools within the model
transformation research community.

A. Generating the Metamodels of SSUCD and SUCD

 A model transformation process uses a source model to
produce a target model based on the transformation rules and
algorithm. As a prerequisite to the execution of the
transformation, the source model needs to conform to a
metamodel. The conformance of the source model to a
metamodel ensures the syntactical correctness of the source
model. Similarly, the target model also needs to conform to
metamodel to ensure the syntactical correctness of the
produced model. The derivation of the metamodels for both
source and target models were reverse engineered from the E-
BNF rules for both SSUCD and SUCD, respectively. The E-
BNF rules for SSUCD and SUCD are defined in [2] and [5],
respectively. The metamodels were reverse engineering using
a tool named ANTLR (ANother Tool for Language
Recognition) [7]. ANTLR is a language tool that provides a
framework for constructing recognizers, interpreters,
compilers, and translators from grammatical descriptions
containing actions in a variety of target languages [7]. The

high-level metamodels for SUCD and SSUCD are shown in
Figures 3 and 4, respectively.

Fig. 3. The high-level components of the SUCD metamodel.

 As shown in Figures 3 and 4, the SSUCD and SUCD
metamodels formats the use case descriptions into several
sections represented as objects. Each section describes a certain
important aspect of the use case. For example,
“AssociatedActorsSection” object is used to describe the list of
actors associated with the given use case. It can be shown that
the SSUCD metamodel is a simplified version of SUCD as the
metamodel of SSUCD is a subset of the SUCD metamodel.
ANTLR generated a compiler that can parse SSUCD use case
descriptions. The compilation process results in the generation
of an object model that represents the given SSUCD use cases.

Fig. 4. The high-level components of the SSUCD metamodel.

 Transformation Mapping Rules and Algorithms

 The transformation and mapping rules and algorithms
prescribe the process through which a source model is
transformed into a target model. In the scope of model-driven
engineering, the transformation mapping rules and algorithms
are defined in terms of model, which in turn must conform to a
metamodel. The ATL (Atlas Transformation Language)
metamodel was chosen as the metamodel for model
transformation problem considered in this paper. ATL was
selected since it provides two methods to describe

489

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

transformation rules: (a) using “matching rules” (declarative
programming); and (b) using “called rules” (imperative
programming). For the transformation problem at hand it was
necessary to use both types of programming methods provided
by ATL as complex transformation algorithms can be too
difficult to program declaratively only [10]. Figures 5 8
outline the mapping rules and algorithms of the proposed
model transformation technique per description section.

Use Case Name Section
SSUCD SUCD

The “Use Case Name”
section starts with the label
“Use Case Name:”

MAPPING1: Every use case
in the model must have a
name and therefore this
section must exist in every
use case description

The “Use Case Name
Section” starts with the label”
Use Case Name:”

MAPPING1: Every use case
in the model must have a
name and therefore this must
exist in every use case
description.

 If the use case is abstract
then this section is followed
by the keyword
“ABSTRACT”

Use case name as-is in free
flow NL
MAPPING2: Use case name
must be unique in the entire
model. No two use cases can
have the same name.

 If the use case is abstract,
this section then is followed
by the keyword
“ABSTRACT”

Use case name as-is in free
flow NL
MAPPING2: Use case name
must be unique in the entire
model. No two use cases can
have the same name.

Transformation Rule: The use case names must be exactly
the same in both SSUCD and SUCD.

If the use case is
implementing an abstract use
case, the keyword
“IMPLEMENTS” is shown
followed by the name of the
abstract use case. Any
additional abstract use cases
which the given use case
implements, is stated by
using a comma followed by
the name of the other abstract
use cases. For example:
IMPLEMENTS UseCaseA,
UseCaseB, UseCaseC
MAPPING3: Use cases that
are implemented must exist in
the target model.
MAPPING4: Use cases that
are implemented must be
abstract. In other words, they
should have the keyword
“ABSTRACT” in their “Use
Case Name” section.

If the use case is
implementing an abstract use
case, the keyword
“IMPLEMENTS” is shown
followed by the name of the
abstract use case. Any
additional abstract use cases
which the given use case
implements, is stated by
using a comma followed by
the name of the other abstract
use cases. For example:
IMPLEMENTS UseCaseA,
UseCaseB, UseCaseC
MAPPING3: Use cases that
are implemented must exist in
the target model.
MAPPING4: Use cases that
are implemented must be
abstract. In other words, they
should have the keyword
“ABSTRACT” in their “Use
Case Name” section.

Transformation Rule: The names of the implemented use
cases in both SSUCD and SUCD must match. Both SSUCD
and SUCD must include the keyword ABSTRACT.

If the use case is specializing
a concrete use case, the
keyword “SPECIALIZES” is
shown followed by the name
of the concrete use case. Any
additional concrete use cases
which the given use case
specializes, is stated by using
a comma followed by the
name of the other concrete
use cases. For example:
SPECIALIZES UseCaseA,
UseCaseB, UseCaseC
MAPPING5: Use cases that
are specialized must exist in
the target model.

If the use case is specializing
a concrete use case, the
keyword “SPECIALIZES” is
shown followed by the name
of the concrete use case. Any
additional concrete use cases
which the given use case
specializes, is stated by using
a comma followed by the
name of the other concrete
use cases. For example:
SPECIALIZES UseCaseA,
UseCaseB, UseCaseC
MAPPING5: Use cases that
are specialized must exist in
the target model.

MAPPING6: Use cases that
are specialized must NOT be
abstract. In other words, they
should NOT have the
keyword “ABSTRACT” in
their “Use Case Name”
section.

 MAPPING6: Use cases that
are specialized must NOT be
abstract. In other words, they
should NOT have the
keyword “ABSTRACT” in
their “Use Case Name”
section.

Transformation Rule: The names of the parent use cases in
both SSUCD and SUCD must match. Both SSUCD and
SUCD must NOT include the keyword ABSTRACT.

Fig. 5. Transforming the “Name Section”

Figure 5 outlines the mapping rules for the “Name Section”.
The purpose of “Name Section” is mainly to specify the name
of the use case. The “Name Section” is also used to specify if
the use case is abstract or concrete. Moreover, the “Name
Section” is also used to specify if the use case is generalizing
or specializing another use case. The transformation process of
the “Name Section” can be fully automated since this section
is very similar in the SSUCD and SUCD forms.

Associated Actors Section
SSUCD SUCD

The “Associated Actors”
section starts with label
“Associated Actors:”
MAPPING7: If the use case
does not have any actors
associated with it then this
section is removed entirely.

The “Associated Actors”
section starts with label
“Associated Actors:”
MAPPING7: If the use case
does not have any actors
associated with it then this
section is removed entirely.

490

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Any associated actors are
then listed (comma separated)
in a new line as such:
ActorA, ActorB, ActorC.
MAPPING8: Actors listed in
this section must exist in the
model. In other words, there
must be actor descriptions
with the stated actor names in
the “Actor Name” section.

Any associated actors are
then listed (comma separated)
in a new line as such:
ActorA, ActorB, ActorC.
MAPPING8: Actors listed in
this section must exist in the
model. In other words, there
must be actor descriptions
with the stated actor names in
the “Actor Name” section.

Transformation Rule: The names of the actors listed in both
SSUCD and SUCD must match.

Fig. 6. Transforming the “Associated Actors Section”

Figure 5 outlines the mapping rules for the “Associated Actors
Section”. The purpose of “Associated Actors Section” is
mainly to specify the names of any actors involved with the
use case. Once again the “Associated Actors Sections” of the
SSUCD and SUCD forms are very similar hence the
transformation is straightforward and fully automated.

Description Section
SSUCD SUCD

The “Description” section starts
with label “Description:”
MAPPING9: Every use case must
have a description. Therefore,
every use case must have a
“Description” section.

The “Description” section in
SSUCD is populated with the free
flow Natural Language. The only
structure involved in this section
is the use of the “INCLUDE”
keyword. The “INCLUDE”
keyword is used to indicated other
use cases which the given use
case includes. The “INCLUDE”
keyword is embedded within the
free flow text. It is used by
showing the keyword
“INCLUDE” followed by two
angled brackets (< >). The name
of the included use case is stated
between the angled brackets. For
example:

Description:
Free-flow text, free-flow text.....
INCLUDE <UseCaseA> free-
flow text, free-flow text...
MAPPING10: The name of stated
inclusion use case (the included
use case) must exist in the mo

The “Description”
section starts with label
“Description:”
MAPPING10: Every use
case must have a
description. Therefore,
every use case must have
a “Description” section.

The “Description”
section then must have a
“Basic Flow:” label.

The heart of
“Description” section
basically consists of
“headers” which contain
“actions”. An “action”
basically consists of a
bullet point, followed by
the name of the actor
performing the action
then followed by an
arrow then followed
by the action description
written in natural
language. For example:

• Librarian Enter
member’s

Transformation Rule: The conversion of this section will be
semi-automated. There are only two rules to consider when
converting this section. First, the actor names used in SUCD
must be listed in the “Associated Actors” section of SSUCD
(apart from the SYSTEM actor). Secondly, the “include”
statement in SSUCD use cases stated as such INCLUDE
<UseCaseA> must be mentioned at least one once in SUCD
and stated as such: • INCLUDE <UseCaseA>.

Fig 7. Transforming the “Description Section”

Figure 7 outlines the mapping rules for the “Description
Section”. The purpose of “Description Section” is mainly to
describe the behavior of the use case. In the SSUCD form, the
description is provided in an unstructured natural language
form. The only exception being the specification of an
included use case where the keyword INCLUDE is used to
specify the inclusion use case. Meanwhile, in the SUCD form
the description section is far more structured. Each statement
is specified individually along with the actor that is
responsible for performing the actor. If the performer is the
system itself, then the keyword SYSTEM is used. Hence, the
transformation process of the “Description Section” cannot be
fully automated and it requires human cognition to partition
the description in the SSUCD form to bullet points in the
SUCD form.

Extension Points Section
SSUCD SUCD

The “Extension Points”
section starts with label
“Extension Points:”
MAPPING11: If the use
case does not have any
public extension points
this section is removed
entirely.

The name of the extension
points are then listed
while separated with
commas as follows:

Extension Points:
<EP1>, <EP2>, <EP3>…

Public Extension Points Section:

The “Public Extension Points”
section starts with label “Public
Extension Points:”
MAPPING11: If the use case
does not have any public
extension points this section is
removed entirely.

The name of the extension points
are then listed while separated
with commas as follows:

Public Extension Points:
<EP1>, <EP2>, <EP3>…

Transformation Rule: The names of the publication
extension points listed in both SSUCD and SUCD must
match.

For an extension use case, it
states the it extends another
use case using the following
structure:

Extended Use Cases:
Base UC Name:
<UseCaseA>
Extension Point:
<EP_Name>
IF <Condition>
MAPPING12: The name of

For an extension use case, it
states the it extends another
use case as well as it states
the extension behavior using
the following structure:

PUBLIC EXTENSION
POINT BEHAVIOR
EXTENDING {UseCaseA :
EP_Name}
MAPPING12: The name of
stated use case being

491

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

stated use case being
extended must exist.

extended must exist in the
model.

MAPPING13: The name of
the stated extension point
must be listed in the
“Extension Points” section of
the extended use case.

MAPPING13: The name of
the stated extension point
must be listed in the
“Extension Points” section of
the extended use case.

Transformation Rule: The use case name stated in SSUCD
as Base UC Name: <UseCaseA>, must be the same as that
stated in SUCD as EXTENDING {UseCaseA: …etc. The
extension point name stated in SSUCD as Extension Point:
<EP_Name>, must be the same as that stated in SUCD as
EXTENDING {UseCaseA : EP_Name}.

Fig 8. Transforming the “Extension Points Section”

Figure 8 outlines the mapping rules for the “Extension Points
Section”. The purpose of “Extension Points Section” is to state
the extension points of a use case. The transformation process
of the “Extension Points Section” may also be fully
automated.

V. LIBRARY SYSTEM CASE STUDY

The library system discussed in this section was previously
presented in [5], which the research work that introduced
SUCD. This library system was specifically to evaluate the
correctness of the proposed model transformation technique as
the work presented in [5] outlines a set of use cases and how
they are transformed into UML activity diagrams. In order to
perform the evaluation, the SUCD use cases were rewritten as
SSUCD use cases by extracting only the information required
by the SSUCD structure. The entire set SUCD use cases and
their corresponding SSUCD use cases used in this case study
are available in [5]. For illustrative purposes, an example of a
SUCD use case presented in [5] and its reverse-engineering
SSUCD version are shown in Figures 1 and 2 (see Section 2),
respectively.

A. Applying the Model Transformation

 Using the reserve engineering SSUCD use cases as the
source, the textual descriptions were analyzed by ANTLR to
generate a representative object models that conform to the
metamodel previously produced (see Section 3.1). The
generated object models were used as input by ATL to apply
the model transformation algorithms and mapping rules
previously encoded. ATL then generates a set of object
models that represent the SUCD equivalent of the SSUCD use
cases used as input. As encoded in ATL, the generated object
models representing the SUCD use cases are set to conform to
the target metamodel (see Figure 3). A simple tool was used to
read the generated object models representing the SUCD use
cases to produce the text files presenting the SUCD use cases
in a textual form.

B. Verifying the Correctness of the Produced SUCD Use
Case Descriptions

 The correctness of the produced SUCD use case
descriptions was verified through two distinct means. The first
approach involved the use of the Diff tool to check for
differences between the produced SUCD use cases and the
SUCD use cases already shown in [5]. Although some minor
differences were found in the layout (white spaces and empty
lines), the textual content of the use case descriptions were
confirmed to be the same.
 The second approach used to verify the correctness is to
verify that the generated SUCD use case descriptions can be
used as a source to generate representative UML activity
diagrams using the approach presented in [5] to produce UML
activity diagrams that match the UML activity diagrams
shown in [5]. The generated UML activity diagrams along
with the UML activity diagrams already shown in [5] were
used as input by a tool named UMLDiff [11]. UMLDiff is an
automated UML-aware structure differences algorithm which
uses as input two object-oriented models then produces a
report of the design evolution of the software system in the
form of a change tree [11]. For given object models
(representing the UML activity diagrams), the UMLDiff tool
did not report any differences between the UML activity
diagrams.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that helps bridge the
gap between the analysis and design phases in a use case-
driven development process. The contribution of this paper is a
model transformation technique that is almost fully automated,
which can be used to transform use case descriptions written in
the SSUCD form to use cases written in the SUCD form which
may then be used to generate other types of UML design
artifacts. The model transformation technique helps eliminate
the human factor and thus eliminating human injected errors
that may result from perform the transformation completely
manually. The proposed approach was applied to use cases of a
library system already presented in the literature. The
correctness of the proposed technique was verified by
differencing the textual descriptions of the generated SUCD
use case descriptions with the SUCD use case descriptions
presented in [5]. The second approach involved the use of a
popular tool in the model differencing research community,
named UMLDiff, to compare the UML activity diagrams
produced with the generated SUCD use case descriptions
against the UML activity diagrams already presented in
[Seattle]. Both verification approaches indicate the correctness
and the effectiveness of the proposed technique.
 Future work will be directed towards extending the SSUCD
and SUCD languages to allow for the specification of
functional security requirements. The model transformation
technique will also need to be enhanced to facilitate the
transformation of the extended SSUCD and SUCD languages.

492

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

ACKNOWLEDGEMENTS

The author would like to acknowledge the support provided by
the Deanship of Scientific Research (DSR) at King Fahd
University of Petroleum & Minerals (KFUPM) for funding this
work through project No. JF100008.

REFERENCES

[1] M. El-Attar and J. Miller, A Subject-Based Empirical Evaluation of

SSUCD’s Performance in Reducing Inconsistencies in Use Case
Models, Journal of Empirical Software Engineering, vol.14, no. 5, pp.
477-512, (2009).

[2] M. El-Attar and J. Miller, Producing Robust Use Case Diagrams via
Reverse Engineering of Use Case Descriptions, Journal of Software and
Systems Modeling, vol. 7, no. 1, pp. 67-83 (2008).

[3] I. Jacobson, M. Ericsson, and A. Jacobson, The Object Advantage. ACM
Press, 1995.

[4] M. El-Attar and J. Miller, A User-Centered Approach to Modeling
BPEL Business Processes Using SUCD Use Cases. Journal of Software
Development and Theory, Practice and Experimentation, vol. 1, no. 1,
pp. 59-76 (2007)

[5] M. El-Attar and J. Miller, AGADUC: Towards a More Precise
Presentation of Functional Requirements in Use Case Models, 4th ACIS
International Conference on Software Engineering, Research,
Management and Applications, Seattle, Washington, USA. pp.346-353,
(2006).

[6] Object Management Group, UML Superstructure Specification (2005).
http://www.omg.org/docs/formal/05-07-04.pdf, Version 2.0 formal/05-
07-04. Accessed March 2011.

[7] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific
Languages (Pragmatic Programmers). Pragmatic Bookshelf, 2007.

[8] SteelTrace. “Catalyze Suite”. Availabe [Online] www.steeltrace.com.
Last Accessed March 2011.

[9] TechnoSoclutions. “Top Team Analsyt”. Availabe [Online]
http://www.technosolutions.com/topteam_requirements_management.ht
ml. Last Accessed March 2011.

[10] The Eclipse Foundation. ATL – A Model Transformation Technology.
Available Online at (http://www.eclipse.org/atl/). Last accessed March
2011.

[11] Z. Xing and E. Strou, UMLDiff: An Algorithm for Object-Oriented
Design Differencing, Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, pp. 54-65, 2005.

[12] OMG 2003, “UML Superstructure Specification”, Object Management
Group, http://www.omg.org/docs/ptc/03-08-02.pdf, 2003.

493

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

