

Using Software Engineering Principles to Develop a Web-Based Application

Cynthia Y. Lester

Department of Computer Science

Tuskegee University

Tuskegee, Alabama, USA

cylester@mytu.tuskegee.edu

Abstract – In the United States, the software development

industry is about a $220 billon industry. Therefore, the need to

produce accessible, reliable and trustworthy software that is

within budget and that also meets the demands of the

heterogeneous user can sometimes become an overwhelming

task by organizations. Since its inception in the late 1960s,

software engineering has used software processes as systematic

approaches that lead to the development of software

applications. However, with the introduction of the Internet

and the World Wide Web, there have been changes to the way

that software is produced. The aim of this paper is to present

the results of an inquiry that introduced to undergraduate

software engineering students an approach to developing a

web-based application. Traditionally, specialized web

engineering courses are offered at the graduate level or as an

elective course in an undergraduate curriculum. The paper

presents a semester-long project that combines some

traditional software engineering processes with web

engineering processes. The results from the study suggest that

introducing a hybrid approach inclusive of traditional software

processes and web engineering techniques can be done

successfully at the undergraduate level but not without certain

challenges.

Keywords – software development; software engineering;

web-based application; web engineering.

I. INTRODUCTION

Software engineering is defined as a discipline that is

concerned with all aspects of software production from the

early stages of inception and specification to the

maintenance of the system when it has gone into use. It has

often been seen as the “cradle-to-grave” approach for

producing reliable, cost-efficient software that is delivered

in a timely manner, under given budget constraints, that

meets the client’s needs.

 The concept of software engineering was first

introduced in 1968 at the NATO Science Engineering

conference held in Garmisch, Germany, to discuss the

ominous “software crisis [1].” The software crisis was a

result of informal development practices used to meet the

needs of a rapidly changing hardware industry. Software

applications were often noted as being unreliable, complex,

expensive and sometimes delivered years after the deadline.

Since the inception of software engineering, tremendous

strides have been made to develop effective strategies to

deliver reliable, cost-efficient software.

Yet, with the advent of the World Wide Web, the topic of

how to deliver trustworthy, cost-efficient web applications

has become one of increasing importance. Software

applications no longer run on a local machine and are

accessed by only those who are part of the organization.

Now, users demand that software be accessible wherever

they are which brings a whole new notion to the delivery of

reliable, cost-efficient software. Consequently, the role of

software engineering is changing to meet the demands of the

heterogeneous user.

The aim of this paper is to present the results from a

semester-long project in which software engineering

concepts were modified to develop a web-based application.

Typically undergraduate students enroll in a general

software engineering course which is part of the required

curriculum. This course can be taught from many different

perspectives. However, to gain specific knowledge in web

engineering, students must often enroll in a separate course,

if one is offered. However, a survey of various

undergraduate curricula did not find many web engineering

courses at the undergraduate level. Consequently, if

educators want to introduce to the next generation of

technologists these concepts, a traditional software

engineering course serves as the best vehicle.

The paper begins by presenting several time-honored

software development methodologies discussed in a

traditionally taught software engineering course. This

discussion provides the impetus for an introduction to web

engineering concepts. Additionally, the paper presents a

semester-long project in which students were engaged

which focused on the practical implementation of software

engineering concepts for a web-based application. Lastly,

challenges and future work are discussed.

II. TRADITIONAL SOFTWARE DEVELOPMENT

METHODOLOGIES

Since its inception, there have been many methodologies

that have emerged that lead to the production of a software

product. The most fundamental activities that are common

among all software processes include [1]:

477

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

 Software specification – engineers and customers

define the software and its constraints

 Software development – the software is design and

programmed

 Software validation – the software is checked to

ensure that it meets the customer requirements

 Software evolution – the software changes to meet

the changing needs of the customer

Typically, students are introduced to these activities in

the undergraduate computer science curriculum through a

software engineering course. This course is often a survey

course which exposes students to a variety of life cycle

models. The course is frequently taught from a systems

approach which places an emphasis on creating

requirements and then developing a system to meet the

requirements. In the traditional view of software

development, requirements are seen as the contract between

the organization developing the system and the organization

needing the system [2].

A traditional view of software development is the

waterfall method. The waterfall method was the first

published software development process and forms the basis

for many life cycles. It was noted as a great step forward in

software development [3]. The method has stages that

cascade from one to the other, giving it the “waterfall”

name. Figure 1 is an example of the waterfall life cycle [4].

Figure 1. Waterfall model

It has been noted that the method might work

satisfactorily if design requirements could be addressed

prior to design creation and if the design were perfect prior

to implementation [3]. Consequently, one of the main

disadvantages of this model is that requirements may change

accordingly to meet the needs of the customer and the

change is difficult to incorporate into the life cycle. As a

result of this shortcoming, additional life cycles emerged

which allowed for a more iterative approach to

development.

Software prototyping is based on the idea where a

version or sample of the software is developed to test

requirements and design feasibility [1]. Figure 2 is a

modified version of Sommerville’s process of prototype

development [1]. A reason why this particular model was

introduced by the author to the undergraduate software

engineering students is because it serves as a precursor to

web-based application development. More specifically,

software prototyping provides an effective way to gain

understanding of requirements, provides early testing of

system design, and reduces challenges during

implementation. It has been stated that the advantages of

software prototyping over its predecessor include that it

accommodates change easier, it allows users to see how well

the system can be integrated into current work activities, and

it reveals errors and oversights early on in the process [1].

However, this approach to software development is not

without some concerns. For example, the prototype may not

be used in the same manner as the final system, the skill

level of the testers of the prototype may differ from the

users of the system, and because prototypes lack full

functionality rapid changes may be made without proper

documentation [1]. Consequently, these concerns provide

an impetus to review the spiral model and agile methods,

which are presented in the next.

Establish

prototype

objectives

Define

Prototype

functionality

Develop

prototype

Evaluate

prototype

Prototyping

plan

Outline

definition

Executable

prototype

Evaluation

plan

Establish

prototype

objectives

Define

Prototype

functionality

Develop

prototype

Evaluate

prototype

Prototyping

plan

Outline

definition

Executable

prototype

Evaluation

plan

Figure 2. Prototype development

The spiral development model is also an example of an

iterative process model that represents the software process

as a set of interleaved activities that allows activities to be

evaluated repeatedly. The model was presented by Barry

Boehm in his 1988 paper entitled A Spiral Model of

Software Development and Enhancement [5]. The spiral

model is shown in Figure 3 [1]. The spiral model differs

from the waterfall model in one very distinct way because it

promotes prototyping; and, it differs from the waterfall and

incremental development method because it takes into

consideration that something may go wrong which is

exercised through risk analysis.

478

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 3. Spiral model

It is noted that this life cycle provides more flexibility

than its more traditional predecessors. Further, this method

produces a preliminary design. This phase of the life cycle

was added specifically in order to identify and resolve all

the possible risks in the project development. Therefore, if

risks indicate any kind of uncertainty in requirements,

prototyping may be used to proceed in order to determine a

possible solution.

However, in these approaches, as with many of the other

approaches to software development that are taught in

traditional software engineering courses, a true focus on the

software is mostly absent from the process. Hence, the

increasingly important need to include a discussion of how

to deliver working software to customers quickly. The next

section explores agile methods and its life cycle.

III. AGILE METHODS

In an effort to address the dissatisfaction that the heavy-

weight approaches to software engineering brought to small

and medium-sized businesses and their system development,

in the 1990s, a new approach was introduced termed, “agile

methods.” Agile processes are stated to be a family of

software development methodologies in which software is

produced in short releases and iterations, allowing for

greater change to occur during the design [6]. A typical

iteration or sprint is anywhere from two to four weeks, but

can vary. The agile methods allow for software

development teams to focus on the software rather than the

design and documentation [1]. The following list is stated

to depict agile methods [1], [6]:

 Short releases and iterations - allow the work to be

divided, thereby releasing the software to the

customer as soon as possible and as often as

possible

 Incremental design – the design is not completed

initially, but is improved upon when more

knowledge is acquired throughout the process

 User involvement – there is a high level of

involvement with the user who provides continuous

feedback

 Minimal documentation – source code is well

documented and well-structured

 Informal communication – communication is

maintained but not through formal documents

 Change – presume that the system will evolve and

find a way to work with changing requirements and

environments

More specifically, the agile manifesto states [1]:

“We are uncovering better ways of developing software

by doing it and helping others to do it.

Through this work we have come to value:

Individuals and interaction over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we

value the items on the left more.”

While agile methods are considered as light-weight

processes as compared to the traditional software processes,

they too are not without some controversy. For example, it

is sometimes difficult to keep the customer involved after

software delivery; there may be resistance to change and

tool integration; as well as teaming issues. Therefore, in an

effort to address these concerns as it relates to developing

web-based applications, new models in web engineering

emerged.

IV. WEB ENGINEERING

 The World Wide Web can be described as a multimedia

environment that allows documents to be seamlessly linked

over the Internet [7]. It was developed by Tim Berners-Lee

with help from Robert Cailliaua, both researchers at the

European Laboratory for Particle Physics (CERN) [8]. The

basic idea was that documents stored on computer that were

linked by a network could be accessed by an authorized

individual using the network. This idea however, relied on

two types of software, a web server and a web browser. The

web server stores the documents and “serves” them to other

computers who desire access to the documents [7]. The web

browser allows user to request and view the documents [7].

These ideas became common place in the 1990s and provide

the foundation of today’s Web and its many uses.

In 1990, it was reported that there were less that 50

million users of the Internet in the U.S. However, by 2008

the U.S. reported approximately 230,630,000 Internet users

[9]. Therefore, it stands to reason that with more users and

more advanced systems, the user population of today’s

technology would be more technically savvy than those user

groups of yesteryear. However, the average user is now less

likely to understand the systems of today as compared to the

users of a decade ago. Consequently, the designers and

developers of these applications must ensure that the

479

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

software is designed with the three “use” words in mind so

that the user experience is successful. Hence, the

application must be useful, usable, and used [2].

A. Web Engineering as a Multi-disciplinary Field

Web engineering is an emerging multi-disciplinary field

that is concerned with the development of web-based

applications and systems [11]. As stated by Ginige and

Murugesan, the premise of web engineering is a proactive

approach taken to successfully manage the diversity and

complexity of web application development and to avoid

potential failures [11]. Consequently, web engineering

encompasses not only the technical aspects of software

engineering and its traditional software processes, but also

the business-related area of project management, and the

humanistic side of computer science, human-computer

interaction. Figure 4 is a representation of the many

disciplines that provide the foundation for web engineering

[12].

Figure 4. Web engineering

B. Web Engineering Activities

Since web engineering deals with all aspects of web-

based system development, it too has many different

activities akin to software engineering. These activities

begin with specification, and continue with development,

validation and evolution. However, specific web

engineering activities include [12], [13]:

 Requirements engineering for web applications

 Techniques and methodologies for modeling web

applications

 Design of functionality and interaction

 Implementation using a language for web-based

applications

 Performance evaluation including verification and

validation

 Operation and maintenance

Even more specific to web engineering activities are

those that focus on the interaction between the application

and the user. Activities that focus on the humanistic side of

web development include [12]:

 Human and cultural aspects

 User involvement and feedback

 End-user application development

 Education and training

 Team and staff development

The next section presents a semester-long project that

introduces to undergraduate software engineering students

an approach to developing a web-based application. The

project combines the concepts of traditional software

processes with web engineering.

V. DEVELOPING A WEB-BASED APPLICATION

It was the anticipation of the author that through the

hands-on experience of developing a web-based application,

students would gain an understanding of the software

engineering process, various process models and how they

could be manipulated and combined to develop a web-based

application. It was also the anticipation of the author that

students would understand that the fundamental ideas of

software engineering are still relevant in the development of

today’s software applications as well as those web-based

applications.

A. The Project

 The semester-long project selected for the fall 2010

semester was to develop a web-based application that could

be used during the academic advising process by students

and faculty in a medium-sized computer science department.

The application was to replace a paper-based method used

by students and faculty. The department has approximately

100 undergraduate majors which are advised by roughly

seven faculty members. Student advisees are paired

according to last name with a faculty advisor.

Currently, the department uses a paper-based method on

which students and faculty record by hand the student’s

courses, credit hours, grade earned, and semester in which a

course is taken. The recording of this information is either

done during the University’s registration period or during

the academic advising timeframe which happens twice

within the academic year, once during the fall semester and

another in the spring semester. During the meeting, the

student advisee discusses with the faculty advisor the

progress made toward the completion of the computer

science degree. At the meeting the student advisee and the

faculty advisor review the paper. The paper is called a

Provisional Sheet. The Provisional Sheet is updated by

hand by the student and the faculty member. At the

completion of the meeting, each has a copy of the updated

Provisional Sheet.

However, problems arise if the Provisional Sheet is lost;

if updates are made on one sheet and not the other; or if a

grade, course number, or course credit is written incorrectly.

480

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

At the end of a student’s matriculation, the updated

Provisional Sheet which should now contain all the courses,

grades, and credit hours in which the student was enrolled is

given to the Office of the Registrar for graduation

preparation. It is, at this time, if an error has occurred that it

is identified. While both the student and the faculty member

have sufficient time to correct an error that might have

happened, the paper-based method does not truly permit for

a check-and-balances procedure.

Therefore the focus of the semester-long project was to

develop a web-based application that would alleviate some

of the difficulties as seen with the paper-based Provisional

Sheet. The goal of the project was to design the Provisional

Sheet so that it could be completed and updated on-line by

authorized users only, and be cross-checked with the

University’s student information system.

B. Learning Outcomes

Students were part of a team which was expected to meet

with the customer (or representative) so that each phase of

the process could be implemented. The team was also

expected to produce a deliverable by the set deadline for

each phase of the process and to also deliver it and make

presentations to the customer (or representative).

The learning outcomes of the semester-long project

included that after the completion of the project students

would:

 Have a working knowledge of software

engineering principles

 Understand how software engineering principles

could be applied to the semester-long project

 Identify activities and implement strategies that

were germane to the development of a web-based

application

 Work effectively and efficiently in a team

environment to produce the semester-long project

C. Project Requirements

Students were given basic requirements from the

instructor for the web-based application; however, the

majority of the requirements were gathered from

stakeholders. Since the project was a web-based application,

students had to consider basic requirements found in

traditional software process models, as well as those that are

part of the web engineering process.

D. Project Deliverables

 Each item that the student team submitted was

considered a deliverable. The project had four deliverables

which were the requirements document, design document,

implementation, and the test plan. The following is an

overview of the project deliverables (i.e., models for web-

based applications, language for web-based applications).

1) Requirements Document. The first document students

were required to submit was the requirements document.

The requirements document was considered the official

statement of what the students would implement. It

included both the stakeholder requirements for the software

application, which students named the Computer Science

Provisional System (CSPS), and a detailed specification of

system requirements.

To capture the requirements students engaged in a

modified version of the requirements engineering process as

presented by Sommerville [1] and by Kappel et al. [13].

During the requirements engineering process, students met

with stakeholders who included faculty members and

students in the computer science department. Additionally

students met with staff members in the Office of the

Registrar as well as identified faculty and students in other

academic units on campus in order to complete the

elicitation and analysis phase of the requirements

engineering process.

The document was meant to get the students actively

involved in the planning and development of the

application. Consequently, after the completion of the

requirements document, students had an idea of the system

architecture, functional and non-functional requirements,

external interface specifications, how the application would

be accessed, and by whom. Moreover, because this was to

be a web-based application and not a traditional desktop

application, students were charged with identifying varying

levels of risk which included defining in the requirements

document the method to secure student information and how

change was to be accommodated.

2) Design Document. The design document was meant to

be an in-depth description of the system design. The design

showed how data flowed between system components and

the trust relationships between components. Since the

application was a web-based application, both the system

and security requirements were described and explained

how they would be implemented. Further since the CSPS

would contain personal and confidential information, the

design document elaborated on the requirements document

risk analysis of critical characteristics of information that

was presented in a module of the course designed by Lester

on software security [14].

The team was required to use one of the decomposition

strategies discussed in the course. The design document was

required to have an introduction, an overview of the design

strategy chosen, and the diagrams, charts, and/or details

required as part of the decomposition strategy chosen.

Additionally, the design document was to be based on one

of the architectural design patterns which were discussed in

class. The team chose the Model-View-Controller (MVC)

pattern because of the stated advantages: team members had

varying technical skill levels, MVC separates design

concerns, and there is the likelihood of less code duplication

[15].

481

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

3) Implementation. Students were required to implement

the project based on the requirements and design

documents. To implement the project students chose the

PHP scripting language for use in a Linux environment.

The student team chose this language and the environment

based on familiarity and accessibility to the MySQL server

database.

4) Testing. Students were required to develop a test plan

which required them to perform development testing and

end-user testing. The test plan was based on Sommerville’s

structure of a software test plan for large and complex

systems but modified to be less formal and represent the

smaller nature of the Computer Science Provisional System

[1]. The modified version of the software test plan included:

the testing process, test case design, hardware and software

requirements and constraints.

VI. CONCLUSION

The aim of this paper was to present the results of an

inquiry that introduced to undergraduate software

engineering students an approach to developing a web-based

application. The paper discusses traditional software

engineering principles typically introduced in undergraduate

software engineering courses which provides a case for

introducing in these same courses some of the topics found

in web engineering.

The study revealed that it is difficult to implement the

entire software development life cycle. While students have

a very good understanding of the requirements engineering

process and developed a well-planned requirements

document and design document, the implementation and

testing phases proved to be challenging. The student team

indicated that with the fixed timeframe of a sixteen week

semester, it was difficult to fully implement the phases of

the life cycle. Also, because students were under the

impression that developing a web-based application would

be similar to developing a web page or web site with which

they had previous experience, they underestimated the time

needed to produce the required documentation. They also

underestimated the understanding of client/server network

technology and the time needed to conduct accessibility and

usability testing. Consequently, based on these

observations, future work for the author is to re-design the

semester-long from a heavy-weight process which is plan-

driven to a more light-weight process focuses more on the

software (i.e., the use of agile methods with a focus on

extreme programming).

In conclusion, as the users of today’s Web demand more

from their web applications, it is the responsibility of

educators to train the technologists of tomorrow to meet

those demands. Consequently, the traditional software

engineering practices that rely on well established

development processes must also embrace change in order

to continue to produce reliable, trustworthy software

applications specifically developed for the Web.

ACKNOWLEDGMENTS

The author thanks the students enrolled in the CSCI 430-

Software Engineering course, fall 2010 semester.

REFERENCES

[1] I. Sommerville. (2011). Software Engineering 9th Ed.

Addison Wesley, 13:978-0-13-703515-1, Boston, MA.

[2] C. Angelov, R.V.N. Melnik, and J. Buur. (2003). The

synergistic integration of mathematics, software engineering,

and user-centered design: exploring new trends in education.

Future Generation Computer Systems. Vol. 19, 299 – 1307.

[3] B. K. Jayaswal and P.C. Patton (2007). Design for trustworthy

software: Tools, techniques for developing robust software.

Prentice Hall, 0-13-187250-8, Upper Saddle Rover, NJ.

[4] Codebetter.com http://codebetter.com/blogs/raymond.

lewallen/downloads/waterfalllModel.gif. (Accessed on

October 10, 2009.

[5] B. Boehm. (1988). A Spiral Model of Software Development

and Enhancement. IEEE Computer 21, 5, 61-72.

[6] F. Tsui and O. Karam. (2011). Essentials of Software

Engineering 2nd Ed. Jones and Bartlett Publishers, 13:978-0-

7637-8634-5.

[7] D. Reed (2008). A Balanced Introduction to Computer

Science 2nd Ed. Pearson Prentice Hall, 13:978-0-13-601381-5.

[8] A Short History of the Web, Text of a speech delivered at the

launching of the European branch of the W3 Consortium

Paris, 2 November 1995. http://www.netvalley.com/archives

/mirrors/robert_cailliau_speech.htm (Accessed May 31,

2011).

[9] Internet users as percentage population. http://www.

geohive.com/ charts/ec_internet1.aspx (Accessed December

20, 2010).

[10] A. Dix, J. Finlay, G.B. Abowd, and R. Beale. (2004).

Human-Computer Interaction. Prentice Hall, Boston, MA.

[11] A. Ginige and S. Murugesan. (2001). Web Engineering: A

Methodology for Developing Scalable, Maintainable Web

Applications. Cutter IT Journal. Vol. 14, No. 7, 24-35.

[12] S. Murugesan, Y. Deshpande, S. Hansen, and A. Ginige. Web

Engineering: A New Discipline for Development of Web-

based Systems. (2001). Proceedings of Web Engineering,

pp.3-13.

[13] G. Kappel, B. Pröll, S. Reich, and W. Retschitzegger (eds),

(2006). Web Engineering - The Discipline of Systematic

Development of Web Applications. John Wiley & Sons.

[14] C. Lester and F. Jamerson. “Incorporating software security

into an undergraduate software engineering course,” in Proc.

of the Third International Conference Emerging Security,

Information Systems and Technology, 2009, pp. 161-166.

[15] Designing Enterprise Applications with J2EE Platform 2nd ed,

http://java.sun.com/blueprints/guidelines/designing

_enterprise_applications_2e/web-tier/web-tier5.html

(Accessed August 4, 2011).

482

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

