
A “Future-Proof” Postgraduate Software Engineering Programme:
Maintainability Issues

J Paul Gibson and Jean-Luc Raffy
Le département Logiciels-Réseaux (LOR)

Telecom & Management SudParis (TMSP)
9 rue Charles Fourier, 91011, France

Email: gibson.paul@it-sudparis.eu

Abstract—We report on the development of a software
engineering programme for Masters students. Maintainability
of educational programmes is critical: there is a large initial
investment in developing quality programmes and we must
ensure that these programmes are “future proof”. Conse-
quently, we followed a traditional software engineering life-
cycle process to develop a programme that would meet the
current needs of industry, whilst also being easy to maintain
with respect to future changes in industrial requirements. We
show how the programme has gone through a number of
refinement steps — where we have iterated through the life
cycle of requirements engineering (with “client” industries),
high-level design (establishment of a foundational educational
architecture), implementation (by lecturers), testing (through
establishment of evaluation and feedback mechanisms) and
maintenance (throw updates to curriculum and course content).
To conclude, we propose treating educational programmes as
software, and demonstrate advantages in applying software
engineering techniques for development and maintenance.

Keywords-Teaching, Education, Curriculum, Software Engi-
neering

I. INTRODUCTION

Our institute is focused on educational programmes for
telecommunications engineers. Software is playing an in-
creasingly important role in telecommunications systems;
and a strategic decision was taken, a number of years ago,
to introduce a postgraduate (Masters) programme which
specialised in software engineering. We have been motivated
by the observations of Curran[3] and Parnas[11] concerning
the need to distinguish computer science from software
engineering, and the goal of making software engineering
a true engineering discipline [16].

Despite following guidelines in the development of soft-
ware engineering curriculae [17], [7], the programme has
failed to attract the number of students that are required to
make it feasible to run in the long-term. We have a capacity
for teaching around 20 students (for each of the 2 years of
the programme), but in the last four years we have not had
more than 6 students in each year.

As a result, we have made continuous changes to the
programme in order to attract more students. In particular,
the programme has gradually become more specialised;
moving from:

• a software engineering stream as part of a general
information technology (IT) Masters, to

• a stand-alone Masters programme software engineering
for smart devices, to

• its most recent incarnation as a more specialised Mas-
ters software engineering and ambient intelligence.

The changes have required much work, and during the
process of evolving and maintaining our software engineer-
ing programme (in its different forms) we have identified
the need for a process to aid us in improving our work,
and the quality of the programme. As software engineers,
we realised that much of our academic programme could
be considered analagous to software and so we should be
able to apply software engineering development principles,
methods and techniques to the development of our pro-
gramme. This paper reports on this insight and summarises
the advantages of working within such an analogy. The
results should be of interest to all developers of academic
programmes, and not just those teaching software engineers.

This is work in progress: the ideas need further discussion
and, in our opinion, the software engineering community is
the best placed to be able to provide useful feedback. We
hope in some way to be contributing to the “Push to Make
Software Engineering Respectable” [12].

The remainder of the paper is structured as follows. In
section II we motivate our work by introducing the premise
that developing an educational programme is like developing
software. In section III we give an overview of the problems
in developing a software engineering programme and pro-
pose that one must consider the life-cycle of the programme
analagous to the software life-cycle. Sections IV, V and VI
examine the main life-cycle stages: requirements, design
and implementation. Section VII reports on the different
evaluation techniques that can be applied during the different
stages in the life-cycle. Section VIII illustrates, by review-
ing the changes made between three iterations, how the
evaluation can feedback into the programme development
aand maintainance. Section IX concludes with some remarks
about future work.

471

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 1. Software Engineering Domain of Knowledge

II. DEVELOPING AN EDUCATIONAL PROGRAMME IS
LIKE DEVELOPING SOFTWARE

Most, if not all, educational programmes can be specified
in a bottom-up fashion — listing a set of core components
that need to be taught. Then, the traditional approach to
programme development is to assign core components to
programme modules and to identify dependencies between
modules so that the temporal ordering of modules in the
programme respects the dependency relationship. Modules
are then, in general, taught and assessed independently.
Irrespective of whether this is likely to produce a good
academic programme — we would argue that it is not — it
has the major disadvantage that the programme is difficult
to maintain: small changes to the component requirements
can have a major impact on the implementation of the
programme. Further, small changes to the implementation
environment (the lecturers, etc.) may necessitate major re-
structuring of the programme.

Most academic programmes evolve. Unfortunately, as
years pass by the links between the different versions of the
programme get lost. Further, documentation of the changes
made (why and how) is usually very poor. As a consequence,
after a number of years there is a lack of coherence between
what one is trying to teach and how it is being taught.

These type of problems are very familiar to software en-
gineers. Managing the evolution of an academic programme,
like managing a software system, has two fundamental,
complementary aspects:

• a continual improvement in the understanding of the
problem domain through continual analysis [13]

• an iterative life-cycle of evaluation, feedback and
change [1]

Where a problem domain is well-understood and aca-
demic programmes have been well-established for a number
of years then there is probably no need for a maintenance
(evolution) process. However, this is clearly not the case for
software engineering. The discipline has been moving so
fast that many subjects that are common to recent curricula
are not even mentioned in the body of knowledge from 12

years ago [2].

III. DEVELOPING A SOFTWARE EDUCATION
PROGRAMME: THE DOMAIN AND THE LIFE-CYCLE

A. The software engineering domain

In Figure 1 we see how the discipline of Software
Engineering cannot and should not be separated from other
disciplines. This figure illustrates our particular structured
understanding of what we exepect our students to know
about:

• Software Engineering — this is the core knowledge that
all our graduates must have mastered

• Complex System Engineering — software, in general,
does not exist in isolation. Most software engineering
problems arise because of complex interactions in and
between the software and the environment in which it
exists.

• Computer Engineering — software executes on a phys-
ical machine, and we expect our students to understand
how such a machine operates

• Communicating Systems — more and more software
systems involve communications over different types
of network. As a telecommunications school we expect
our students to understand how such networks operate.

This is the view of software engineering that we believe
is unlikely to change in the short to medium term (it is
consistent with views on software engineering that are ten
years old [17]). It is also a view that best matches our
institutes’ expertise (in teaching and research). Later in the
paper we will introduce: the scientific and mathematical
foundations upon which these four engineering disciplines
are constructed, and the specific state-of-the-art techniques
and tools for engineering software that have been developed
out of (and interaction between) these domains.

B. The Programme Life-Cycle

As work in progress, we chose to develop our programme
following the simplest, best understood, waterfall life-cycle
model [15]. Such a model can be defined to different levels

472

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 2. Architecture for Software Engineering Programme

of detail, for our initial research we chose to consider a life
cycle with 3 fundamental steps — requirements, design and
implementation — and feedback between each of the steps.

IV. REQUIREMENTS

Our first step is to identify the requirements of our
academic programme. As with complex, software systems,
these requirements must attempt to meet the needs of a
number of different actors:

• the students — want to improve their prospects of
employment and enjoy their education;

• the lecturers — want to teach in their area of expertise,
work with good quality, well-motivated students, and
help promote and further their research through teach-
ing;

• the university administration — want to attract large
number of students, graduate large number of students,
and minimize costs;

• the government — want their investment in universities
to be coherent and worthwhile;

• industries —- want graduates that match their current
needs (quantity and quality);

• research institutes — want to attract postgraduates into
research careers, etc.

As programme developers we are very aware of the dif-
ferent compromises that exist in meeting these requirements.
As such, it is critical that all interested parties are involved in
the construction, evaluation and evolution of our academic
programmes.

The requirements, listed above, are not specific to soft-
ware engineering. We regard these in more detail in the
following section - where we map specific requirements to
a high-level programme design (architecture).

V. PROGRAMME DESIGN FOR MEETING HIGH-LEVEL
REQUIREMENTS

In Figure 2 we represent our high-level requirements for
a software engineering project:

• Our four engineering domains depend on common
computer science foundations [11].

• Computer science foundations depend on mathematical
foundations [5].

• All students will require support skills [14] in order to
work on industrial projects and write a thesis.

• The project work [6] and thesis must demonstrate
mastery of software engineering foundations, and may
also depend on understanding of complex systems,
computer engineering and communication systems.

The key to evolving and maintaining our programme is
that these abstract components of our high-level architecture
(and their interdependencies) will not change.

VI. PROGRAMME IMPLEMENTATION

A. Modules: The Programme Components

In Figure 3 we see how each of these abstract components
is to be implemented:

• The mathematical and computer science foundations
will be taught as individual modules

• The software engineering foundations will be taught as
a number of inter-related modules

• The support skills — including innovation [4] — are
not specific to software engineering

• The remaining modules address the 3 domains that
overlap with software engineering - where we choose to
address these domains through a software engineering
perspective

473

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 3. Implementation of Software Engineering Programme

• The project work is dependent on the the student’s
knowledge in these other domains

• The thesis must be written concerning an industrial
placement.

From the diagram we have also circled the modules that
may change over time. (The others will always be in the
programme, although internal details of each of these mod-
ules may change.) The circled modules are those which are
currently being taught in the latest version of the programme
(Software Engineering and Ambient Intelligence).

B. The Approach: PBL for Software Engineering

The previous subsection examined what we are going to
teach. It should also be mentioned that we have taken some
decisions as to how the modules should be taught:

• Foundational mathematics and computer science will
only be taught if it is used in the engineering modules.
Where possible, all material in these foundational mod-
ules will be linked to the software engineering modules.

• All software engineering modules will be taught using a
problem-based-learning (PBL) approach [8]. Emphasis
will be on rigour and formalilty, and mathematical
modelling [10]

• The PBL will draw from real-world problems taken
from industries that can be expected to hire our gradu-
ates.

• Modules will be coherently connected by sharing com-
mon problems.

• The ethical side of software engineering will be empha-
sised and the recurrent problem of plagiarism explicitly
addressed [9].

VII. PROGRAMME EVALUATION

A. Accreditation

Our institute is a member of a group of schools whose
Masters programmes go through an independent review
(mostly by other academics) in order for them to be accred-
ited. This accreditation is critical for attracting students as it
is intended to be a good indicator of a quality programme.
Further, students on accredited programmes may benefit
from additional funding.

During accreditation feedback focuses on programme
content. Comparisons are made with other programmes and
curriculum guidelines from around the world. It is only in the
current year that our programme has achieved accreditation.
Many of the changes made in order to achieve accreditation
were superficial in nature.

B. Industrial Feedback

A co-director for the programme is directly involved in
collaboration with local industry in order to establish a Pole
de competence for complex system engineering. Industries

474

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 4. Industrial Evaluation Criteria

have identified a need for more (and better) software en-
gineering students who can work in the area of complex
systems (across many different industrial sectors).

In Figure 4 we see the list of competencies that these
industries have identified as being core to their requirements.
It should be noted that software engineering is not explicit in
their criteria: in their System Engineering criteria they expect
the engineers to be specialised in a relevant discipline (like
software engineering) whilst also having generic engineering
skills.

Our most recent evaluation is sketched in the diagram.
This shows that we have some progress to make in all
criteria, but we are weakest in social skills. We note that
this evaluation is based on static analysis of our programme
description (design and implementation).

C. Students — Quantity and Quality

Our programme will have little value if we cannot attract
more students. However, we must not compromise quality
for quantity. Perhaps the weakest element of our evaluation
is that which we could get from students. Students are en-
couraged to completed feedback questionnaires concerning
all aspects of the programme. With such small numbers
of students, statisticaly significant analysis is not feasible.
Rather, we focus on open questions and freeform discussions
with students. Two main issues have arisen:

• Coherency between modules needs to be better ad-
dressed, and

• Standards of evaluation are not consistent between
modules

The students suggest that increasing the number of com-
mon problems between modules will address the first issue.
The second issue is more difficult to address — the students
believe that the main difference is between the foundational
modules (which are perceived to be difficult) and the tech-
nology modules (which are perceived to be not so difficult).
These percieved differences have been validated through
analysis of students’ results.

We plan to keep in contact with students after they
graduate. However, we have no formal procedures in place:
the students rest in contact through personal communication.
This requires further work, on our behalf.

VIII. PROGRAMME EVOLUTION: THREE ITERATIONS

In 3 years, our programme has gone through 3 iterations.
(In the fourth year we stabilised the programme in order
to better evaluate it against the educational and industrial
requirements.)

A. Software Engineering (Information Technology)

In this iteration, software engineering was taught as a
specialist stream in a more general masters programme. Our
initial evaluation identified weaknesses in this programme
that could only be addressed by teaching a dedicated soft-
ware engineering postgraduate programme:

475

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

• Core software engineering material was not being
taught in enough detail.

• The relationship and dependencies between core mate-
rial was not adequately addressed.

• Core mathematics and CS material was presented in a
way that was not specific to software engineering

B. Software Engineering and Smart Devices

In this iteration we restructured our programme in order to
better focus on core software engineering. For project and
practical work we focused on Smart Devices (as this was
a leading area of development in industry). Feedback from
students and industry led us to prototype teaching material
on developing games that would exploit the functionality
of such devices. Evaluation of this programme identified
weaknesses that needed to be addressed:

• We needed a clearer separation of core and non-core
material.

• We needed to demonstrate the general utility of our
core software engineering material by addressing more
than one area in our project/practical work.

• We needed more emphasis on support skills.
This resulted in the programme as currently illustrated in

Figure 3

C. Software Engineering and Ambient Intelligence

The most recent iteration has yet to be fully evaluated. We
have had positive feedback from the accreditation process
and from the industrial partners. However, we continue to
fail to address our main weakness — there are only nine
students registered for the first two years of the programme.

IX. CONCLUSIONS: REMARKS AND FUTURE WORK

We have proposed treating educational programmes as
software, and demonstrated advantages in applying software
engineering techniques for their development and mainte-
nance.

Current and future work involves examining re-use of
material across and between programmes; and improving
evaluation processes (particularly improving feedback from
students).

Our major challege is not in knowing what to teach, or
knowing how to teach; it is in having a reasonable number
of students to teach. Perhaps we should add a “marketing”
module to our curriculum?

REFERENCES

[1] B Boehm. A spiral model of software development and
enhancement. SIGSOFT Software Engineering Notes, 11:14–
24, August 1986.

[2] Pierre Bourque, Robert Dupuis, Alain Abran, James W.
Moore, and Leonard Tripp. The guide to the software
engineering body of knowledge. IEEE Software, 16:35–44,
November 1999.

[3] W. S. Curran. Teaching software engineering in the computer
science curriculum. SIGCSE Bulletin, 35(4):72–75, 2003.

[4] Peter J. Denning and Andrew McGettrick. Recentering
computer science. Communications of the ACM, 48(11):15–
19, 2005.

[5] Keith Devlin. Viewpoint: the real reason why software
engineers need math. Communications of the ACM, 44:21–22,
October 2001.

[6] Alan Dutson, Robert H. Todd, Spencer P. Magleby, and
Carl D. Sorensen. A review of literature on teaching en-
gineering design through project-oriented capstone courses.
Journal of Engineering Education, 86:17–28, 1997.

[7] Gary A. Ford and Norman E. Gibbs. A master of software
engineering curriculum: Recommendations from the software
engineering institute. Computer, 22:59–71, September 1989.

[8] J. Paul Gibson. Weaving a formal methods education with
problem-based learning. In T. Margaria and B. Steffen,
editors, 3rd International Symposium on Leveraging Ap-
plications of Formal Methods, Verification and Validation,
volume 17 of Communications in Computer and Information
Science (CCIS), pages 460–472, Porto Sani, Greece, October
2008. Springer-Verlag, Berlin Heidelberg.

[9] J. Paul Gibson. Software reuse and plagiarism: A code
of practice. In 14th ACM SIGCSE Annual Conference on
Innovation and Technology in Computer Science Educa-
tion(ITiCSE 2009), pages 55–59, Paris, France, July 2009.
ACM.

[10] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Sculpturing
Event-B models with Rodin: “holes and lumps” in teaching
refinement through problem-based learning. In From Re-
search to Teaching Formal Methods - The B Method (TFM
B’2009), pages 7–21, Nantes, France, 2009. APCB.

[11] David Lorge Parnas. Software engineering programmes
are not computer science programmes. Annals of Software
Engineering, 6:19–37, 1998.

[12] Gilda Pour, Martin L. Griss, and Michael J. Lutz. The push
to make software engineering respectable. IEEE Computer,
33(5):35–43, 2000.

[13] Rubén Prieto-Dı́az. Domain analysis: an introduction. SIG-
SOFT Software Engineering Notes, 15:47–54, April 1990.

[14] S.H. Pulko and S. Parikh. Teaching soft skills to engineers.
International Journal of Electrical Engineering Education,
40(11):243–254, 2003.

[15] W. W. Royce. Managing the development of large software
systems: concepts and techniques. In Proceedings of the
9th International Conference on Software Engineering, pages
328–338, Los Alamitos, CA, USA, 1987. IEEE Computer
Society Press.

[16] Mary Shaw. Prospects for an engineering discipline of
software. IEEE Software, 7:15–24, November 1990.

[17] Mary Shaw. Software engineering education: a roadmap. In
International Conference on Software Engineering — Future
of Software Engineering Track, pages 371–380, 2000.

476

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

