
Software Product Line Agility

Ahmed Abouzekry

Computer Science Department

Arab Academy for Science and Technology

Cairo, Egypt

abouzekry@yahoo.com

Riham Hassan

Computer Science Department

Arab Academy for Science and Technology

Cairo, Egypt

riham@cairo.aast.edu

Abstract— Software reuse constitutes a significant challenge

for different development communities, while systematic reuse

is a difficult target to achieve. Software Product Line (SPL)

has been nominated as one of the effective approaches

promoting software reuse. In this paper, we propose the

Enterprise Product Line Software Process (EPLSP) that

integrates practices of both the Enterprise Unified Process

(EUP) and the Agile Unified Process (AUP). This integration

benefits the engineering process with both reusable

components architecture and fast time to market final

products. EPLSP strategy focuses on the two major aspects of

SPL namely the Core Assets (CA) and the Product

Development (PD). CAs are those reusable artifacts and

resources that form the basis for the SPL. PD involves

building, acquisition, purchasing, retrofitting earlier work of

software products, or any combination of these options.

EPLSP promotes a clear up-front architecture in the CA while

employing agility for PD. Constructing an up-front

architecture for CA is effective in enhancing reusability and

increasing productivity. Using agility in PD is meant to

improve the time to market variable. We demonstrate the

EPLSP approach with an SME case study on a Retail

Management System (RMS) named FOCUS. Further, we

leverage an evaluation framework to assess the effectiveness of

EPLSP when applied to FOCUS. This case should define

clearly the preferred areas of agility interference in the SPL,

and where we need architecture to provide a sustainable

production.

Keywords- Enterprise Unified Process; Agile Unified

Process; Software Product line.

I. INTRODUCTION

Modules, objects, components and services are all

different patterns of the reusability practice. Software

Product Line (SPL) is recognized as an approach for

systematic reuse [1]. SPL matches software with different

industries representing it as a manufactured tangible

product. Further, it is one of the most important practices in

sustainable organizations for the ultimate cost and time

reduction [1].

SPL as an effective reuse approach is highly recognized

in software enterprises. Small and Medium Enterprises

(SMEs) do not firmly apply principles, but one can still

recognize a chaotic version of such principles over their

determined or formal processes.

SPL consists of three main activities namely Core Asset

(CA) Development, Product Development (PD) and

Management. CAs represents the basic reusable components

in the SPL. CAs could be a class, a blueprint, a series of

programming code or even a document, while the PD

provides the means of final customer usable product. SPL

management activity plays critical role in coordinating,

supervising, planning and other administration practices

needed across the production activities.

Agile methods promote productivity and values of
iterative development over heavy-weight methodologies
through number of practices that enable cost effective change
[2]. Agile and SPL merge of practices covers the increasing
need for shorter time to market and higher product quality
[7]. On the other hand, the more the SPL becomes agile, it
loses some of its essential properties, as strategic, planned
reuse which yields to predictable results. The SPL reuse
practice requires precise support in different areas like
organizational capabilities, management and technical roles,
architecture optimization…etc seeking a systematic approach
for reusability. Incorporating agile practices in developing
SPL raises some questions like what is the extent of
interfering between the agile and SPL? And could agile fit in
both CAs and PD?

SPL complexity promotes the need for an up-front

design and heavy architecture [8]. CA development should

conform to some standards and include detailed description

and using instructions even if this CA is a Commercial Off-

The-Shelf (COTS) component.

In this paper, we propose the Enterprise Product Line

Software Process EPLSP as a roadmap for the

implementation of the SPL with integration of agile

practices. EPLSP covers the essential architectural practices

in CA building, to solve the asset management pitfalls, and

the use of agile practices in the PD to enhance the time to

market variables.

EPLSP integrates the Enterprise Unified Process (EUP)

[9] with the Agile Unified Process (AUP) [10]. EUP is an

extension of the IBM Rational Unified Process (RUP) [11].

AUP is a simplified version of the IBM RUP that applies

agile techniques in modeling, development and management

[10]. Using the EUP overcomes the problems of managing

such a family of products; like change management,

strategic reuse…etc. EUP enables the enterprise to apply the

1

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

mailto:abouzekry@yahoo.com
mailto:riham@cairo.aast.edu

governance practices and disciplines (project management,

retirement management…etc.) within the process. AUP

allows for exploiting the agile essence to lighten the

response to market requirements needed to enhance

productivity. Further, AUP enables the customization of the

development process to multiple agile processes or some of

their combinations like SCRUM and XP. EPLSP focuses on

the extent of agility needed in the SPL practice and where

agility best fits in the SPL development life cycle. Further,

EPLSP depicts where SPL could most benefit from its goals

in the production level.

The rest of this paper is structured as follows: Section 2

surveys the state of the art in integrating agile practices into

SPL. Section 3 depicts the EPLSP process and the artifacts

produced in each step. Section 4 demonstrates EPLSP on

the Retail Management System (RMS) FOCUS. Finally,

Section 5 concludes the paper with remarks for future work.

II. RELATED WORK

Investigating whether Agile and SPL could integrate to

complement each other; there stills a debate among the

research community about its extent and feasibility.

Tian and Cooper [2] argue that the combination of Agile

and SPL forming the Agile Software Product Line

Methodology (ASPLM) could shorten time to market

maintaining the quality, in which the ASPLM leaves room

for futher development work to meet customer's changing

requirements, rather than pure customization of CA. They

showed that CA, PD and SPL Management activities need

to be investigated for possible agility.

Carbon et al. [3] had conducted a class-room experiment

following the motivation to present preliminary results

showing the successful merge between Agile and SPL. They

concluded to a result that agile in SPL reduces time spent on

design (Increases the speed), while SPL keeps changes to

minimum (Increases quality).

On his research, Geir K. Hanssen [4] stated an answer

for how to combine Agile and SPL. In a successful

marriage, he stated that this combination leads to; risk

reduction, organizational development, reduced

maintainability, community building, openness and

visibility and company culture improvement, contributing to

the emergence of a software ecosystem, which refers to how

organizations should exist together as an ecosystem.

One of the popular case studies conducted by the

Software Engineering Institute in Carnegie Mellon

University is Salion [5]. Salion is an SME with no

experience in its application area. It pursued a reactive

approach to its Agile SPL achieving a phenomenal reuse

level of 97% with its 21 employees counting seven

developers only.

Despite the success of the previous cases, they did not

take in consideration the difference in nature between the

CA and the PD. As any other production the sustainability

of the production depends on the systematic the whole

process, which should be only achieved by architecture

III. ENTERPRISE PRODUCT LINE SOFTWARE PROCESS

(EPLSP)

We propose EPLSP as a software process with the goal of

effective production of SPL that better meets its market

requirements. EPSLP integrates agile and SPL practices

from the two extensions of IBM RUP namely EUP and

AUP. EPLSP covers the Enterprise disciplines needed in the

SPL to improve the change management and architectural

variability in the CA phase. These parameters are improved

while taking into account the increasing demand on lower

time to market and quality software production through

employing agile practices.

A. EUP and AUP

EUP is an information technology lifecycle that

encompasses the activities of an IT department. Further,

EUP adds the enterprise disciplines required to effectively

manage organizations' portfolio of systems as described in

Figure 1.

Figure 1. The Scope of different process lifecycles.

EUP extends RUP to include the operation and support

of a system after being in production along with its eventual

retirement, where the two new phases benefits the concept

of strategic reuse promoted by the SPL. Further, EUP

enhances the overall process with the separation of the

disciplines into; development, support and enterprise as

illustrated in Figure 2.

Figure 2: Enterprise Unified Process [9]

Business Lifecycle

IT Lifecycle - EUP

System Lifecycle

System Development Lifecycle - RUP

2

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

AUP is an Ultra-lightweight variant of RUP, with the

work disciplines and products simplified and reduced as

shown in Figure 3.

Figure 3: The Agile Unified Process.

We employ the practices of EUP and AUP that facilitate

different management levels and all involved parties in the

production activities to highly control tasks associated to

their roles. Those practices complement the EPLSP and

close the IT department circle within a tightly managed

manner with the following recommendations;
 Documenting architecture using Unified Modeling

Language (UML)

 Applying SCRUM as an Agile project management

practice

 COTS could be used across the product line

 Configuration Management software is essential to

manage releases

 Specific software to manage commonality and variability

to enhance the strategic reuse option.

The different nature of the CA and the products is one of

the major challenges facing the application of EUP and

AUP to SPL. This marriage between EUP and AUP is

intended to facilitate the application of both processes to

SPL. CA needs the architecture provided by the EUP and

the extension of the production and retirement phases. The

need for fast response to market for the products could be

achieved with agility. AUP has the same phases as EUP but

simplified, so there is no need to rework the architecture of

the artifacts to fit in the other SPL production activities.

B. EPLSP Process

EPLSP provides means to integrate agile practices into

the SPL development life cycle. Figure 4 depicts the overall

process structure in EPLSP. The initial phase on the bottom

of the process consists of the domain engineering, in which

it represents the knowledge needed to build the reusable

artifacts like; scoping, requirement engineering, design,

testing, and the realizing of the commonality and variability

of the product line practice with the CA development

activities. In the middle there exists the CA base which

contains the reusable artifacts. The right downward arrow

represents the reactive approach in which the start point is

the PD.

The PD activity is split into two tasks, development task

and release task for two reasons, the separation between the

deployment and the production which differs in the

application of disciplines, and to maintain a direct agile

incremental iterative practice.

The management tent could be seen as the containing

rounded box, providing SPL process with the needed

management disciplines solely.

Figure 4. EPLSP Conceptual Model

CA development is the activity intended to build

the reusable components of the SPL. CA development

requires prior domain expertise, heavy architecture and

management capabilities. This could be achieved only

by a well defined engineering architectural centric

process to ease the reusability of this asset. EPLSP

proposes the application of the EUP as a basic process

for the domain engineering and CA instantiation as

shown in Figure 5.

3

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 5. EPLSP Milestones

PD activity is usually in need of the fast response to

customer requirements, and early delivery of quality

products. These goals could be achieved by the agile

methodologies, for this reason EPLSP preferably uses AUP

as a simplified version from the unified process to eliminate

unneeded heavy architecture. Figure 5 determines

milestones in every phase of the EPLSP.

IV. FOCUS
®

 RMS

This section describes an RMS named FOCUS to

demonstrate the feasibility of the EPLSP process. Further,

we discuss FOCUS commonalities and the challenges we

faced during and after the development process.

A. FOCUS® subsystems:

FOCUS® is a mini ERP specially developed for small

and medium retail outlets. This system could work as one

unit, integrated and linked over one database or every

subsystem separated as a single unit as depicted in Figure 6.

Figure 6. FOCUS® RMS Deployment Diagram.

FOCUS is composed of the following subsystems:

 FOCUS® stock control, which holds the essential stock

transactions; basic entries, receiving, item cards…etc.

 FOCUS® Point of Sale (POS): is where daily sales

transactions managed by salesperson in the checkout

area of an outlet or a shop.

 FOCUS® General Ledger (GL): reflects automatically

the daily selling, receiving and monetary transactions to

journal entries and accounts, and reports financial

statements.

 FOCUS® back office is the administrative tool, which

facilitates higher management to monitor transactions,

authorize permissions, link subsystems and modify

system settings.

The system was primarily developed to target large

sector of retail outlets with the following features; installed,

not customizable, self setup with a simple instructions guide

and easy to understand and apply. Since these requirements

could rarely be found in SME's business software, it was

planned to produce enhanced version yearly with new

features; based on wide survey for user requirements.

Figure 7 depicts the system requirements and

demonstrate the similarities as classes, layers and complete

sub modules; like the security module, transaction file and

product catalogue.

Figure 7. FOCUS® RMS System Requirements.

1) Company

The software was built in a small enterprise named

SCOPE Communications, in which it employs 13 people; 6

only is counted as developers, and it took 18 months to

release the basic version of the full system.

This basic version of the system contains 135 KLOC in

total, with 160 database tables, 1100 stored procedures, 450

forms and 320 reports covering the four modules.

The core process was a simple version of the incremental,

iterative process; it was described and documented using the

UML. The system was built using a similar proactive

approach to the SPL's, with no use of any Configuration

4

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Management software. Test cases are prepared with two

concerns; business cases depend on customer stories and

technical cases over the functions, for data integrity.

2) FOCUS Production Challenges

From our study of the former system we have observed

some challenges resulting from the application of the

previous process, like;
 Recurrent costs associated with the reuse of non-

architectural artifacts

 Higher risk resulted from unplanned resource allocation

and estimation

 Complexity of managing the commonality and

variability of artifacts

 Wasted time resulted from the duplication of code and

documentation

 Corrective bug fixing rather than preventive associated

with the unplanned test cases

 Customers frequent complaint from support

3) EPLSP and FOCUS

Appling EPLSP to FOCUS RMS will help the company

well manage the SPL process, with the allocation of the

architectural centric activities in the needed areas only;

which is intended to well manage changes across the

process, and the use of agile practices in the PD activity to

improve the market response.

4) Refactoring FOCUS®

As a retail management system the product catalogue

regarded as the main component in the solution, therefore;

the selected artifact to be redesigned using the EPLSP is the

product catalogue, which contains the building features of

any product like name, description, type, category, price,

etc.

The product catalogue is considered a sub module, and is

completely used in one of the main modules, and partially

used in the three other modules.

5) Applying EPLSP to FOCUS

The product catalogue features totally differs as the type

of products or services provided by the outlet itself,

however there are some common requirements in this sub

module.

The architecture definition in the EPLSP elaboration

phase defines a practice to manage the commonalities and

variability of the product catalogue. This covers the change

management problem and reduces the recurrent costs

resulting from unplanned reusability.

The main goal of the EUP unique production phase is to

keep systems useful and productive after deployment, in

which it encompasses the operation and support of the

system. Also, this phase provide some means of quality

assurance by monitoring the operation of the system when

working and recovering any problem. These practices help

the company manage the post deployment stage

professionally, which develops customer loyalty.

We are redeveloping the product catalogue as a sub

module with EPLSP maintaining the same functionality of

the catalogue. We compare the development experience

using EPLSP with its counterpart using the older version of

the system developed with an iterative simple RUP. The

metrics used for our comparison are depicted below in

subsection 6.

The product catalogue itself consists of two parts. One

part is recognized as a core asset, which includes the search

base and the basic entry forms like category, product,

limits…etc. The second part is realized as a product which

includes product labeling, reports…etc.

We develop the product catalogue core asset using EUP

as the part of EPLSP that incorporates a complete

architecture, while developing the product part using

SCRUM. In both parts we use an incremental iterative

process.

In the older version of the FOCUS system, we employed

a simple iterative and incremental undefined process to

develop the whole SPL. The sequence of the process steps

mostly relied on the task, the feature or even on the

developer. The older process employed code comments and

traditional UML diagrams for documentation.

Using EPLSP, we define 5 essential practices. We use a

tailored version of SCRUM at the product part of the

catalogue and a set of architectural templates and plans in

the CA part. Further, we utilize configuration management

software and a set of chosen UML diagrams for core assets

and the products. We define the development incremental

steps as shown in Figure 8.

Figure 8. Development Increment.

Draw GUI

Accepted

Building

Unit Testing

Passed

Integrate

Integration Test

Passed

User Test

Passed

Release & Configure

5

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

For the product part of the catalogue, we define a set of

SCRUM roles namely the project manager, the product

owner and the developers. The project manager acts as the

SCRUM master, while the marketing team acts as product

owners. Further, we have a team of a senior developer and

two junior developers.

A daily meeting is held with the team to discuss the

progress and the problems. Further, a weekly meeting is

held with the presence of the product owner to present the

features achieved thus far. The weekly meeting aims also at

collecting feedback from the product owner while

developing new ideas and requirements. Finally, a monthly

meeting is held to test and show the released version, which

could be installed at the customer site for free. Such

installation allows the support team to record comments

within two or three days.

In the production phase, the product backlog is

developed in cooperation between the SCRUM master and

the product owners. The product backlog scenarios are

prioritized while dependencies are identified. Further, the

product backlog is revised and updated in every monthly

meeting. The sprint backlog defines the current set of

features in the construction phase, its tasks and associations

to team members. These backlogs contain:
 Use cases, Class and Activity diagram.

 Test cases.

 Schedules and job orders.

Finally, the released version of the product is configured

and generated with a set of user instructions.

We produce the following set of architectural documents

during the development of catalogue CA part. Such

documents contain the complete domain architecture that

depicts the infrastructure CAs. Infrastructure CAs include

the CA part of the product catalogue along with other CAs :
 Detailed business case.

 Requirements and specifications plan.

 Test plan for the 3 testing levels, unit test,

integration test and user test.

 Software development plan

 Iteration plan.

 Change and configuration plan.

 Deployment and support plan.

Unlike the product development, the configured version

of the core asset is augmented with the developer’s manual

and deployment instructions.

6) Process Validation

We utilize a number of metrics to assess the effectiveness

of EPLSP and compare it to the classical iterative or

incremental development process. These metrics are defined

to assess the effectiveness of the merge between SPL

development and agile process and it was stated and used in

Salion's Agile SPL [6] as follows:

 Reusability: Salion [6] defines the reusability of its system

with a percentage level that is equal to common files used in

all members of the product family divided by the total number

of files generated across the product line (Reusability level%

= common files/total SPL files).

 Time to market: It was proposed in the same case [6] as the

manpower used per month to produce the first customer's

product (# of persons-month).

 Eliminating duplicates: We measure it by the percentage of

eliminated duplicates using the classic Line of Code (LOC)

metrics (Eliminated Duplicates% = # of duplicated LOC/total

LOC).
 Productivity: This metric is measured using popular LOC and

Use Case metrics as an extension of the Function Point

metrics as a complex subject concerning a relation between

different resources or artifacts, the use case metrics defines an

early – prior development measure of software functionality

rather than the function point, which could only be used after

development.(Usecase/hour, LOC-person/month…etc)

 Cost reduction: Similar to of the productivity metrics, but it is

preferred to be measured by the Use Case metrics. Also either

LOC or Function Point could be used, but regarding the LOC

it will be subjective due to the difference in number of

produced lines from one person to another within the same

class. And for the function point analysis it could be

determined only after the development completion; instead of

early determination of cost in the case of Use Case metric.(

UseCase-person/day)

 Defect Removal Efficiency (DRE): Is one of the popular

quality metrics which is intended to measure the discovered

errors during development in relation to the total errors and

defects found.

(DRE=E/(E+D) in which E is the number of errors and D

is the number of defects).

V. CONCLUSION

This paper proposed EPLSP to address the possible

integration between SPL and agile. Applying this process to

FOCUS RMS addresses most of the challenges the company

faced during the production of the software using the

classical process. Further, the proposed EPLSP addresses

the time to market challenge, which is one of the major SPL

challenges. EPLSP addresses the challenges through

leveraging agility in the suitable areas of integration of the

EPLSP which helps the production quality software

products.

Applying EPLSP to FOCUS RMS, our potential

challenges include technical and social challenges.

Technical challenges include training the development staff

in the EPLSP development process and reworking the

design. Our social challenges confine the commitment of the

upper management to change and restructuring the

organization so that the new process is accommodated.

6

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

REFERENCES

[1] Linda Northrop. 2008. Software Product Lines Essentials.
Software Engineering Institute, Carnegie Mellon University.
http://www.sei.cmu.edu/productlines/frame_report. [accessed,
April 2011]

[2] Cunningham W, Manifesto for Agile Software Development.
2001. [cited 2008-09-30]; Available from:
http://www.agilemanifesto.org. [accessed, March 2011]

[3] Tian, K. and K. Cooper, Agile and Software Product Line
Methods: Are They So Different?, in 1st International
Workshop on Agile Product Line Engineering.2006.

[4] Carbon, R., et al. Integrating Product Line Engineering and
Agile Methods: Flexible Design Up-front vs. Incremental
Design. in Workshop on Agile Product Line Engineering.
2006.

[5] Hanssen, G.K. and T.E. Fægri, Process Fusion - Agile
Product Line Engineering: an Industrial Case Study. Journal
of Systems and Software, 2007, pp. 836-849.

[6] Clements, P. and Northrop, L., Salion, Inc.: A Software
Product Line Case Study , Software Engineering Institute

(SEI) Technical Report CMU/SEI-2002-TR-038, Carnegie
Mellon University, Pittsburgh, PA, November 2002.

[7] Snorre Gylterud, Constructing a Silver Bullet? Combining
Software Product Line Engineering and Agile Software
Development, A thematic literature review, Norwegian
University of science and technology, 2008.

[8] J. Bosch, Design and use of software architectures: adopting
and evolving a product-line approach. Addison-Wesley,
Harlow, 2000.

[9] S. W. Ambler, J. Nalbone, M. J. Vizdos, The Enterprise
Unified Process, Extending the Rational Unified Process,
Prentice Hall, 2005.

[10] S. W. Ambler, The Agile Unified Process (AUP), Ambysoft,
2005; www.ambysoft.com/unifiedprocess/agileUP.html.
[accessed, March 2011]

[11] Philippe Kruchten, The Rational Unified Process: An
Introduction, 2nd ed. Addison-Wesley, 2000.

[12] Rubin, H. A. “Macro-Estimation of Software Development
Parameters: The ESTIMACS System.” Proc. SOFTFAIR: A
Conference on Software Development Tools, Techniques, and
Alternatives. New York: IEEE, July 1983, pp. 109-118.

7

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

http://www.sei.cmu.edu/productlines/frame_report
http://www.agilemanifesto.org/
http://www.ambysoft.com/unifiedprocess/agileUP.html

