ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

UML 2.0 Profile for Structural and Behavioral Spedfication of SCA Architectures

Wided Ben Abid Mohamed Graiet Mourad Kmimech

MIRACL, ISIMS MIRACL, ISIMS MIRACL, ISIMS
BP 1030, Sfax 3018, TUNISIA BP 1030, Sfax 3018, TUNISIA B@30, Sfax 3018, TUNISIA
benabidwided@hotmail.com mohamed.graiet@imag.fr mkmimech@gmail.com

Walid Gaaloul
Computer Science Department Télécom SudParis
Mohamed Tahar Bhiri 9, rue Chafresirier 91 011 Evry Cedex, France Eric Cariou

MIRACL, ISIMS walid.gaaloul@it-sudparis.eu Umsitd de Pau et des pays de I’Adour

BP 1030, Sfax 3018, TUNISIA Avenue de I'Université BP 1155 64013
Tahar_bhiri@yahoo.fr PAU CEDEX France

Eric.Cariou@ wmau.fr

Abstract— Service Component Architecture (SCA) aims to of use expressed formally in OCL [3]. Such a peofib
simplify the construction of service oriented archiecture defined to favor:

(SOA) to encourage a better reuse and to be indepdaamt from . Recovery (or reuse) of software architecture
used technologies. In the other hand, UML 2.0 is thde-facto described in SCA from the academic world.
standard for graphical notation and modelling in sdtware .« Designand implementation of software systems

engineering. To face this situation we recommend an
adaptation of UML 2.0 to SCA. It is in this contextthat we
have defined a profile UML 2.0 for SCA containing aset of
stereotypes applied to metaclasses stemming from eh
metamodel UML 2.0. These stereotypes are completeboy

having explicit and documented software
architectures.

 The transformation of model according to the
approach MDA [4] [5] [6]. For example, the

formal constraints in OCL. Our profile introduces new transformation of a PIM (Platform Independent
elements to reflect the architectural concepts ofGA. Model) described in this profile to another PIM or
PSM (Platform Specific Model) described in UML
Keywords-Software architecture, SCA, UML 2.0, OCL, 2.0 or using others profiles.
Profile and Metamodel. Then, we partially automate our proposed formaltirat
methodology using an MDE (Model Driven Engineering)
. INTRODUCTION approach. For this, we will transform the metamaafethe

i . . proposed UML 2.0-SCA profile to SCA metamodel. Jde
Nowadays, software engineering aims to decrease thgetamodels respectively play the role of source tanget

complexity of application development Dby reusing metamodels for the exogenous transformation oftioéile
heterogeneous and distributed software comporiéngks mL2 to SCA. In_ addition. we implemented

to the Web technologies, to the SOA architecturern(ie profijuML2SCA, a tool for this transformation usirthe
Orlen_ted Architecture) [1] and the SCA Arghltecture MDE language ATL (ATLAS Transformation Language)
(Service Component Architecture) [2], the openirfgtie 7.

company to the world is made possible. The usehef t =" rhis paper has four main sections besides an inttih
standard SCA as the model of specification of ®®ise 5nq a conclusion. The first and second section paition
oriented components architectures produces cona@mis .y contribution with respect to different approesiof
notations which are not readable and easily uraiedsble, qqelling software architectures and initializes SECA

especially in the industrial circles. Qsin_gagriaphmodel metamodel to express in a semi-formal way the SCA

seems a way that could overcome this disadvantage. concepts to be modeled in UML 2.0 to establish
The UML language being a modelling standard which.oprespondences. The third section describes @ngigh of

supplies, on one hand readable graphic represemtatind e proposed UML profile. In Section 4, we present

on the other hand proposes diagrams to specifyfleors, 5 ,;omatic MDE approach for Exegenous transformation
seems a relevant way to model SCA Architecturesfab® fom our profile to SCA application.

this situation, we recommend an adaptation of UML &
the SCA. It is in this context that we defined afibe UML . SOFTWARE ARCHITECTURE INUML
2.0 of specification of the architectures SCA. Quofile
UML 2.0-SCA is a set of stereotypes applied to iwiatses
stemming from the UML 2.0 metamodel.
The proposed stereotypes are endowed with the reantst

UML is a modelling language which is generalistnse
formal and widely used in the industrial world. Hower,
several researchers [8] [9] studied the possibildf
modelling software architecture by using UML. Two
approaches corresponding to the standard UML are

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 439

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

proposed. The first strategy uses UML as it isteforesent links specifying the connections between components
the architectural concepts of the ADLs, such aspmmant, Independently of whatever technology is used, every
connector, role, port and configuration. The maidvantage component relies on a common set of abstractiariading

of this approach is the understanding of this modglby services, references, properties, and bindings.

every user of UML. But this strategy has limitasoon the A component is the basic entity for the constructio
inability of UML, especially UML1.x to translate of SCA application. This element has an implemémathat
architectural concepts explicitly. For this reasee,use a must be either Java class or a BPEL process. Indepdy
second approach which consists in defining prafilesof the technology used for its implementation, the
UML can be adaptedto every domain through thecomponentis based on a common set of abstradtimisas
extensibility mechanisms offered by this languagehsas services, references and properties. Figure 2 shows
stereotypes, tagged values and constraints. Thesxample of an SCA component:
mechanisms offered by UML extend UML without champi

the UML metamodel. The advantage using profilessista roperties
in clarifying the representation of the architeat concepts.

So, we define this profile based on the strategyusifg Services
extensibility mechanisms of UML 2.0 to constraie tiML
metamodel in order to adapt to the architecturakepts of
SCA.
g Component SCA
. METAMODELLING OF THE SCAARCHITECTURE : References

A. Structural aspects of SCA

SCA provides a programming model for building
applications and systems based on a SOA. The rdem i T
behind SCA is to be able to build distributed apations, Figure 2. Example of SCA component
which are independent of implementation technolagyl
protocol. SCAis the result of a collaborative pajOSOA Each SCA component implements a business logic
(Open Service Oriented Architecture) [10] which sitd exposed by one or more services. A service describat a
provide a set of specifications including firstlyredel for component provides, i.e., its external interfacereference
creating components and also a programming model faspecifies what a component needs from the other
building software applications based on architect@rvices. components or applications of the outside worldwiBes

In this section, we introduce only the model foeating and references are matched and connected using wire
software componentsSCA provides an assembly model pindings. A component also defines one or more gutigs.
representing a network of services and allows mgldhe To provide distant communications between services,
SCA components in different languages, while ensuri SCA offers the possibility of using a protocol désed in
integration with existing models. The basic unit ofthe binding specified within the service and\orhiit the
deployment of an SCA application is composite. Aimplementation, for example the protocols JMS (Java
composite is an assembly of heterogeneous compmnenfjessage Service), RMI (Remote Method Invocation) or
which implement particular business functionalitged SOAP (Simple Object Access Protocol) to perform

Figure 1 below). synchronous or asynchronous communications. A aingl
Service P service or reference can have multiple bindingkwéhg
WL pedrype o WAL PortType different remote software to communicate with itlifferent

/ Composite E WayS.
B. Behavioural aspectsof SCA

m.°>,,,,,,,‘ ,,,,,, o (2 oS E ,.E} The web services technology is widely used as stigho

. y : the interoperability between applications. In thimtext, the

W e e interactions between components of the SCA Architec

| 4 are made through its service interfaces. The coneation
" - is realized by means of message exchanges. A weltese
"y Sarvis e Savics defines the functionality it provides and the regdi
e s information that must be met to perform its functidhe
functionality of the web service can be inmémted in

any number of ways and languages such as XLANN;

Figure 1. Diagram of an SCA composite [11] Web Services Flow Language(WSFL) [13] and Business

rFrocess Execution Language(BPEL) [14].

BPEL is a language of composition which is spidt t
become a standard. This language describes a bsisine
process who specifies the execution order between a

A SCA composite is an assembly, which can contai
components, services, references of services, rdéiolas of
properties allowing the configuration of its compats, and

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 440

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

numbers of constituent activities, the partneroived, the
message exchanged between these partners andfthenth

of activities take place like “execute these atithgi
sequentially” (activity: sequence), “repeat the astion of

exception handling mechanisms, to achieve a comaterc this activity” (activity: while) or “parallel exedion of

goal.

The main concept of BPEL is the BPEL process. éisus
several concepts as Partner links, handlers, \Jasab
correlation sets, and activities for the procesgicloThe
atomic element of a process is an activity, whigh be the
“send of a message” (activity: reply), the “receptiof a
message” (activity: receive), the “call of an opierd
(activity: invoke) or “manipulate data” (activityassign).
Structured Activities prescribe the order in which
collection of activities take place like “executbese

activities” (activity: flow).

In this section, we thus decided to elaborate ametlel
for SCA Architecture representing most of the cqtse
stemming from this specification. This metamod&has, in
our context, to express in a semi-formal way thacepts
SCA both structural and comportemental to be medeith
UML 2.0. Our metamodel is built as an extensiontto#

metamodel proposed by the community OASIS
(Organization for the Advancement of Structured
Information Standards). Our metamodel is illusttaten

structured activities prescribe the order in whacbtollection Figure 3.
bmdmgs
— . - - Bindin
H Property SEpnEE EH Service o.* H Binding
properties | name = name bindngs| na:me =
o.* 0. = 0.* —fus
properties |0..* 0. *|zervices
components (E Component
= name
o=
0..1| mterface
E " EH Imterface . El Operation
references E Reference 0.1 — operations [
e name name
0.* ihterface 0 =
(. *|references
E Composite E Wire
= name wires | = name
= targetNameSpace = source
0.* | = target
process |0.% 0. %|process
EH Variables 5 BPELProcess E Activities
= pame = name fo
0. clrvities
U"_ = targetNameSpace Actintes
variables = abstractProcess # g™
H PartnerLink o [l atomic activities H StucturedActivities
= naine = = name = naime
partnersLinlc

Figure 3. A metamodel of SCA

The behavioral aspect is represented in this metamo
by the BPEL process. While being a powerful langufay
implementing processes, BPEL is difficult to uds. XML
representation is very verbose and only readabiette
trained eye. Several vendors offer a graphicakfaxe that
generates BPEL code. However, the

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

representations are a direct reflection BPEL codé ot
easy to use by end-users. Therefore, we providegpimg
from UML to BPEL. In the following section, we ag®ing
to establish stereotypes to model respectively ieted and
structural concepts of the SCA Architecture.

graphical

441

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

IV. UML PROFILE FOR SPECIFYINGCAARCHITECTURES

This part is dedicated to the technical definitminthe
profile SCA-UML. Such a profile contains a set of
stereotypes applied to métaclasses UML 2.0 andettty a .
set of constraints OCL. In UML 2.0, the state maekican
be used to specify the behavior of several elemehthe
models described in UML 2.0, such as instances dass
UML 2.0. While the state machine description oftponls

self.ports -> size () >= 1 and (self.portziAsType
(service).stereotype = SCAPortService or
self.ports.oclAsType (reference).stesype =
SCAPortReference)

One and only one <<SCAProtocolStateMachine>>
is associated with <<SCAComponent>>.
self.stateMachine -> size () = 1 and
self.stateMachine.oclAsType
(ProtocolStateMachine).

can be used with profit to express protocols rdlate Stereotype =SCAProtocolStateMachine)

scenarios of use of services offered by interfameports

(Figure 4). H Class
H Interface
S 4protocol |2 ProtocolStateDMachine e e [empaen pores [222E
o name " -
0.1 - E service H Reference
rovided = name = name
’ -
E Part Aprotocol
= name H ProtocolStateMacling
0.1
Figure 5. The Component metaclass in UML 2.0 metiho

Figure 4. State machine descrlg?%r;ﬁ; protocodmaisited at the interfaces B. Servicesand references
A service from an SCA component provides a set of
The concept of state machine UML2 .0 is used aas&b pusiness functionality to other SCA components whgra
for stereotyping behavioral aspects of SCA or npoeeisely reference represents the services offered by other
BPEL activities. components. For it a SCA service is described by
In the rest, we will establish stereotypes to modep.0 port (Figure 6) stereotyped by <<SCAPortSepviceA
structural and comp.o.rt'emental aspects of SCA SQ@PEL SCA reference is described by an UML 2.0 port (Fégt)
process, BPEL activities, component, ports servipests stereotyped by <<SCAPortReference>>.
references and connectors. We provided particale o the A port is the element of a component used to
development of formal constraints in OCL related tointerconnect components via connections betweets.pAr
stereotypes. This gives a better idea for the abteuse of port realizes an interface of services.

these stereotypes. The stereotype <<SCAPortService>> is defined by the

A. SCA Components

An SCA component is described by an UML 2.0
component stereotyped by <<SCAComponent>> (Figlre 5
The stereotype <<SCAComponent>> is defined by the
following OCL constraints:

¢« No provided or required interface is associatedh wit

<<SCAComponent>>.
self.provided -> isEmpty () and self.required ->
iISEmpty () .
e All ports associated with <<SCAComponent>> are
<<SCAPortService>> or <<SCAPortReference>>
and must be of type port.
self.ports -> forAll (p| p. stereotype =
SCAPortService and p.SCAPortServiceType =
#port) or (p| p. stereotype = SCAPortReferare
and p.SCAPortReferenceType = #port))
e <<SCAComponent>> has at least one port.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

following OCL constraints:

All the offered interfaces associated in

<<SCAPortService>> are SCAlInterface.
self.provided -> forAll (i | i.stereotpe =
SCAlnterface)

<<SCAPortService>> has at most one interface

provided and no interface required.
self.provided -> size () <=1 and sedquired->
isEmpty ()

One and only one <<SCAProtocolStateMachine>>

is associated with <<SCAPortService>>.
self.protocol -> size () = 1 and self.protocol ->
forAll (psm| psm.stereotype =
SCAProtocolStateMachine)

442

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

self.protocol -> size () = 1 and seglfotocol ->
EEWTSTTIIY N forAll (psm| psm.stereotype =
E ProtocalStateMachine 7 Pt — H Interface SCAProtocolStateMachine)
o name +protocol — < name
1 0"’ N Tnterf:)
Enlj::iilty ‘ownedAttribute ED“l::l:CB Foperali - anl)lgfrll:hn“m
0.t I .
iprovided
+protocol | g1 tformmalParameter | 0..*
Figure 6. The metaclass Port in the metamodel UMIL 2 H ProtocolStateMachine Enlj:;:‘:mr
= name
The following OCL constraints are defined for the
stereotype <<SCAPortReference>>:
e Al required interfaces associated with Figure 8. The metaclass Interface in the metamdtill 2.0
<<SCAPortReference>> are SCAlnterface.
self.required -> forAll (i| i.stereoty = D. BPEL Process

SCAlnterface)
e <<SCAPortReference>> has at most a requireqna

lntesrfe?fcsr:-}eanqren do Ttse_rf:ce fici\/::\i%d.self rovided-> the stereotype <<SCAProtocolStateMachine>>. But the
'sém thI -> size () <= -Provided-> gefinition of the stereotype requires the introdhrciof other
! Py 0 stereotypes such as <<SCAProtocolTransition>>,

* One and only one <<SCAProtocolStateMachine>>__ NS> << o>
is associated with <<SCAPOrReferences> SCARegion>>and SCAVertex to express more

If brotocol -> si = 1 and self protocol -> formally the behavioral aspects.
self.protocol -> size () =1 an fe .protocol - 1) <<SCAVerte> stereotype
forAll (psm| psm.stereotype =

X Each activity has a descriptive name and an ermtigra
SCAProtocolStateMachine) detailing the work performed by the activity. Fbese, an
activity in BPEL can be represented by a stateiagrdm
state machine (see Figure 9), stereotyped by

A BPEL process is represented as a protocol state
chine describes the comportemental aspect of BiGA

£ ProtocolStateMathine T Put _ |d Interface <<SCAVertex>>. This stereotype is defined by thiofaing
E— fprooeol [Vreqired OCL constraints: _
T « All transitions incoming <<SCAVertex>> must be
1) SCAProtocolTransition.
0t self.incoming -> forAll (t |
t.oclAsType (ProtocolTransition).steratype
rovided SCAProtocol Transition)

» All outgoing transitions of <<SCAVertex>> must be
SCAProtocol transition.
self.outgoing -> forAll (t | t.oclAsTpe
Figure 7. The metaclass Port in the metamdtiél 2.0 (ProtocolTransition).stereotype =
SCAProtocolTransition)

C. Theinterfaces of components

Every SCA interfacga port of a component) possesses |[§ Vertex
one or several operations. An SCA interfezéescribed by
an UML 2.0 interface (Figure 8) stereotyped by
<<SCAlnterface>> for ports services and interfacEsis 01| target
one is defined by the following OCL constraints:

« All the operations associated with SCAInterface are

operations without parameter. 0.*
self.ownedOperation -> forAll
(o]o.formalParameter ->isEmpty ()) H ProtocolTransition

* No attributes are associated with an SCAInterface.

self.ownedAttribute -> isEmpty ()

« Exactly one and only one

<<SCAProtocolStateMachine>> is associated with
each <<SCAlnterface>>.

source outgoing |H Transition
1.1 s

meoming

Figure 9. the metaclass Vertex in the metamodel ML

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 443

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

« Al regions belonging to stereotype

The stereotype <<SCARegion>> applied to the metacla SCAProtocolStateMachine must be SCARegion.
self.oclAsType (ProtocolStateMachine).region-

Region (see Figure 10) is defined by the followi@gL
ForAll(r | r.stereotype = SCARegion)

constraints:
e All vertices belonging to <<SCARegion>> are 4) <<SCAProtocolSateMachine>> stereotype
The stereotype <<SCAProtocolStateMachine>> applied

2) <<SCARegion>>

SCAVertex.
self.subvertex -> forAll(s | s.steregte = to the metaclass StateMachine (see Figure 11)fiisedeby
SCAVertex) the following OCL constraint:

belonging to stereotype

e All transitions belonging to SCARegion must be < All regions
SCAProtocolStateMachine must be SCARegion.

SCAProtocolTransition.
self.transitions -> forAll (t | t.oclAsType self.oclAsType (ProtocolStateMachine).region-
(ProtocolTransition).stereotype = ForAll(r | r.stereotype = SCARegion)

SCAProtocolTransition)
H Region 0.* H StateMachine
] :
1 1—.3310115

subwertex | 0. % 0. * | transioens
E Vertex
EH ProtocolStateMachine

EH ProtocolTransition

1
1
1
Figure 10. the metaclass Region in the metamoddl @\
9 9 Figure 11. The StateMachine metaclass in UML 2.€amedel
3) <<SCAProtocol SateMachine>> stereotype . . . !
The stereotype <<SCAProtocolStateMachine>> applie%ci'na"y' Figure 12 illustrates our UML2.0 profileprf

to the metaclass StateMachine (see Figure 11)fisedeby
the following OCL constraint:

ubvertex 0 E Root
H SCAVertexf EH SCARegion| tramsitions] EL Transition]
= name L+ = name = pname
Q.
region | 1..*
0."% | elements
[l scAStateMachine| || SCAProtocolTransition| E Class
= name bindings |H SCABinding
=
H Port
0, *ports
. S
interfaces | o bindings
SCAProtocolStateMachine n
EID name protacal E Interface requiredinterfa H SCAComp
~ name ” = pame
0.1 0.
protocol (0.1
protocal
0.1 . -
ovidedinter H SCAPortService H SCAPortReference
providedInterface = name = name
ports |0..*
0.1 |provided
H Operation o+ 5 SCAlnterface
= name - = name 0.1
operations required
Figure 12. A metamodel of Profile UML 2.0-SCA

444

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

V. EXOGENOUS TRANSFORMATION OF PROFILE UML
2.0-SCATO SCA

In this part of paper, we aim to automatically sfanm
this profile into an application using an MDE apmxb of
automation [15]. Before the transformation of ouofite
into ecore, we have created its implementation amBin
Specific Language (DSL).

A. Our approach

In this section, we present in a detailed way the
PofilUML2SCA tool written in ATL allowing the
transformation of an extension of profile proposed
previously towards an SCA application.

Figure 13 illustrates our proposed approach for an

automatic transformation of a profile UML 2.0-SCASCA.
We distinguish two levels of specification: M2 (a&td model level)
and M1 (a model level) as define by the MDA apphoda our
approach a transformation model defines how to rgeea
model (SCA model) according to the metamodel (SC&avhodel)
from the model (Profile model) consistent with tmeetamodel
(Profile Metamodel).

Conform to Conform to

Meta Model of the
Profil UML-SCA Meta Model of the

SCA Architecture

ATL

Conform to

MOF

Use

Conform to Conform to

Contain

iy
Transformation
Engine

Source Model
(xni File)

Target Model
(xni File)

Out

Figure 13. The proposed approach for an automatisformation profile
into SCA

The source and target models (i.e., the Profile UA-
SCA model and the SCA model) and the ProfilUML2SCA
tool are consistent with their ProfilUML, SCA andTA
metamodels. These metamodels are also consisténthei
Ecore meta-model of the EMF platform [16]. The peof
source metamodel, resp. the SCA target metamodel,
represented by an Ecore diagram in Figure 12, Feégpre 3.

B. Global Overview on the ProfileUML2SCA tool

In the next, we present the standard rules for th
development of our tool. Our profile transformatiorto
SCA is based on rules issued from OCL constrafmsATL
module corresponds to the transformation of a Esborce
models into a set of target models according tarthe
metamodels. Its structure is formed by a secticadbe an
optional import section, a set of helpers and afailes.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The header section (Figure. 14) defines the nah#d®o
transformation module and the variables of the soand
target models. The following ATL source code repres the
header of the ProfilUML.atl file, thus the ATL heador the
transformation from Profile UML-SCA to SCA appli@at:

module profilUML;
create QuT
ProfilUML;

-— Module Template
3cA from IN

Figure 14. The header section of transformation

module defines the module name.
createintroduces the target model declaration.
from introduces the source model Declaration.

In this part of paper, we present the transformatides
of the structural aspect transformation of our ipgof
ULM2.0-SCA using the ATL language.

We define the rule which allows us to transform an
SCAComponent in the profile to Component in SCArehe
an SCA component takes the same name as a SCA.

rule SCAComponent2Component{
from scac:ProfilUML!ISCAComponent
to ¢: SCAIComponent (
name<-scac.name)}

Each instance of a stereotype SCAPortService is
transformed into a Service in SCA.

rul e SCAPort Servi ce2Servi ce{

from scaps: Profil UM! SCAPort Servi ce
to s: SCA! Servi ce(
name<- scaps. nane,
conponent <- scaps. conponent ,
i nterface<-scaps. provi ded,
process<-scaps. provi ded. protocol)}

- Each instance of a stereotype SCAPortReference is
transformed into a Reference in SCA.

rul e SCAPort Ref er ence2Ref er ence{

from scapr: Profil UM! SCAPort Ref erence
to r: SCA! Ref er ence(
nanme<-scapr. nane,
conponent <- scapr. conmponent ,
i nterface<-scapr.required,
process<-scapr.required. protocol)}

 Each instance of a stereotype
SCAProtocolStateMachine is transformed into a

BPELProcess.
445

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

rul e

SCAPr ot ocol St at eMachi ne2Pr ocessBPEL{
from

psm Profi | UVL! SCAPr ot ocol St at eMachi ne
t o bp: SCA! BPELPr ocess(name<- psm nane) }

VI. CONCLUSION

This paper proposes a UML profile for specifying th
SCA Architectures. This profile is based on theseewf
concepts for the description of the elements of rtiwel
which essentially arise from the SCA ArchitectuBeich a
profile will facilitate the work of the developerghich are
not still familiarized with complex languages aratations.

In a second part, we proposed an MDE approach

which allows transforming a metamodel of outeesion
of a UML profile proposed into an SCA metamodel. d®
so, we elaborated two metamodels:
metamodel and the SCA metamodel. Then, we designeéd
implemented a ProfilUML2SCA tool in order to traosh a
profile model conform to its metamodel to a SCA mlod
conform to its meta-model.

The extension proposed in this paper provides aiape
study of the structural and behavioral aspectshef $CA
Architecture. So, we intend to extend our profidadke into
account the advanced concepts such as SCA conraudor
composite.

REFERENCES

Open SOA Collaboration, Service Component Architeet
(SCA), SCA Assembly Model v1.00 specifications, 200

OSOA, Open Service Oriented Architecture, the Hétage,
2007. http://www.osoa.org/

J. Warmer and A. Kleppe, “The Object Constraintd.eage,”
Addison-Wesley, August 2003.

X. Blanc, “MDA en action ingénierie logicielle guéd par les
modeles,” Eyrolles, 2005.

Object Management Group. MDA Guide, version 1.2003.
http://www.omg.org

J.Bézivin and X.Blanc, Promesses et Interrogatiates
I'’Approche MDA, Développeur Référence, Septemiye2

F. Jouault, “Contribution a [I'étude des langem de

transformation de modéles,” thése de doctorat,eEDoltorale

sciences et technologies de [linformation etesd
matériaux, Nantes, 2006.

D. Garlan, S.W. Cheng, and A. Kompanek, “Recongithe
Needs of Architectural Description with Object-Mdtey
Notations,” Science of Computer Programming Joyrnal
Special UML Edition Elsevier Science, 2001.

N. Medvidovic, D.S. Rosenblum, D.F. Redmiles, anf. J
Robbins, “Modelling Software Architectures in thenified
Modelling Language,” ACM Transactions on Software
Engineering and Methodology, vol. 11, no .1, Jap2802.

(1]
(2]
(3]
[4]
(5]
(6]
(71

(8]

[9]

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[10] OSOA. SCA Service Component Architecture: Assembly
Model Specification, March 2007.

[11] SCA, “Building Your First Application Simplified BjBank,”
SCA Version 0.9, August 2007.

[12] S. Thatte, “XLANG Web Services for
Design”, October 2005.

F. Leymann, Web Services Flow Language.WSFD, 1.
October 2005. http://ww-
3.ibm.com/software/solutions/webservices/

pdf/WSFL.pdf.

T. Andrews, F. Curbera , H. Dholakia , Y. GolantiKlein ,
F. Leymann, K. Liu , D. Roller, D. Smith, S. Thatt I.
Trickovic, and S. Weerawarana, Business ProcesuUfion
Language for Web Services, October 2005.

R. Maraoui, M. Graiet, M. Kmimech, M.T. Bhiri, and.
Elayeb, “ Formalisation of protocol mediatioror f web
service composition with ACME/ARMANI ADL,” Serge
Computation IARIA 2010-Lisbon-Portugal, Novembed1P.

F. Budinsky, D. Steinberg, and R. Ellersick, “Eskp
Modelling Framework : A developer's Guide,” Addison
Wesly Professional, 2003.

Business d&ss

[13]

(14]

(15]

[16]

the ProfileUML

446

