
An Automated Translation of UML Class Diagrams into a Formal Specification to

Detect UML Inconsistencies

Khadija El Miloudi Younès El Amrani Aziz Ettouhami

Laboratoire Conception et Systèmes FSR

University MohamedV-Agdal

BP 1014 RP Rabat. Morocco

{elmiloudi,elamrani,touhami}@fsr.ac.ma

Abstract— In view of the informal semantic of UML, there is a

high risk of introducing ambiguities and contradictions in the

modelled software. A considerable amount of literature has

been published on UML inconsistencies. These studies have

demonstrated the absence of any rule in UML to prevent such

inconsistencies from being introduced in UML designs. This

article describes a systematic translation of UML Class

Diagrams into a formal specification to uncover most of the

UML inconsistencies published to date. Examples of

inconsistent UML class diagrams presented in previous

research studies were used to validate the approach. The

formal model obtained from UML class diagrams helped to

uncover inconsistencies without any further proof. In order to

relieve the user from writing a much rigorous and precise

formalism, a tool that automatically generates the formal

model from the UML class diagram was developed.

Keywords- Z; UML; UML inconsistencies; Formal

Specification; Software Model Checking.

I. INTRODUCTION

There are numerous off-the-shelf software proposing to
automatically translate UML Class Diagrams into several
implementations. Nonetheless, there are very few
translations into a formal notation to detect UML
inconsistencies. Therefore, UML inconsistencies are
insidiously injected into any generated implementation,
when not removed. According to a definition provided in [7],
inconsistency “denotes any situation in which a set of
descriptions does not obey some relationship that should
hold between them”. This paper will use this definition to
identify most of contradictions in UML class diagram using
Z notation [1]. The Z notation was chosen for the various
benefits that it offers. Hall [5] [6] identifies several
advantages of formal methods and concluded that they
“contributes to demonstrably cost-effective development of
software with very low defect rates”. This study makes use
of Anthony Hall’s model [2] [4] of specification and
interpretation of class hierarchies to express UML [2] class
diagram in Z [1]. The obtained model uncovers
inconsistencies of a given UML class diagram. We selected
Anthony Hall’s model because it is referenced by most of
works published to date and it models all needed concepts
for the inconsistencies studied, namely: class hierarchy,
multiplicity and association between classes. A prototype
was devised to automatically generate formal specifications

based on Anthony Hall’s model [2] [4]. All presented
examples were automatically generated then type-checked
with Z/EVES [13].

The structure of the rest of this paper is as follows. In
Section 2, we present the related work. Section 3 provides a
summary of Z notation [1] used in this paper. Section 4
summarizes Anthony Hall’s model [2] [4]. Section 5
illustrates how UML [2] inconsistencies identified in
published previous studies are uncovered in Z [1]. Section 6
draws some conclusions and future works.

II. RELATED WORK

There are several researches that are closely related to
our work. A method for the automatic detection of the
contradictions in UML Class Diagram has been introduced
in [10]. Two kinds of inconsistencies were detected:
contradictory multiplicities and the disjoint constraint
violation. A semantic of UML in terms of first order logic
was used to translate the class diagram into a program in
logic. Our work inspires by this approach and chooses to
formalize all the UML class model into the Z notation, both
contradictions studied in [10] trivially surfaced. The strength
of our approach takes root into the simplicity and elegance of
Anthony Hall’s class hierarchies model. Also, the use of the
Z notation made it possible to foster the Z/EVES [13] system
for future investigations of the UML design robustness and
to automatically process the model.

In [8], a definition of a production system language and
rules specific to UML software designs is proposed. The
system aims at detecting inconsistencies, notifying users and
automatically fixing the inconsistency during the design
process. The production system uses the Jess rule Engine
 [15]. In our approach, we use the Z notation [1] based upon
set theory and mathematical logic. In the generated model,
an inconsistency appears as two inconsistent predicates as it
will be illustrated in Section 5. Our approach provides more
visibility on the generated predicates, which enables further
investigations on the software correctness. In the same
context, the RoZ tool [11] has been developed to
automatically generate formal specifications from UML
class diagram. The UML design is completed by annotations
in Z. However, this tool is different from ours, on the one
hand, RoZ does not tackle inconsistency detection in UML
class diagram. On the other hand, this tool requires the

432

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

designers to annotate in Z the UML class diagram to proceed
with the generation of specifications, hence, the tool RoZ
 [11] requires Z specification at the UML stage, whereas in
our method, we generate a complete translation of UML
class diagram without any preliminary Z annotations. In our
approach the separation of UML and Z allows to work on
UML designs provided by software engineers without Z
knowledge. When the model is generated, it offers the choice
between an automatic processing to detect inconsistencies or
a human static checking by a Z literate for further
investigations.

In [16] and [17], a formal representation of UML models
is proposed. The formal specification obtained is used to
express and check some properties, called conjectures, on the
model. Whereas in our approach we check the structural
inconsistencies of a UML Class Diagram in general,
focusing on generalization and multiplicities.

III. SUMMARY OF Z NOTATION

Z [1] is a formal specification language created by J.R.
Abrial based upon set theory and mathematical logic. In Z
notation, a specification uses the notion of schema to
structure the underlying mathematics and allow an easy
reuse of its subparts. According to [12], a schema is a
“structure describing some variables whose values are
constrained in some way”. A schema consists of two parts:
the declaration part which contains the declaration of state
variables and the predicate part which consists in a set of
predicates constraining the variable state values. These
predicates express properties on the state variables and
introduce relationships between them. The name of the Z
schema enables its re-use. A Z schema may be used or re-
used as a declaration, a type or a predicate. When the
specification requires a composite type, a schema is used to
denote it. For example, the following schema denotes the
type Rider, which is composed of four state variables with
their types.

 Rider

self: RIDER

name: NAME

weight: WEIGHT

skill: SKILL

At an early stage of the specifications, the new types are
introduced as given sets. New introduced types serve as basic
types in the specification. A given set is introduced between
square brackets. For example, to introduce a given set named
OBJECT, we write:

[OBJECT]
The symbol ℙ is used to denote all subsets of a set. For

example, to denote RIDER a subset of the set OBJECT we
write:

RIDER: ℙ OBJECT

Several subsets can be defined at once, for example the

following declaration

 MAN, WOMAN: RIDER

introduces two subsets of RIDER. To denote that the two

sets are disjoint we write

MAN ∩ WOMAN = ∅

It could be abbreviated to:

disjoint ‹ MAN, WOMAN ›

To denote a partial function named idRider from RIDER

to Rider we write:

 idRider: RIDER ß Rider

dom idRider denotes the domain of the partial function

idRider, and ran idRider denotes its range. We can also

define a function by set comprehension, example:

 idRider={rider : Rider • rider.self å rider }
The function idRider is the set of all mappings rider.self

å rider.

We can also define a function using lambda notation which

is: (λ declaration | constraint • result)

For example, the relation f on the set of natural numbers ℕ

associates to each natural number m, the unique number

2*m+1 as follow:

f : ℕ↔ℕ

f = (lm:ℕ •2*m+1)

IV. UML CONSTRUCTS IN Z

In order to detect inconsistencies, a formal translation of

UML constructs is used. The Z notation is the selected

formal notation. The translation must meet a published

model widely referenced. The model used is Anthony Hall’s

 [2] [4]. The most needed constructs are the class construct

and the generalization relationship. The model is presented

through the example of the riding school from [4] illustrated

in Figure 1.

Figure 1. A Riding School UML Class Diagram

433

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

In Object-oriented modeling, a class describes the state

and behavior of the class objects. The objects of a class are

also called the class instances. The set of all object identities

in Anthony Hall’s model is introduced as the given set

[OBJECT]. To model the set of all classes we introduce the

given set [CLASS]. A class is a particular member of

CLASS. In the example of the riding school, the UML rider

class is translated into a schema containing the attributes

and their types. An attribute self represents the identifier of

the current instance. The name of the schema in Z is the

concatenation of name of the class with the text

‘CoreClass’. Then a free type, with the same name as the

class, is defined. It adds an optional nil value to be used in

initializations.

In our example, a schema called SRider represents all

instances of the class. The state variable riders represents

the set of the riders identified by the system. The state

variable ridersIds is the set of their identities. A function

idRider binds each unique instance identifier to the

corresponding rider.

ÆRIDER: P OBJECT

 RiderCoreClass

self: RIDER

name: Name

weight: Weight

skill: Skill

Rider ::= nilRider| ridercoreclasstoriderœRiderCoreClass∑

 SRider

riders: P Rider

idRider: RIDER ß Rider

riderIds: P RIDER

idRider

 = { ridercoreclass: RiderCoreClass

• ridercoreclass.self å ridercoreclasstorider

ridercoreclass }
riderIds = dom idRider

An initialization schema is generated for each class to

indicate the initial value of each attribute. Two types of

initialization are proposed: an initialization by default which

allows assigning nil values defined above to all attributes

and the second method is used to initialize the attributes

with values provided by the user.

 InitRiderCoreClassByDefault

RiderCoreClass'

name' = nilName

weight' = nilWeight

skill' = nilSkill

 InitRiderCoreClassWithValues

RiderCoreClass'

name?: Name

weight?: Weight

skill?: Skill

name' = name?

weight' = weight?

skill' = skill?

The following example illustrates the way to formalize a

method using the Z notation. Each method is translated into

an operation schema. Each operation includes a schema that

indicates whether the system state will be changed (RiderOp

below) or remains unchanged (RiderGet below). This

schema also guarantees us that the object identifier (self)

remains unchanged.

Since the formal model is automatically generated from

the UML Class Diagram, only the method signature is

defined (ChangeNameRider below).

 RiderOp

∆RiderCoreClass

self' = self

 RiderGet

ΞRiderCoreClass

self' = self

 changeNameRider

RiderOp

name?: Name

In Object-oriented programming, the setters/getters

methods are often used. The setter method takes a new value

as an input parameter to modify the private attribute. The

getter method returns the value of the private attribute. In

our tool, the getters/setters methods are automatically

generated for each class.

 setskillRider

RiderOp

skill?: Skill

434

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

RsetskillRider: Skill f Rider f Rider

RsetskillRider= { skill: Skill

 • skillå { setskillRider | skill? = skill

• (ridercoreclasstorider θ RiderCoreClass

å ridercoreclasstorider θ RiderCoreClass') } }

 setskillRiderSystem

∆SRider

rider?: RIDER

skill?: Skill

idRider' = idRider ± ({rider?} r idRider ;
RsetskillRider skill?)

 getskillRider

RiderGet

skill!: Skill

skill! = skill

The example below illustrates the transformation rule of

the inheritance relationship between Teacher Class that

inherits from Rider Class. The inheritance relationship

between two classes is translated into Z by the inclusion of

the schema of the super-class in the declaration part of the

schema of subclass. In any inheritance relationship, the set

of object identities of the subclass is a subset of the object

identities of the super-class. To express this relationship, we

define the schema called RiderTeacherHierarchy. The

lambda function (λ Teacher • θ Rider) used in the predicate

part of RiderTeacherHierarchy denotes the projection

function from Teacher state to Rider state.

Figure 2. Example of Inheritance Relationship

 TeacherCoreClass

RiderCoreClass

qualification: Skill

self e TEACHER

Teacher ::= nilTeacher

| teachercoreclasstoteacher œTeacherCoreClass∑

 STeacher

teachers: P Teacher

idTeacher: TEACHER ß Teacher

teacherIds: P TEACHER

idTeacher

 = { teachercoreclass: TeacherCoreClass

 • teachercoreclass.self

 å teachercoreclasstoteacher teachercoreclass }
teacherIds = dom idTeacher

 RiderTeacherHierarchy

SRider

STeacher

teacherIds = riderIds I TEACHER

A t: teacherIds

 • (l TeacherCoreClass• θ RiderCoreClass)

(teachercoreclasstoteacher
~
 (idTeacher t))

 = ridercoreclasstorider
~
 (idRider t)

To get an overview of all classes of the system and
relationships that bring them together, the schema System is
introduced.

 System

SRider

Steacher

RiderTeacherHierarchy

This model is used in Section 5 to illustrate how common
UML inconsistencies [9] [10] are translated into inconsistent
predicates.

V. UML INCONSISTENCIES IN Z

In this section, a formalization of UML inconsistencies is
presented using Z Notation. This formalization is based on
the model presented in Section 4. Each inconsistency is
presented through an illustrative example previously
published.

A. Generalization and Disjointness

In a UML Class Diagram, the disjoint constraint means

that an instance of the super-type may not be a member of

more than one sub-type, it is denoted in UML between

brackets near the inheritance arrow, i.e., multiple inheritance

of disjoint classes is forbidden. The example studied in the

papers [9] [10] and illustrated in Figure 3. shows a diagram

where {disjoint} constraint is violated.

435

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 3. Inconsistent Class Diagram

The formalization of disjointness is given by the inclusion

of a predicate which guarantees the disjointness of classes

mentioned with the constraint {disjoint}.

 System

Sclass1

Sclass3

Sclass2

Sclass4

class3class1Hierarchy

class2class1Hierarchy

class4class2Hierarchy

class4class3Hierarchy

disjoint ‹ class2Ids , class3Ids›

The predicate disjoint‹class2Ids , class3Ids› is equivalent

to the predicate:

class2Ids ∩ class3Ids = ∅ (1)

The constraints

(class1Ids = class2Ids ∩ CLASS1) ∧ (class1Ids = class3Ids

∩ CLASS1) (2)

are introduced in the schema System from

class2class1Hierarchy and class3class1Hierarchy.

(1) And (2) implies that class1Ids = ∅ (3)

If class1 is instantiated then class1Ids ≠∅, hence the

inconsistency.

To check the consistency of the specification, a

disjointness theorem is generated when a disjoint property is

reported on the UML model.

theorem disjointness

 E Sclass1 | class1Ids Î 0 • System

If the theorem cannot be proved, then the System is

inconsistent.

B. Completeness and Disjointness

We found also in the UML class diagram the {complete}

constraint.

The {complete} constraint means that each instance of

the super-type must be a member of one of the sub-types.

Here is an example from [9].

Figure 4. Inconsistent Class Diagram

The {complete} constraint used in the Figure 4. imposes

on the class5 to be specialized either as class2 or class3.

The completeness constraint is translated by the following

predicate in the system schema:

class5Ids = class2Ids U class3Ids

This predicate expresses that all instances of class5

belong either to class2 or class3. The system obtained is:

 System

Sclass1

Sclass2

Sclass3

Sclass4

Sclass5

class4class1Hierarchy

class4class2Hierarchy

class4class3Hierarchy

class5class1Hierarchy

class5class2Hierarchy

class5class3Hierarchy

disjoint „class1Ids, class2Ids, class3Ids
class5Ids = class2Ids U class3Ids

On the one hand in the final schema System, the predicate

disjoint „class1Ids, class2Ids, class3Ids
translates the disjoint constraint in UML and the predicate

class5Ids = class2Ids U class3Ids

translates the complete constraint in UML.

436

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

On the other hand, the generalization between class1 and

class5 is translated into the following predicates:

class1Ids = class5Ids ∩ CLASS1 from the schema

class5class1Hierarchy.

where class5Ids: ℙ CLASS5 from the schema Sclass5.

Therefore class1Ids ⊆ CLASS5 ∩ CLASS1 implies that

class1Ids = ∅.
If class1 is instantiated, then class1Ids ≠ ∅. Hence the

inconsistency.

The following theorem is used to check the consistency of

the schema System when using disjoint and complete

constraints simultaneously.

theorem completeness

 E Sclass1 | class1Ids Î 0 • System

In the same way, it detects when there is no such a System.

C. Multiplicities

Consider the following class diagram used in the article

 [9] [10] representing a multiple inheritance:

Figure 5. Inconsistent Class Diagram

In this example, we have three classes named class1,

class2 and class3. Class1 inherits from both class2 and

class3. The multiplicity of an attribute indicates the number

of values that attribute can contain. In the example, class2

has an attribute with a multiplicity maximum of 4 and

minimum of 1, class3 has an attribute with the same name

but different bounds: the multiplicity maximum is 8 and

minimum is 5.

The following schema illustrates the multiplicity

formalization:

 class2

self: CLASS2

a: Pℤ

1 ¯ # a ¯ 4

 class3

self: CLASS3

a: ℙℤ

5 ¯ # a ¯ 8

We use Anthony Hall’s modelling [2] [4] summarized in

Section 4 to represent the inheritance relationship. We

include the schema of the super-class in the declaration part

of the schema of subclass. In this example, we have a

multiple inheritance. class1 is represented by the following

schema:

 class1

class3

class2

self e CLASS1

In Z, the introduction of a schema S1 into another
schema S2 introduces all the state variables and predicates of
S1 into S2. In this example, the inconsistency is immediately
detected in Z because class1 inherit two attributes with the
same name from two different super-classes class2 and
class3. The Z/EVES [13] immediately uncovers such a
redundant declaration. Even if we keep only one declaration
in the variable part of the schema, the two predicates remain
inconsistent. It is worth saying here that the UML standard
 [2] is ambiguous in the case of multiple inheritance of the
same attribute. Therefore, it is up to the designer to provide a
semantic in that case.

VI. CONCLUSION AND FUTURE WORK

A. Concluding Remarks

This article illustrated most frequent UML
inconsistencies published so far using Anthony Hall’s model
 [2] [4] most of these are translated into contradictory
predicates. In some ambiguous cases, UML must be
supplemented by an additional formal semantic. Typically
UML lacks a semantic for multiple inheritance of attributes
with the same name. A prototype has been developed to
automatically translate UML designs into their formal
counterpart. The Z notation makes the formal translation of
the design particularly suitable for further investigation in Z.

B. Future Work

There are two ways to build on this work. First we are
developing an automated and interactive verifier of the
inconsistencies using Z/EVES [13] meanwhile a
formalization of the Object Constraint Language is prepared
in order to translate UML Class Diagrams using OCL [14]
into a more precise Z counterpart. The current prototype is
completed to automatically generate formal specifications
from UML Class diagrams annotated by OCL constraints.

REFERENCES

[1] J. M. Spivey: The Z Notation: A Reference Manual, Prentice
Hall, Englewood Cliffs, NJ, Second Edition, 1992.

[2] Object Management Group (OMG). Unified Modeling
Language: Superstructure. Version 2.3, May 2010.
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/.
Sept 11, 2011.

437

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[3] A. Hall, “Using Z as a Specification Calculus for Object-
Oriented Systems”. In Bjorner D, Langmaack H (eds),
Proceedings of VDM 90, Lecture Notes in Computer Science
No. 428, pp. 290 - 318. Springer Verlag, 1990.

[4] A. Hall, “Specifying and Interpreting Class Hierarchies in Z”,
Z User Workshop, Cambridge 1994, ed. J. P. Bowen and J.
A. Hall, Springer, 1994.

[5] A. Hall, “Realising the Benefits of Formal Methods”, Formal
Methods and Software Engineering, LNCS 3785, Springer,
pp. 1-4, 2005.

[6] A. Hall, “Seven Myths of Formal Methods”, IEEE Software,
September 1990, pp. 11-19.

[7] B. Nuseibeh, S. Easterbrook and A. Russo, “Leveraging
Inconsistency in Software Development”. IEEE Computer,
vol. 33, pp. 24–29, April, 2000.

[8] W. Liu, S. Easterbrook and J. Mylopoulos: Rule-based
Detection of Inconsistency in UML Models; Proc. Workshop
on Consistency Problems in UML-Based Software
Development, pp. 106-123, 2002.

[9] K. Kaneiwa and S. Satoh, “Consistency Checking
Algorithms for Restricted UML Class Diagrams”. In
Proceedings of the Fourth International Symposium on
Foundations of Information and Knowledge Systems, vol.
3861, pp.219-239, 2006.

[10] K. Satoh, K. Kaneiwa and T. Uno, “Contradiction Finding
and Minimal Recovery for UML Class Diagrams using Logic
Programming”. Proceeding of 21st IEEE International
Conference on Automated Software Engineering (ASE’2006),
pp. 277-280, 2006.

[11] Yves Ledru. RoZ tool. 22 february 2000.
http://vasco.imag.fr/RoZ/index.html. Sept 11, 2011.

[12] Jim Woodcock and Jim Davies.: Using Z Specification,
Refinement, and Proof. University of Oxford, 1995.

[13] Irwin Meisels. Software Manual for Windows Z/EVES
Version 2.3. ORA Canada Technical Report TR-97-5505-04h,
June 2004.

[14] Object Management Group (OMG). Object Constraint
Language. Version 2.2, February 2010.
http://www.omg.org/spec/OCL/2.2/PDF/. Sept 11, 2011.

[15] Jess, the Rule Engine for the JavaTM Platform.
http://www.jessrules.com/. Sept 11, 2011.

[16] N. Amalio, F. Polack and S. Stepney. “UML + Z: UML
augmented with Z”. In Software Specification Methods: an
Overview Using a Case Study. Marc Frappier and Henri
Habrias, editor. Hermes Science Publishing. 2006.

[17] N. Amalio, S. Stepney and F. Polack, “Formal Proof from
UML Models”. In et al, J. D.,ed., ICFEM 2004, volume 3308
of LNCS, pp. 418–433. Springer .2004.

438

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

