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Abstract— In view of the informal semantic of UML, there is a 

high risk of introducing ambiguities and contradictions in the 

modelled software. A considerable amount of literature has 

been published on UML inconsistencies. These studies have 

demonstrated the absence of any rule in UML to prevent such 

inconsistencies from being introduced in UML designs. This 

article describes a systematic translation of UML Class 

Diagrams into a formal specification to uncover most of the 

UML inconsistencies published to date. Examples of 

inconsistent UML class diagrams presented in previous 

research studies were used to validate the approach. The 

formal model obtained from UML class diagrams helped to 

uncover inconsistencies without any further proof. In order to 

relieve the user from writing a much rigorous and precise 

formalism, a tool that automatically generates the formal 

model from the UML class diagram was developed.  

Keywords- Z; UML; UML inconsistencies; Formal 

Specification; Software Model Checking.  

I.  INTRODUCTION 

There are numerous off-the-shelf software proposing to 
automatically translate UML Class Diagrams into several 
implementations. Nonetheless, there are very few 
translations into a formal notation to detect UML 
inconsistencies. Therefore, UML inconsistencies are 
insidiously injected into any generated implementation, 
when not removed. According to a definition provided in  [7], 
inconsistency “denotes any situation in which a set of 
descriptions does not obey some relationship that should 
hold between them”. This paper will use this definition to 
identify most of contradictions in UML class diagram using 
Z notation  [1]. The Z notation was chosen for the various 
benefits that it offers. Hall  [5] [6] identifies several 
advantages of formal methods and concluded that they 
“contributes to demonstrably cost-effective development of 
software with very low defect rates”. This study makes use 
of Anthony Hall’s model  [2] [4] of specification and 
interpretation of class hierarchies to express UML  [2] class 
diagram in Z  [1]. The obtained model uncovers 
inconsistencies of a given UML class diagram. We selected 
Anthony Hall’s model because it is referenced by most of 
works published to date and it models all needed concepts 
for the inconsistencies studied, namely: class hierarchy, 
multiplicity and association between classes. A prototype 
was devised to automatically generate formal specifications 

based on Anthony Hall’s model  [2] [4]. All presented 
examples were automatically generated then type-checked 
with Z/EVES  [13]. 

The structure of the rest of this paper is as follows. In 
Section 2, we present the related work. Section 3 provides a 
summary of Z notation  [1] used in this paper. Section 4 
summarizes Anthony Hall’s model  [2] [4]. Section 5 
illustrates how UML  [2] inconsistencies identified in 
published previous studies are uncovered in Z  [1]. Section 6 
draws some conclusions and future works. 

 

II. RELATED WORK 

There are several researches that are closely related to 
our work. A method for the automatic detection of the 
contradictions in UML Class Diagram has been introduced 
in  [10]. Two kinds of inconsistencies were detected: 
contradictory multiplicities and the disjoint constraint 
violation.  A semantic of UML in terms of first order logic 
was used to translate the class diagram into a program in 
logic. Our work inspires by this approach and chooses to 
formalize all the UML class model into the Z notation, both 
contradictions studied in  [10] trivially surfaced. The strength 
of our approach takes root into the simplicity and elegance of 
Anthony Hall’s class hierarchies model. Also, the use of the 
Z notation made it possible to foster the Z/EVES  [13] system 
for future investigations of the UML design robustness and 
to automatically process the model. 

In  [8], a definition of a production system language and 
rules specific to UML software designs is proposed. The 
system aims at detecting inconsistencies, notifying users and 
automatically fixing the inconsistency during the design 
process. The production system uses the Jess rule Engine 
 [15]. In our approach, we use the Z notation  [1] based upon 
set theory and mathematical logic. In the generated model, 
an inconsistency appears as two inconsistent predicates as it 
will be illustrated in Section 5. Our approach provides more 
visibility on the generated predicates, which enables further 
investigations on the software correctness. In the same 
context, the RoZ tool  [11] has been developed to 
automatically generate formal specifications from UML 
class diagram. The UML design is completed by annotations 
in Z. However, this tool is different from ours, on the one 
hand, RoZ does not tackle inconsistency detection in UML 
class diagram. On the other hand, this tool requires the 
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designers to annotate in Z the UML class diagram to proceed 
with the generation of specifications, hence, the tool RoZ 
 [11] requires Z specification at the UML stage, whereas in 
our method, we generate a complete translation of UML 
class diagram without any preliminary Z annotations. In our 
approach the separation of UML and Z allows to work on 
UML designs provided by software engineers without Z 
knowledge. When the model is generated, it offers the choice 
between an automatic processing to detect inconsistencies or 
a human static checking by a Z literate for further 
investigations. 

In  [16] and  [17], a formal representation of UML models 
is proposed. The formal specification obtained is used to 
express and check some properties, called conjectures, on the 
model. Whereas in our approach we check the structural 
inconsistencies of a UML Class Diagram in general, 
focusing on generalization and multiplicities. 

III. SUMMARY OF Z NOTATION 

Z  [1] is a formal specification language created by J.R. 
Abrial based upon set theory and mathematical logic. In Z 
notation, a specification uses the notion of schema to 
structure the underlying mathematics and allow an easy 
reuse of its subparts. According to  [12], a schema is a 
“structure describing some variables whose values are 
constrained in some way”. A schema consists of two parts: 
the declaration part which contains the declaration of state 
variables and the predicate part which consists in a set of 
predicates constraining the variable state values. These 
predicates express properties on the state variables and 
introduce relationships between them. The name of the Z 
schema enables its re-use. A Z schema may be used or re-
used as a declaration, a type or a predicate. When the 
specification requires a composite type, a schema is used to 
denote it. For example, the following schema denotes the 
type Rider, which is composed of four state variables with 
their types. 

 Rider  

self: RIDER 

name: NAME 

weight: WEIGHT 

skill: SKILL 
 

At an early stage of the specifications, the new types are 
introduced as given sets. New introduced types serve as basic 
types in the specification. A given set is introduced between 
square brackets. For example, to introduce a given set named 
OBJECT, we write: 

[OBJECT]   
The symbol ℙ is used to denote all subsets of a set. For 

example, to denote RIDER a subset of the set OBJECT we 
write: 

RIDER:   ℙ OBJECT 

Several subsets can be defined at once, for example the 

following declaration 

 MAN, WOMAN: RIDER 

introduces two subsets of RIDER. To denote that the two 

sets are disjoint we write 

MAN ∩ WOMAN = ∅ 

It could be abbreviated to: 

disjoint ‹ MAN, WOMAN › 

To denote a partial function named idRider from RIDER 

to Rider we write: 

 idRider: RIDER ß Rider 

dom idRider denotes the domain of the partial function 

idRider, and ran idRider denotes its range. We can also 

define a function by set comprehension, example: 

 idRider={rider : Rider • rider.self å rider } 
The function idRider is the set of all mappings rider.self 

å rider.  

We can also define a function using lambda notation which 

is: ( λ declaration | constraint • result ) 

For example, the relation f on the set of natural numbers ℕ 

associates to each natural number m, the unique number 

2*m+1 as follow: 

f : ℕ↔ℕ 
 

f = ( lm:ℕ •2*m+1) 

IV. UML CONSTRUCTS IN Z 

In order to detect inconsistencies, a formal translation of 

UML constructs is used. The Z notation is the selected 

formal notation. The translation must meet a published 

model widely referenced. The model used is Anthony Hall’s 

 [2] [4]. The most needed constructs are the class construct 

and the generalization relationship. The model is presented 

through the example of the riding school from  [4] illustrated 

in  Figure 1.  

 

 

Figure 1.  A Riding School UML Class Diagram 
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In Object-oriented modeling, a class describes the state 

and behavior of the class objects. The objects of a class are 

also called the class instances. The set of all object identities 

in Anthony Hall’s model is introduced as the given set 

[OBJECT]. To model the set of all classes we introduce the 

given set [CLASS]. A class is a particular member of 

CLASS. In the example of the riding school, the UML rider 

class is translated into a schema containing the attributes 

and their types. An attribute self represents the identifier of 

the current instance. The name of the schema in Z is the 

concatenation of name of the class with the text 

‘CoreClass’. Then a free type, with the same name as the 

class, is defined. It adds an optional nil value to be used in 

initializations. 

In our example, a schema called SRider represents all 

instances of the class. The state variable riders represents 

the set of the riders identified by the system. The state 

variable ridersIds is the set of their identities. A function 

idRider binds each unique instance identifier to the 

corresponding rider. 

 

ÆRIDER: P OBJECT 

 RiderCoreClass  

self: RIDER 

name: Name 

weight: Weight 

skill: Skill 
 

Rider ::= nilRider| ridercoreclasstoriderœRiderCoreClass∑ 

 SRider  

riders: P Rider 

idRider: RIDER ß Rider 

riderIds: P RIDER 
 

idRider 

  = { ridercoreclass: RiderCoreClass                                                 

• ridercoreclass.self å ridercoreclasstorider                                            

ridercoreclass } 
riderIds = dom idRider 
 

An initialization schema is generated for each class to 

indicate the initial value of each attribute. Two types of 

initialization are proposed: an initialization by default which 

allows assigning nil values defined above to all attributes 

and the second method is used to initialize the attributes 

with values provided by the user. 

 InitRiderCoreClassByDefault  

RiderCoreClass' 
 

name' = nilName 

weight' = nilWeight 

skill' = nilSkill 
 

 InitRiderCoreClassWithValues  

RiderCoreClass' 

name?: Name 

weight?: Weight 

skill?: Skill 
 

name' = name? 

weight' = weight? 

skill' = skill? 
 

The following example illustrates the way to formalize a 

method using the Z notation. Each method is translated into 

an operation schema. Each operation includes a schema that 

indicates whether the system state will be changed (RiderOp 

below) or remains unchanged (RiderGet below). This 

schema also guarantees us that the object identifier (self) 

remains unchanged. 

Since the formal model is automatically generated from 

the UML Class Diagram, only the method signature is 

defined (ChangeNameRider below). 

 RiderOp  

∆RiderCoreClass 
 

self' = self 
 

 RiderGet  

ΞRiderCoreClass 
 

self' = self 
 

 changeNameRider  

RiderOp 

name?: Name 
 

In Object-oriented programming, the setters/getters 

methods are often used. The setter method takes a new value 

as an input parameter to modify the private attribute. The 

getter method returns the value of the private attribute. In 

our tool, the getters/setters methods are automatically 

generated for each class. 

 setskillRider  

RiderOp 

skill?: Skill 
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RsetskillRider: Skill f Rider f Rider 
 

RsetskillRider= {  skill: Skill 

      • skillå {  setskillRider | skill? = skill                                  

• (ridercoreclasstorider θ RiderCoreClass                                                                            

å ridercoreclasstorider θ RiderCoreClass') } } 
 

 setskillRiderSystem  

∆SRider 

rider?: RIDER 

skill?: Skill 
 

idRider' = idRider ± ({rider?} r idRider ;                                                                            
RsetskillRider skill?) 
 

 getskillRider  

RiderGet 

skill!: Skill 
 

skill! = skill 
 

The example below illustrates the transformation rule of 

the inheritance relationship between Teacher Class that 

inherits from Rider Class. The inheritance relationship 

between two classes is translated into Z by the inclusion of 

the schema of the super-class in the declaration part of the 

schema of subclass. In any inheritance relationship, the set 

of object identities of the subclass is a subset of the object 

identities of the super-class. To express this relationship, we 

define the schema called RiderTeacherHierarchy. The 

lambda function (λ Teacher • θ Rider) used in the predicate 

part of RiderTeacherHierarchy denotes the projection 

function from Teacher state to Rider state.   

 

Figure 2.  Example of Inheritance Relationship 

 TeacherCoreClass  

RiderCoreClass 

qualification: Skill 
 

self e TEACHER 
 

Teacher ::= nilTeacher                      

| teachercoreclasstoteacher œTeacherCoreClass∑ 
 

 STeacher  

teachers: P Teacher 

idTeacher: TEACHER ß Teacher 

teacherIds: P TEACHER 
 

idTeacher 

  = {  teachercoreclass: TeacherCoreClass 

        • teachercoreclass.self 

        å teachercoreclasstoteacher teachercoreclass } 
teacherIds = dom idTeacher 
 

 RiderTeacherHierarchy  

SRider 

STeacher 
 

teacherIds = riderIds I TEACHER 

A t: teacherIds 

 • (l TeacherCoreClass• θ RiderCoreClass)              

(teachercoreclasstoteacher 
~
 (idTeacher t)) 

 = ridercoreclasstorider 
~
 (idRider t) 

 

To get an overview of all classes of the system and 
relationships that bring them together, the schema System is 
introduced. 

 System  

SRider 

Steacher 

RiderTeacherHierarchy 
 

This model is used in Section 5 to illustrate how common 
UML inconsistencies  [9] [10] are translated into inconsistent 
predicates. 

V. UML INCONSISTENCIES IN Z 

In this section, a formalization of UML inconsistencies is 
presented using Z Notation. This formalization is based on 
the model presented in Section 4. Each inconsistency is 
presented through an illustrative example previously 
published.  

A. Generalization and Disjointness 

In a UML Class Diagram, the disjoint constraint means 

that an instance of the super-type may not be a member of 

more than one sub-type, it is denoted in UML between 

brackets near the inheritance arrow, i.e., multiple inheritance 

of disjoint classes is forbidden. The example studied in the 

papers  [9] [10] and illustrated in  Figure 3. shows a diagram 

where {disjoint} constraint is violated. 
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Figure 3.  Inconsistent Class Diagram 

The formalization of disjointness is given by the inclusion 

of a predicate which guarantees the disjointness of classes 

mentioned with the constraint {disjoint}.  

 System  

Sclass1 

Sclass3 

Sclass2 

Sclass4 

class3class1Hierarchy 

class2class1Hierarchy 

class4class2Hierarchy 

class4class3Hierarchy 
 

disjoint ‹ class2Ids , class3Ids› 
 

The predicate disjoint‹class2Ids , class3Ids› is equivalent 

to the predicate:  

class2Ids ∩ class3Ids = ∅  (1) 

The constraints  

(class1Ids = class2Ids ∩ CLASS1) ∧ (class1Ids = class3Ids 

∩ CLASS1)  (2) 

are introduced in the schema System from 

class2class1Hierarchy and  class3class1Hierarchy.  

(1) And (2) implies that class1Ids = ∅ (3) 

If class1 is instantiated then class1Ids ≠∅, hence the 

inconsistency.   

To check the consistency of the specification, a 

disjointness theorem is generated when a disjoint property is 

reported on the UML model. 

theorem disjointness 

   E Sclass1 | class1Ids Î 0 • System 

If the theorem cannot be proved, then the System is 

inconsistent. 

B. Completeness and Disjointness 

We found also in the UML class diagram the {complete} 

constraint. 

The {complete} constraint means that each instance of 

the super-type must be a member of one of the sub-types. 

Here is an example from  [9]. 

 
Figure 4.  Inconsistent Class Diagram 

 

The {complete} constraint used in the  Figure 4. imposes 

on the class5 to be specialized either as class2 or class3. 

The completeness constraint is translated by the following 

predicate in the system schema: 

class5Ids = class2Ids U class3Ids 

This predicate expresses that all instances of class5 

belong either to class2 or class3. The system obtained is: 

 System  

Sclass1 

Sclass2 

Sclass3 

Sclass4 

Sclass5 

class4class1Hierarchy 

class4class2Hierarchy 

class4class3Hierarchy 

class5class1Hierarchy 

class5class2Hierarchy 

class5class3Hierarchy 
 

disjoint „class1Ids, class2Ids, class3Ids 
class5Ids = class2Ids U class3Ids 
 

On the one hand in the final schema System, the predicate  

disjoint „class1Ids, class2Ids, class3Ids  
translates the disjoint constraint in UML and the predicate 

class5Ids = class2Ids U class3Ids 

translates the complete constraint in UML.  
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On the other hand, the generalization between class1 and 

class5 is translated into the following predicates:  

class1Ids = class5Ids ∩ CLASS1 from the schema 

class5class1Hierarchy. 

where class5Ids: ℙ CLASS5 from the schema Sclass5. 

Therefore class1Ids ⊆  CLASS5 ∩ CLASS1 implies that 

class1Ids = ∅. 
If class1 is instantiated, then class1Ids ≠ ∅. Hence the 

inconsistency.  

The following theorem is used to check the consistency of 

the schema System when using disjoint and complete 

constraints simultaneously. 

theorem completeness 

   E Sclass1 | class1Ids Î 0 • System 

In the same way, it detects when there is no such a System. 

C. Multiplicities 

Consider the following class diagram used in the article 

 [9] [10] representing a multiple inheritance: 

 

Figure 5.  Inconsistent Class Diagram 

In this example, we have three classes named class1, 

class2 and class3. Class1 inherits from both class2 and 

class3. The multiplicity of an attribute indicates the number 

of values that attribute can contain. In the example, class2 

has an attribute with a multiplicity maximum of 4 and 

minimum of 1, class3 has an attribute with the same name 

but different bounds: the multiplicity maximum is 8 and 

minimum is 5.  

The following schema illustrates the multiplicity 

formalization: 

 class2  

self: CLASS2 

a: Pℤ 
 

1 ¯ # a ¯ 4 
 

 class3  

self: CLASS3 

a: ℙℤ 
 

5 ¯ # a ¯ 8 
 

We use Anthony Hall’s modelling  [2] [4] summarized in 

Section 4 to represent the inheritance relationship. We 

include the schema of the super-class in the declaration part 

of the schema of subclass. In this example, we have a 

multiple inheritance. class1 is represented by the following 

schema: 

 class1  

class3 

class2 
 

self e CLASS1 
 

In Z, the introduction of a schema S1 into another 
schema S2 introduces all the state variables and predicates of 
S1 into S2. In this example, the inconsistency is immediately 
detected in Z because class1 inherit two attributes with the 
same name from two different super-classes class2 and 
class3. The Z/EVES  [13] immediately uncovers such a 
redundant declaration.  Even if we keep only one declaration 
in the variable part of the schema, the two predicates remain 
inconsistent. It is worth saying here that the UML standard 
 [2] is ambiguous in the case of multiple inheritance of the 
same attribute. Therefore, it is up to the designer to provide a 
semantic in that case. 

VI. CONCLUSION AND FUTURE WORK 

A. Concluding Remarks 

This article illustrated most frequent UML 
inconsistencies published so far using Anthony Hall’s model 
 [2] [4] most of these are translated into contradictory 
predicates. In some ambiguous cases, UML must be 
supplemented by an additional formal semantic. Typically 
UML lacks a semantic for multiple inheritance of attributes 
with the same name. A prototype has been developed to 
automatically translate UML designs into their formal 
counterpart. The Z notation makes the formal translation of 
the design particularly suitable for further investigation in Z. 

B. Future Work 

There are two ways to build on this work. First we are 
developing an automated and interactive verifier of the 
inconsistencies using Z/EVES  [13] meanwhile a 
formalization of the Object Constraint Language is prepared 
in order to translate UML Class Diagrams using OCL  [14] 
into a more precise Z counterpart. The current prototype is 
completed to automatically generate formal specifications 
from UML Class diagrams annotated by OCL constraints. 
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