
Towards the Development of Integrated Reuse Environments for UML Artifacts

Moataz A. Ahmed

Information and Computer Science Department
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
moataz@kfupm.edu.sa

Abstract—Systematic software reuse is recognized to achieve

better software, faster and at a lower cost. The benefits of

reuse can be maximized if types of early stage software

artifacts can be easily reused. In early-stage reuse, once a

match is found, all related later stages artifacts for the match

can also be reused. However, the development of integrated

reuse environments to allow managing and reusing repositories

of early stage artifacts has not caught adequate attention of

researchers yet. In response to this problem, we propose an

approach to the development of environments integrated with

CASE tools and capable facilitating early-stage artifacts reuse.

Successful implementation of such environments is expected to

improve the software quality and developers productivity.

Keywords-early-stage artifacts; design reuse; integrated

reuse environment; similarity metrics; multi-view similarity.

I. INTRODUCTION

Systematic software reuse has clear benefits to include
reduction in overall development costs, increased reliability,
reduced process risk, effective use of specialists, standards
compliance, and accelerated development [1]. Features of
the object-oriented (OO) software development paradigm,
such as abstraction and encapsulation, encourage reuse of
software by enabling building reusable blocks of code.
However, it has been recognized for long that reuse of
early-stage artifacts are particularly more beneficial than
reuse of later-stage artifacts [10]. Types of early-stage
reusable artifacts include [2]:

Domain Models: These can be reused at the earliest
stage of the software development process, the domain
analysis stage. Very few systems exist that exploits the
reuse of artifacts at this stage. An example of such a system
is the work of Blok and Cybulski [3]. Another example is
the generic application frames in the ITHACA development
environment [4]. Yet, a more recent example can be found
in the software product lines approach, which was often
touted as a silver bullet for actualizing software reuse goals
[5][7][9].

Requirement Specifications: These artifacts can be
reused during the requirements analysis phase of the
software lifecycle [10]. An example of how a requirements
specification reuse may be assisted by a software tool is
described by Cybulski and Reed’s [11].

Design: These artifacts can be reused during the design
phase. An example of a design repository is the SPOOL
Design Repository [12]. Another example is the work of
Lee and Harandi [13].

In early-stage reuse, once a match is found, all related
later stages artifacts for the match can also be reused. For
instance, if an analysis model for a previous project is found
to match the analysis model of a current project, then the
previous project’s design, code, test data, and relevant
documentation may be reused in the current project.

Early-stage artifacts reuse, despite its clear benefits,
suffers from a few problems though. Reuse problems
include increased maintenance costs, the not-invented-here
syndrome, lack of tool support, difficulty of maintaining a
library of reusable artifacts, and the cost of locating and
adapting reusable artifacts [1].

A step towards a solution to the problems above could
be the development of effective tightly-knit tools to allow
finding and reusing exiting design artifacts and what follows
based on matching requirements specification. For maximal
utilization within the day-to-day activities, such tools should
be offered through a reuse environment integrated with
some prominent CASE tools; hence, Integrated Reuse
Environment (IRE). In this paper, we present an approach
to the development of IREs to maximize the designer’s
productivity. The approach will be focusing on reusing
Unified Modeling Language (UML) artifacts. The rationale
behind focusing on UML is that it is considered the de-facto
standard for expressing early-stage OO artifacts (e.g.,
analysis and design models) [8]. Accordingly, tools and
techniques to support reusing UML artifacts would facilitate
and encourage more early-stage reuse. However, to the best
of our knowledge, there is IREs that allow finding and
reusing exiting UML design artifacts and what follows
based on matching requirements specification.

The rest of the paper is organized as follows. Section II
presents a framework for assessing the similarity between
UML artifacts of different projects. Section III discusses
related work. Section IV lists some research questions to be
answer in future work in order to realize effective IREs.
Section V concludes the paper.

II. MULTI-VIEW UML MODELS SIMILARITY

During the requirement-analysis phase of the software
development life cycle, the system requirements are
typically modeled and analyzed from related but different
viewpoints where each view represents one aspect of the
software system to be developed. The division into
different views is arbitrary and typically includes at least
three views namely structural view, functional view, and
behavioral view [21][22][23][24], each capturing important

426

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

aspects of the system, but all required for a complete
description of the system. One or more kinds of diagrams
provide a visual notation for the concepts in each view. A
typical software procedure incorporates all three aspects
[21]. Models from different views are meant to be
compared to discover requirements that would be missed
using a single view [1][22]. Structure describes static
objects relevant to the domain in question, their
relationships, attributes and their possible states; functions
describe the input-output transformations, and behavior the
instantiation and dynamics of the transformations with time.

It is worth noting here, though, that there is a general
paucity of concepts for specifying the functionality of object
communities [22]. The UML taxonomy of diagrams
provides a logical organization for the various major kinds
of diagrams into only two major categories: structure and
behavior; with no category to represent the functional aspect
[39]. Nevertheless, use cases can be interpreted as one
means of specifying functionality, as according to Jacobson
et al. [16], they define the functionality inside the system and
constitute a specific way of using some part of this
functionality. Clearly, a use case has also a flavor of
behavior abstraction, as it is a special sequence of related
transactions in the interaction between the actor and the
system [22].

During the requirements engineering phase, the view-
points analysis technique relies on these multi-view models
where they are compared to discover requirements that
would be missed using a single view.

We propose that developing IREs to allow early-stage
OO artifacts reuse would require a framework of consistent
multi-view similarity metrics that considers similarity across
the three system views: functional view, structural view and
behavioral view. For effective reuse of available designs of
completed projects, the IRE should facilitate assessing the
combined similarity between new requirements to the
requirements of completed projects to provide closest match
so that their design counterparts can be reused with minimal
effort.

Considering UML, as the de-facto standard, we consider
Use Cases as representative of the functionality (i.e., the
services) that users require of the object oriented system.
Use cases describe the typical interactions between the users
of a system and the system itself, providing a narrative of
how a system is used. During the requirements phase of a
software project, analysts can take use cases to the next
level by providing a more formal level of refinement in a
form of sequence diagrams. Each use case is realized by
one or more sequence diagrams that depict how the objects
interact and work together to provide services. We propose
considering the development of sequence diagrams
similarity metrics in the functional view.

UML Structure diagrams show the static structure of the
objects in a system. Examples of UML structure diagrams
include the Class Diagram, Component Diagram, Object
Diagram, Deployment Diagram, Package Diagram,
Composite Structure Diagram, and the Profile Diagram.
However, most of these diagrams are mainly used during
the architecture and design phase to express artifacts at

different design levels. During the requirements
engineering phase, the static structure of the system is
mainly captured using instances of the Class Diagram and
Object Diagram. The Class Diagram shows the building
blocks of any object-oriented system: the classes that make
up a system. The potential for collaboration among these
classes, through message passing, is shown in the
relationship between these classes. Object diagrams show
instances instead of classes. They are useful for explaining
small pieces of class diagrams with complicated
relationships, especially recursive relationships. We
propose considering the development of class diagrams
similarity metrics in the structural view.

Behavior diagrams can be used at two different levels:
system level and object level. At the system level, behavior
diagrams (mainly the State Machine Diagram, which is an
object-based variant of Harel’s statecharts [39]) is used to
show the system behavior in response to user actions, as in
user interface design [38]. At the object level, they show
the dynamic behavior of the objects, including their
methods, collaborations, activities, and state histories. The
dynamic behavior of a system can be described as a series of
changes to the system over time. Examples of UML
behavior diagrams include Activity Diagram, Interaction
Diagram, and State Machine Diagram. However, most of
these diagrams are mainly used during the architecture and
design phase to express artifacts at different design phases.
During the requirements engineering phase, the system-level
behavior is if interest and mainly captured using the State
Machine Diagrams [38]. They are used to more formally
describe the flows within or between use cases. We propose
considering the development of state machine diagrams
similarity metrics in the behavioral view.

The left-hand side part of Fig. 1 shows that design reuse
is achieved by comparing the requirements of the new
system to requirements of existing systems in a repository.
The comparison is meant to assess the level of similarity. If
the level of similarity between the best matching old
requirements and the given new requirements is greater than
a given threshold, corresponding design artifacts can be
reused as a starting point for the new requirements. The
right-hand side of the figure shows that the similarity
assessment between the new and old requirements should
consider the three views (depicted as dimensions): use cases
representing the functional view, class diagrams
representing the structural view, and state machine diagrams
representing the behavioral view. It is worth noting here
that sequence diagrams are used in the view-points analysis
technique during the requirements engineering phase to
double check the consistency between the structural view
and the functional view as shown in the figure. Moreover,
as stated above, sequence diagrams can be used to provide a
more formal level of refinement of use cases. Accordingly,
sequences diagrams could be used as a better representative
of the functional view.

427

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 1. Various UML views in the context of similarity measurement.

In the sequel, we give a literature survey to identify the
technology gap and corresponding research questions.

III. RELATED WORK

Developing with reuse consists of the following
activities [15]: locating reusable artifacts (retrieval),
assessing their relevance to current needs (assessment), and
adapting them to those needs (adaptation). Locating
reusable artifacts often involves some form of comparison
of a query with candidate models in the repository. In every
search, a search space, a search goal, and a comparison
function are always defined. In software retrieval, the
search space is known as the software repository. The
search goal is called the query. The comparison function is
called a similarity metric. How well the retrieved artifacts
match the query depends on the soundness of the similarity
metric.

The following subsection presents a literature review on
reuse environments and similarity metrics.

A. Reuse Environments

Braga et al. [9] present the odyssey environment to
support reuse-based software development environment
based on component based software development. Odyssey
is a framework where conceptual models, architectural
models and implementation models are specified for pre-
selected application domains. Similarly, eColabra [14] is a
reuse environment that takes advantage of highly precise
information retrieval techniques and graph visualization
techniques to customize reuse during the classification and
retrieval stages. Furthermore, eColabra applies information
retrieval techniques to object oriented resources while
exploiting the object oriented languages semantics and
characteristics.

Correa et al. [18] present an approach to object oriented
design reuse by integrating design patterns and anti-patterns
into an object oriented design workbench. This allows the
reuse of knowledge about good and bad object oriented
design practices. Furthermore, a tool (OOPDTOOL) was
developed to support the approach.

Cybulski et al. [11] combine keyword-based and faceted
classifications of requirements and design. The keywords
are extracted from the body of requirements text and are

then translated into design terms of a faceted classification.
Facets are subsequently used to determine affinity between
requirements and design artifacts, which are used for reuse
based refinement of requirements documents. Beyer et al.
[19] present a success story in establishing an architecture-
centric approach at a small development organization. They
evolved the development organization towards systematic
reuse by introducing an architecture-centric strategy for
product development.

Recently, Martins et al. [20] have applied data mining
techniques improve the search of reusable assets. They
have applied association rules and clustering techniques to
aid the knowledge extraction. They used the concept of log
files to extract a historic pattern and facilitate the overall
search process.

COTS-aware requirement engineering (CARE) [35]
approach for component identification has the focus on the
utility of knowledge base. The goals and requirements are
specified as enterprise goals which are further sub
specialized into component goals. CARE points out the
importance to keep requirements flexible as they have to be
constrained by the capabilities of available components. In
this approach, requirements are classified as native
requirements acquired from customers and foreign
requirements of the COTS components. The method puts
emphases on narrowing the gap between customer and
component requirements by using knowledge base. The
process model describes the activities performed to define
the system agents, goals, system requirements, software
requirements and architecture. The product model describes
the format of the product created using the process. The
meta-model describes the knowledge content and structure
for the CARE approach. The method highlights the
importance of mapping system requirements and product
specification; however, it does not support the possible
mismatch between both specifications.

The COTS usage risk evaluation (CURE) [36] is a
‘front-end’ analysis tool that predicts the areas where the
use of COTS products will have the greatest impact on the
program. CURE is designed to find risks relating to the use
of COTS products and report those risks back to the
organization. Ideally, CURE is performed on both the
acquiring and the contracting organization, but this is not
necessary. The evaluation consists of four activities:
preliminary data gathering, on-site interview, analysis of
data and presentation of results. The CURE method has
proven to be a useful tool for organizations that acquire or
develop COTS-based systems. However, there are several
limitations of the current version of CURE ranging from
considerable amount of manual analytical work performed
by evaluators and training required by the evaluators.

B. Similarity Metrics

Retrieval is one of the activities in a software reuse
process, which takes in a query as input and returns
reusable artifacts (or objects of reuse) as output. Because
the goal of software retrieval is to return most similar
reusable software artifacts, we propose considering a

Design

Old

Requirements

Similarity

Functional view
(Use cases)

Behavioral view
(State machine

diagrams)

Structural view
(Class diagrams)

 Sequence

diagrams

New
Requirements

Design

428

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

framework for multi-vie similarity assessment as discussed
above.

In the sequel, we discuss related works in a
chronological order starting with the latest. We conclude
with a summary table (TBALE I) focusing on five aspects
namely artifacts considered for reuse, artifact internal
representation, criteria for matching artifacts (syntactic vs.
semantic), use of extra-artifact annotations to guide
matching, and the search algorithm used.

Ahmed [6] proposed a similarity metric to measure the
similarity of UML models from the functional view using
sequence diagrams. He used heuristic search techniques
such as Genetic and Greedy Algorithms to assess
similarities. His work did not consider consistencies with
other views though.

Rufai [2] proposed a set of structural similarity metrics
to measure the similarity in structural view for UML
models. Different metrics capture the different structural
aspects of the UML model.

William Robinson and Woo [25][26] present an
automatic technique that provides assistance for use cases
reuse. Given an initial description of the use case by
software analyst, an automated graph based relational
learner retrieves a set of similar use cases from a database.
Their work uses automated graph based relational learner
called SUBDUE. It represents an interaction diagram
(sequence diagram) which provides a semantic structure that
includes objects and methods of a use case as labeled graph
that consists of vertices and edges. It uses a structure
similarity measure to determine the distance between query
structure and the structures available in repository. The
technique does not make use of extra annotations and can be
incorporated into tools like rational rose. In their other
work, the authors have developed a CASE tool called
REUSER which uses SUBDUE algorithm to automatically
retrieve related UML sequence diagrams for reuse.

Saeki [27] has made an investigation into which parts of
a use case description can be catalogued as reusable patterns
and template for requirement analysis process. He listed the
following parts as candidates for reuse:

 Use case templates for describing use cases.

 Use case patterns for providing the reusable and
changeable structures for use cases.

 Use case frameworks that are large scale combinations
of use case patterns for an application domain.

 Aspect patterns for wearing non-functional
requirements with functional requirements.

Alspaugh et al. [28] have provided an approach to
scenario management and evolution. They defined
scenarios as a sequence of events with associated attributes.
The defined a similarity measure as the sum of the number
of common attribute values in each attribute list, divided by
the sum of sizes of each attribute list. A variation was also
proposed where attributes are assigned weights.
Annotations are used to guide matching. The authors have
not taken into account the relation between the attributes
that might arise from semantic structures.

TABLE I. EARLY SOFTWARE ARTIFACT REUSE EFFORT

Work
Artifact

Support

Internal

Rep.

Matching

Criteria

Extra

Annotation

Search

Algorithm

[6]
Sequence

Diagrams

Message

flow

Both

Syntactic
and

Semantic

Similarity
(Macro and

Micro

Levels)

No

Depth

First B&B

Genetic
Algorithm

[25]

[26]

Use-Cases,
Sequence

Diagrams,

Class

Diagrams

Conceptual

Graphs

Semantic

Similarity
or Structural

relationship

similarity

(graph

matching)

No
Subdue

Algorithm

[2]
Class

Diagrams

Class

Vectors
Syntactic No

Greedy &

Hungarian
Algorithm

[27] Use Cases

Use Case

Templates,

Use Case
Patterns,

Use Case

Framework,
Aspect

Patterns

Analogy-

based
matching

No N/A

[28] Scenarios

Attributes

or facets

constituting
the use case

scenario

(Actor, go,
purpose etc)

Syntactic

similarity

between
scenarios

Yes N/A

[3]

Use Cases,

Sequence
diagrams

Event flow

vectors

Both

Syntactic

and
Semantic

Similarity

Yes N/A

Bloch and Cybulski [3] have considered event flows in

use-cases in measuring the use-case similarity. The authors
represented the event flows present in the use-cases as
follows. They classified the various events that are part of a
particular domain model into a set of clusters. For a new
use case they associate its events to these clusters based on
the lexical description of the event. The entire event flow in
the use case is represented as a vector where each dimension
of the vector represents the number of events in a particular
cluster.

Ryan and Mathews [29] have facilitated the reuse of
previously developed requirement specifications for same or
similar domains by identifying and encoding the types of
knowledge used during requirement acquisition. They
developed a tool (ReqColl) to aid in the process of
requirement collection using conceptual graphs with
semantic relationships. They used a conceptual graph
matching algorithm to compare requirements expressed as
conceptual graphs. The similarity is assessed based on
matching nodes and arcs inside the conceptual graphs.

Reubenstein and Waters [30] developed a tool,
Requirement Apprentice (RA), to assist users in

429

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

documenting consistent and complete requirements. The
tool maintains a cliché library and uses it to retrieve similar
requirements based on hybrid reasoning system. The cliché
library holds bulk of the general information related to the
domain. This allows users to document only specific
requirement information; remaining general information is
completed from the library.

In conclusion, even though the UML has become more
or less the de facto standard modeling language for
representing analysis as well as design artifacts, researchers
have done little in proposing a similarity metric for UML
models. The above discussed works consider comparison of
artifacts taking only a single view into consideration.
However, as mentioned earlier, a single view cannot
comprehensively capture the software requirements and
considering only one view while assessing similarity for
reuse will not be as effective approach. Accordingly, for
more effective reuse of software artifacts the similarity must
be assessed considering all views.

Effective IREs should be built on top of strong
foundations for a multi-view similarity metric, i.e., a
similarity metric that considers multiple views of software
in its similarity assessment.

IV. RESEARCH QUESTIONS

The problem of multi-view similarity assessment thus
can be stated as to map classes of class diagrams, sequence
diagrams, and state machine diagrams of the input model to
particular counterparts in the repository such that the
substitutions (e.g., class mappings from input model to
repository model) have least conflicts. This problem is in
essence a constraint satisfaction combinatorial optimization
problem in a possibly large, but finite, space [6].
Accordingly, finding optimal substitution for maximal
similarity of UML artifacts represents a NP-hard problem.
The applicability of search heuristic algorithms, to include
but not limited to Genetic Algorithms, Tabu Search, and
Simulated Annealing, should be investigated
[31][32][33][34]. Performance comparison against exact
exhaustive search techniques, e.g., Depth-first Branch and
Bound, should also be considered.

Similarity assessments and corresponding measurements
should be used in ranking repository projects models
according to their similarities to a current project models.

Cornerstone to the similarity assessment is the multi-
view similarity metrics. Effective metrics, according to
some measures such as precession and recall, should be
developed.

A major focus of the IRE should be to offer tools to
facilitate reusing design and later artifacts based on
matching requirements. However, the IRE should also offer
ad-hoc semantic-based UML artifacts repository search.
Metadata and ontology along with indexing and storing
schemes to allow for time-wise efficient retrieval of
previous artifacts from the repository should also be
developed. Standard representation in line with standards
such as the resource description framework schema (RDFS)
should be investigated for repressing the metadata and the

ontology [17]. Text/data mining algorithms should be
researched and developed to support such search activities.

For maximal utilization within the day-to-day activities,
best ways for integration with CASE tools should be
researched. The market is glutted with UML modeling tools
such as Rational Rose, Enterprise Architect, Together J,
Visio, Microsoft Visual Modeler, Advanced Tech GD-Pro,
Visual UML, Object Domain, Object Team, etc. The
standard interchange format adopted for the UML is the
XML Metadata Interchange (XMI) format [37]. Using XMI
in representing UML artifacts in the repository should be
investigated.

It is also important to maintain the quality of the artifacts
maintained in the repository; and in the same line offer
recommendations to re-users with regard to such artifacts.
In order to do so, the IRE should facilitate the collection of
reviews from re-users with respected to re-used/inspected
artifacts. Algorithms should be developed to allow
synthesizing recommendations with regard to existing
artifacts based on a diversity of reviews as well as some
other statistics.

Last but not least, intelligent user interface for easy
artifacts management and reuse within the context of the
day-to-day development activities should be developed. It
should be intelligent in the sense that it can offer
suggestions with regard to the modeling task at hand.

V. CONCLUSION AND FUTURE WORK

This paper presented an approach towards the
development of integrated UML reuse environment. The
paper surveys current state of the art and identifies gaps
along with corresponding research questions for future
work.

The author has been supervising a group of graduate
students in an effort that aims at laying the foundations for
multi-view similarity metrics and assessment along with the
development of IREs proof of concept through a set of case
studies. The effort has started earlier [2][6], was suspended
for some time, and got resumed recently as a focus for
future work. The successful realization of such IREs to
facilitate early-stage reuse of UML artifacts is expected to
improve the software quality and developers productivity.

ACKNOWLEDGMENT

The author wish to acknowledge King Fahd University
of Petroleum and Minerals (KFUPM) for the use of various
facilities in carrying out this research.

The author also thanks Jarallah AlGhamdi, Raheem
Rufai, Awes Ahmed, and Sajjad Mahmoud for many helpful
discussions, comments, and different contributions to the
origin of this work.

REFERENCES

[1] I. Sommerville, Software Engineering, 9th ed.: Addison-Wesley,
2010.

[2] R. Rufai, "New Structural Similarity Metrics for the UML," MS
Thesis, King Fahd University of Petroleum & Minerals, Dhahran,
Saudi Arabia, 2003.

430

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[3] M. C. Blok and J. L. Cybulski, "Reusing UML Specifications in a
Constrained Application Domain," in Proceedings 5th Asia Pacific
Software Engineering Conference (ASPEC’98), 1998, pp. 196-202.

[4] V. De Mey and O. Nierstrasz, "The ITHACA Application
Development Environment. Visual Objects (ed. D. Tsichritzis,"
Centre Universitaire d'Informatique, University of Geneva1993.

[5] D. C. Rine, "Success factors for software reuse that are applicable
across domains and businesses. ," in Proceedings of the ACM
Symposium on Applied Computing, 1997, pp. 182-186.

[6] A. Ahmed, "Functional Similarity Metric for UML Models," MS
Thesis King Fahd University of Petroleum & Minerals, 2006.

[7] V. Sugumaran, et al., "Software product line engineering,"
Communications of the ACM, vol. 49, pp. 29-32, 2006.

[8] G. Booch, et al., Object-Oriented Analysis and Design with
Applications: Addison-Wesley, 2007.

[9] R. M. M. Braga, et al., "Odyssey: A Reuse Environment Based on
Domain Models," in Proceedings 1999 IEEE Symposium on
Application-Specific Systems and Software Engineering and
Technology, ASSET '99., 1999.

[10] J. L. Cybulski, "Introduction to Software Reuse," Technical Report
TR96/4, University of Melbourne, Melbourne, Australia1996.

[11] J. L. Cybulski and K. Reed, "Requirements Classification and Reuse:
Crossing Domain Boundaries," in Proceedings of the 6th
International Conerence on Software Reuse: Advances in Software
Reusability, London, UK, 2000.

[12] R. K. Keller, et al., "Design and Implementation of a UML-Based
Design Repository. ," in Proceedings 13th International Conference
on Advanced Information Systems Engineering (CAiSE2001),
Interlaken, Switzerland, 2001.

[13] H.-Y. Lee and M. T. Harandi, "An Analogy-Based Retrieval
Mechanism for Software Design Reuse.," in Proceedings of the 8th
Knowledge-Based Software Engineering Conference (KBSE’93),
Chicago, 1993, pp. 152-159.

[14] O. Edelstein, et al., "eColabra: An Enterprise Collaboration & Reuse
Environment," in Proc. Fourth Int'l Workshop (NGITS '99), 1999, pp.
229-236.

[15] H. Mili, et al., "Reusing Software: Issues and Research Directions,"
IEEE Transactions on Software Engineering, vol. 21, 1995.

[16] I. Jacobson, et al., Object-oriented software engineering: a use case
driven approach: Addison-Wesley, 1992.

[17] W3C, "RDF Vocabulary Description Language 1.0: RDF Schema,
W3C Recommendation 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-schema-20040210 last
accessed Jan. 2011.," ed, 2004.

[18] A. L. Correa, et al., "Object Oriented Design Expertise Reuse: An
Approach Based on Heuristics, Design Patterns and Anti-Patterns," in
6th International Conference on Software Reuse, 2000, pp. 33 - 191.

[19] H.-J. Beyer, et al., "Introducing Architecture-Centric Reuse into a
Small Development Organization," in Proceedings of the 10th
international conference on Software Reuse: High Confidence
Software Reuse in Large Systems Berlin, Heidelberg, 2008.

[20] A. C. Martins, et al., "Suggesting Software Components for Reuse in
Search Engines Using Discovered Knowledge Techniques," in SEAA
'09 Proceedings of the 2009 35th Euromicro Conference on Software
Engineering and Advanced Applications 2009, pp. 412-419.

[21] J. Rumbaugh, et al., Object-Oriented Modeling and Design, First ed.:
Prentice Hall, 1991.

[22] J. Iivari, "Object-orientation as structural, functional and behavioural
modelling: a comparison of six methods for object-oriented analysis,"
Information and Software Technology, vol. 37, pp. 155-163, 1995.

[23] G. Kotonya and I. Sommerville, Requirements Engineering:
Processes and Techniques: John Wiley & Sons, 2000.

[24] J. Mylopoulos, "Multiple Viewpoints Analysis of Software
Specification Process," IEEE Transactions on Software Engineering,
1995.

[25] W. N. Robinson and H. G. Woo, "Finding Reusable UML Sequence
Diagrams Automatically," IEEE Software, vol. 21, pp. 60-67, 2004.

[26] H. G. Woo and W. N. Robinson, "Reuse of Specifications Using an
Automated Relational Learner: A Lightweight Approach," in
Proceedings of the 10th Anniversary IEEE Joint International
Conference on Requirements Engineering, 2002, pp. 173-180.

[27] M. Saeki, "Patterns and Aspects for Use Cases: Re-use Techniques
for Use Case Descriptions," in Proceedings of the 4th International
Conference on Requirements Engineering (ICRE'00), 2000.

[28] T. A. Alspaugh, et al., "An Integrated Scenario Management
Strategy," in Proceedings of the 4th IEEE International Symposium
on Requirements Engineering, 1999.

[29] K. Ryan and B. Mathews, "Matching Conceptual Graphs as an aid to
Requirements Re-use," Proceedings of IEEE International
Symposium on Requirements Engineering, pp. 112-120 1993.

[30] H. B. Reubenstein and R. C. Waters, "The Requirements Apprentice:
Automated Assistance for Requirements Acquisition," IEEE
Transactions on Software Engineering, vol. 17, 1991.

[31] R. Poli, et al., "Particle swarm optimization: An overview," Swarm
Intelligence, vol. 1, pp. 33-57, 2007.

[32] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed.: Prentice Hall, 2010.

[33] S. Sait and H. Youssef, Iterative Computer Algorithms with
Applications in Engineering: IEEE Computer Society, 1999.

[34] D. Teodorovic, et al., "Bee Colony Optimization: Principles and
Applications," in 8th Seminar on Neural Network Applications in
Electrical Eng., NEUREL-2006, IEEE CNF, 2007.

[35] L. Chung and K. Cooper, "Knowledge based COTS aware
requirements engineering approach," in 14th Int. Conf. Software Eng.
Knowledge Eng, 2002, pp. 175 - 182.

[36] D. J. Carney, et al., "Identifying Commercial off the Shelf Product
Risks: The COTS Usage Risk Evaluation," Carnegie Mellon Software
Engineering Institute (SEI) 2003.

[37] Object Management Group (OMG). OMG XML Metadata
Interchange (XMI) Specification (V. 2.11/Beta 2.4). Jan. 2002.
http://www.omg.org/spec/XMI/ (Accessed 2011-05-28).

[38] B. Sheiderman and C. Plaisant, Designing the User Interface, Pearson
Education, Inc., 2005.

[39] Object Management Group (OMG). OMG Unified Modeling
Language (OMG UML), Superstructure (V. 2.3). May, 2010.
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/ (Accessed
2011-09-23).

431

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

