
ATL Transformation of UML 2.0 for the Generation of SCA Model

 Soumaya Louhichi Mohamed Graiet Mourad Kmimech
 MIRACL, ISIMS MIRACL, ISIMS MIRACL, ISIMS
 BP 1030, Sfax 3018, TUNISIA BP 1030, Sfax 3018, TUNISIA BP 1030, Sfax 3018, TUNISIA
 louhichi.soumaya@gmail.com mohamed.graiet@imag.fr mkmimech@gmail.com

 Walid Gaaloul
 Computer Science Department Télécom SudParis
 Mohamed Tahar Bhiri 9, rue Charles Fourier 91 011 Évry Cedex, France Eric Cariou
 MIRACL, ISIMS walid.gaaloul@it-sudparis.eu Université de Pau et des pays de l’Adour
BP 1030, Sfax 3018, TUNISIA Avenue de l'Université BP 1155 64013
 Tahar_bhiri@yahoo.fr PAU CEDEX France

 Eric.Cariou@univ-pau.fr

Abstract— Service Component Architecture specification
(SCA) is an emerging and promising technology for the
development, deployment and integration of Internet
applications. This technology supports the management of
dynamic availability and treats the heterogeneity between the
components of distributed applications. However, this
technology is not able to solve all problems. Currently,
software systems are evolving. This factor makes development
and maintenance of systems more complex than before. One
solution to remedy this was the use of the Model Driven
Engineering (MDE) approach in the development process. The
aim of this paper is to apply an MDE automation type ensuring
the passage from an UML 2.0 model to SCA model. To achieve
this, we study two metamodels: the UML 2.0 component
metamodel and the SCA meta-model. To ensure traceability
between these two meta-models, we have defined
transformation rules in ATL language.

Keywords-UML 2.0, SCA, MDE, ATL

I. INTRODUCTION

Nowadays, Service Oriented Architecture (SOA) [1] can
be seen as one of the key technologies to enable flexibility
and reduce complexity in software systems. SOA is a set of
ideas for architectural design and there are some proposals
for SOA frameworks including a concrete architectural
language: the Service Component Architecture (SCA) [2].

SCA is a new promising programming model for

constructing service-oriented application which facilitates
the development of business integration in Service Oriented
Architecture (SOA). SCA technology supports the
management of dynamic availability and treats the
heterogeneity between the components of distributed
applications. In spite these advantages, SCA application are
incomprehensible by stakeholders who have not enough
knowledge in the SOA field. For this, we decide to use the
modelling languages to describe SCA concepts.

The most adopted modelling language to SCA is the
UML 2.0 which approved itself as a powerful tool for
modeling components and services.

Recently, the application development process becomes
more and more complex. To remain competitive, companies
must significantly reduce their development and
maintenance costs. A solution for this is the use of MDE
approach, a new discipline of software engineering, which
has emerged to deal with complexity, growth, rapidly
changing and heterogeneity in software applications.

The increasing use of MDE solves the problem of
complexity in the development process at a high level of
abstraction. Thus, an application can be generated
automatically from high level models.

The goal of this paper is to apply an MDE automation
type to develop a tool that transforms an UML 2.0
component model to an SCA model. The result of this
transformation is an XMI [3] file, which then can be used as
a template to produce the source code of an SCA application.
The transformation is expressed in ATL language (Atlas
Transformation Language) [4].

This paper is organized as follows: in section 2, we
present the MDE approach, the metamodeling and
transformation languages. In Section 3, we study our two
metamodels for UML 2.0 and SCA. In the next section, we
develop the transformation rules. Section 5 is the subject of
the implementation and execution of those rules. We end
with a conclusion.

II. MODEL DRIVEN ENGINEERING

The Model Driven Engineering has become in recent
years the most used approach for developing quality
software. This approach more abstract than the programming
one allows focusing on concepts independently of platforms,
focusing on one or more concerns abstract and study them to
obtain a complete system by composition and by
transformation.

418

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The concept of model is at the heart of the device, in
MDE a model is considered as entity of first class in the
software development [5], it serves not only to better
understand and reason about the system we built, but also to
be in position to transform models into other abstract models
or into practical implementation one. In the rest of this
section, we will present the main artifacts of Engineering
Models, languages expressing the metamodels and model
transformations. A metamodel is a model that describes all
the kind of elements and their relationships that can be
instantiated for forming models. For instance, the UML
metamodel describe all the kinds of UML diagrams and their
elements (Class, State, Component, Activity, Use Case,...).
In MDE, each model is conformed to a metamodel.
Metamodel are key constructions because they make models
automatically handable by tools. A metamodel defines
concretely a modeling language.

The most widely used MDE platform is EMF (Eclipse
Modeling Framework) which provides a
metametametamodel (the metamodel allowing the definition
of metamodels) called Ecore. Ecore is aligned on the MOF
(Meta Object Facilities) which is the standard
metametametamodel from the OMG [6]. EMF is a modeling
and code generation framework used to support the creation
of model driven tools and applications.

Model transformations are at the heart of Model Driven
Engineering, and provide the essential mechanism for
manipulating and transforming models. The transformation
of models plays an important role in the Model Driven
Engineering. Indeed, several studies have been done to
define transformation languages that ensure effectively the
passage between models. We will use the ATL free tool [7];
it quickly seems to us as the best suited tool to the problem
of transformation. In fact, ATL is a proposal submission in
response to the RFP call delivered by the OMG. ATL is one
of the most popular and widely used model transformation
languages. ATL is a hybrid model transformation language
containing a mixture of declarative and imperative constructs
based on Object Constraint Language (OCL) [8] for writing
expressions. ATL transformations are unidirectional,
operating in on read-only source models and producing
write-only target models (Figure 1). During the execution of
a transformation, source models can be navigated but
changes are not allowed. Target models can not be
navigated.

Figure 1. ATL model transformation schema

III. UML 2.0 AND SCA METAMODELS

The transformation process requires initially the presence
of two metamodels:

• Source metamodel: the UML 2.0 metamodel.
• Target metamodel: SCA metamodel.

A. Source Metamodel: UML 2.0 Metamodel

The UML 2.0 metamodel definition consists of two parts:
UML 2.0 Superstructure, which defines the user vision and
UML 2.0 Infrastructure, which specifies the metamodeling
architecture of UML and its alignment with MOF (Meta-
Object Facility) [9]. In the remainder of this section, we
focus firstly on UML 2.0 Superstructure which is simply
denoted UML 2.0 [10] and then we study the behavioral part
of a component model.

1) Structural concepts of UML 2.0
The main structural concepts of UML 2.0 component

model are: component, port, connector [11].
• The component: represents a modular part of a

system that encapsulates its contents and which is
replaceable within its environment. Its description
may include a set of ports and a set of connectors.

• Port: allows the component to communicate with its
environment, a port can be equipped with provided
or required interface used to specify the expected
operations of the environment or to specify provided
operations of the component.

• Connector: A connector defines a relationship
between two ports. We find two types of connectors:
The Delegation Connector and the Assembly
Connector. The Delegation Connector represents the
forwarding of messages between a port of a
component and a port of one of its part. The
Assembly Connector must only exist between a
provided Port and a required one.

UML 2.0 metamodel represents the different
relationships between UML 2.0 concepts (structural and
behavioral concepts). Relations between these concepts are
defined in the following points:

• A component inherits the metaclass Class. It also
inherits EncapsulatedClassifier. So, it can have ports
typed by provided and required interfaces.

• The metaclass EncapsulatedClassifier inherits
StructuredClassifier. Therefore, a component can
have an internal structure and may define
connectors.

• The metaclass Property models the properties of an
instance of StructuredClassifier.

• The metaclass Port represents an interaction point
between a classifier and its environment.

• EncapsulatedClassifier is a classifier with port typed
by interfaces.

• The metaclass connector represents a link that allows
instances to communicate with each other.

• Every extremity of connector named ConnectorEnd
represents a distinct role of the communication
represented by the connector.

419

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

• The metaclass ConnectorEnd represents an endpoint
of a connector, which attaches the connector to a
connectable element. Each connectorEnd is a part of
one connector.

2) Behavior concept of UML 2.0
UML is a popular representation and methodology for

characterizing software. In fact, UML supports the modeling
of system behavior through the use of state machines.
UML has two types of state machines:

• Behavioral state machines.
• Protocol state machines.
In UML 2.0, the state machines can be used to specify

the behavior of several elements of the models described in
UML 2.0, such as instances of an UML 2.0 class. While
protocols state machines may be used profitably to express
protocols related to scenarios of use of services
offered by interfaces or ports[12]. Behavioral and protocol
state machines share common elements like state, region,
vertex, pseudostate, transition…

• State: models a situation during which some
invariant conditions holds.

• Region: is an orthogonal part of either a composite
state or a state machine. It contains states and
transitions.

• Vertex: is an abstraction of a node in a state machine
graph, it can be the source or destination of any
number of transitions.

• Pseudostate: is an abstraction that encompasses
different types of transient vertices in the state
machine graph.

• Transition: it shows the relation ship, or path,
between two states or pseudostates. Each transition
can have a guard condition that indicates if the
transition can even be considered (enabled), a trigger
that causes the transition to execute if it is enabled,
and any effect the transition may have when it
occurs.

A protocol state machine has the characteristics of a generic
state machine (composite states, concurrent regions…) with
the next restrictions on states and transitions [13]:

• States cannot show entry actions, exit actions,
internal actions, nor do activities.

• State invariants can be specified.
• Pseudostates cannot be deep or shadow history

kinds; they are restricted to initial, entry point and
exit point kinds.

• Transitions cannot show effect actions or send
events as generic state machines can.

• Transitions have pre and post-conditions; they can
be associated to operation calls.

• A protocol state machine may contain one or more
regions which involve vertices and transitions. A
protocol transition connects a source vertex to a
target vertex. A vertex is either a pseudostate or a
state with incoming and outgoing transitions. States
may contain zero or more regions.

• A state without region is a simple state; a final state
is a specialization of a state representing the
completion of a region.

• A state containing one or more regions is a
composite state that provides a hierarchical group of
(sub) states; a state containing more than one region
is an orthogonal state that models a concurrent
execution.

• A submachine state is semantically equivalent to a
composite state. It refers to a submachine (sub
Protocol State Machine) where its regions are the
regions of the composite state.

Figure 2 corresponds to the UML 2.0 metamodel for
describing components illustring the different relationships
between concepts (structural and behavioral concepts) in a
component UML 2.0.

B. Target Metamodel: SCA Metamodel

In this section, we describe the different structural and
behavioral concepts of SCA model necessary for the
construction of its metamodel.

1) Structural concepts of SCA
Services Component Architecture (SCA) is a set of

specifications describing a model for building applications
and systems using Service Oriented Architecture SOA [14].
SCA complete previous approaches in the implementation of
services, and focuses on open standards such as Web
services.

SCA provides an application code based on components
and divides the deployment of a service-oriented application
into two stages:

• The implementation of components that provide and
consume services.

• The assembly of sets of components to deploy
applications, by connecting the references to
services.

An SCA implementation represents a reusable service
component that encapsulates the business logic that supports
one or more services. Implementations can be in a variety of
languages, including Java, BPEL4WS [15], C, and COBOL.
Implementations also define the references dependencies on
other components’ services that the implementation must
invoke during normal operation as well as configuration
properties. Interface types (typically WSDL portTypes)
describe both services and references. Services and
references use SCA bindings to configure the interaction
protocol used for providing or using a service. Examples of
bindings are the Web services binding (the Web services
protocol stack) or a messaging backbone.

Services, references, and properties define an SCA
implementation’s configurable aspects.

An SCA component is a configured SCA implementation
that sets property values and resolves the references to other
SCA components by specifying the component wires
(interconnections). An SCA composite (or SCA assembly) is
a packaged set of components and wires that define the
structural composition.
The SCA composite can provide for the interaction between
internal components and external applications by defining

420

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

composite services, references, and properties. This means
that an SCA composite can be an SCA component within
another SCA composition, with the first SCA composite
providing that component’s implementation. In SCA, this is
called recursive service composition.

2) Behavior concepts of SCA
SCA specification are based on services which are

becoming more and more popular as means for decoupling
systems from each other while at the same time making
functionality and data available to all authorized applications
on the network.

Behavioral descriptions of services can be defined using
higher level standards such as BPEL (Business Process
Execution Language). BPEL is an XML-based language that
models a business process as a composition from a set of
elementary web services.

The main concept of BPEL [16] is BPEL process which
defines several concepts like basic and structured activities,
variables, partner links, and handlers. In a simple case, a
BPEL process defines partner links, variables, and activities.

• Partner links represent message exchange
relationships between two parties. Via a reference to
a partner link type the partner link defines the mutual
required endpoints of a message exchange: the
myRole and a partnerRole attributes defines who is
playing which role. Partner links are referenced by
basic activities that involve Web Service requests.

• Variables are used to store workflow data as well as
input and output messages that are exchanged by
Web Services activities via partner links.

• Handlers specify responses to unexpected behavior
like time or message events, faults, compensation, or
termination.

• Nesting of structured activities is used to express
control flow in BPEL. There are specific structured
activities for loops (while, forEach, repeatUntil),
sequential execution (sequence), conditional
branching based on data (if) or events (pick), and
concurrent branches (flow).

• Basic activities specify the actual operations of a
BPEL process. There are three activities involving
Web Services: invoke for synchronous or
asynchronous calls to a remote Web Service, receive
to wait for the receipt of a specific message, and
reply for responding to a remote request.

All these activities reference a partner link and specify
input and/or output variables for messages.

3) SCA metamodel
Figure 2 corresponds to the SCA metamodel illustring

the different relationships between SCA concepts (structural
and behavioral concepts). Relations between these concepts
are defined in the following points:

• An SCA component may have zero or more than one
service.

• An SCA component may have zero or more than one
reference.

• An SCA component may have many properties used
to configure its implementation

• A service is defined by only one interface and it may
have multiple bindings and it may have also multiple
BPEL process to describe it’s behavior.

• A reference is defined by only one interface and it
may have multiple bindings and it may have also
multiple BPEL process to describe it’s behavior.

• An interface describes the set of operations offered
by the service or used by the reference.

• A composite may be considered as a set of
components, having many properties, services,
references and wires.

• A BPEL process is a set of partners, partnerLinks,
variables and activities.

• A partner may have zero or more than one
partnerLink.

• A partnerLink may have zero or one
partnerLinkType which may contain one or two
Role.

Figure 2. Ecore metamodel of SCA

421

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Figure 3 presents the UML 2.0 metamodel for describing
components. It is used to describe the different relationships

between structural and behavioral concepts of UML 2.0
component model:

Figure 3. Ecore definition of the UML 2.0 component part

IV. THE TRANSFORMATION RULES

In this section, we present the transformation rules
allowing the passage from an UML 2.0 component model to
an SCA model. The transformation rules are established
between source and target metamodels, in other words
between all the concepts of source and target models
(structural and behavior concepts). These rules are briefly
explained in the following table in natural language and then
formulated using the ATL syntax previously introduced.

TABLE I. SUMMARY OF THE TRANSFORMATION RULES

UML 2.0 concepts of source
model

SCA concepts of target model

Component SCA Component
Partner
Service Port with provided

interface PartnerLink

Reference Port with required interface
PartnerLink

Interface Interface
Operation Operation
Property Property

ConnectorEnd Binding

Connector Wire
Protocol State Machine Process BPEL

Parameter Variable
Region Sequence
State Basic Activity

(Receive,Invoke,Replay)
PseudoState (kind= choice) Switch
PseudoState (kind= fork) Flow

PseudoState (kind=
exitPoint)

Exit

422

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Before starting to define some transformation rules, we
will give the general form of these:

Figure 4. An example of ATL rule

• ForExample: is the name of the transformation rule.
• i (resp. o) is the name of the variable representing

the identified element source that in the body of the
rule (resp. target element created).

• InputMetaModel (resp. OutputMetaModel) is the
metamodel in which the source model (resp. the
target model) of the transformation is consistent.

• InputElement means the metaclass of elements of
source model to which this rule will be applied.

• OutputElement means the metaclass from which the
rule will instantiate the target elements.

• The exclamation point ! used to specify to which
meta model belongs a meta class.

• attributeA and attributeB are attributes of the meta
class OutputElement, their value is initialized using
the values of attributes i.attributeB, i.attributeC and
i.attributeD of the meta class InputElement.

We will now proceed to the definition of some of our
transformation rules using the ATL language:

• Rule that transforms an UML 2.0 component to an
SCA component, here an SCA component takes the
same name as a UML 2.0 component. This rule also
allows the transformation of each instance of an
UML 2.0 component in a BPEL Partner in SCA
model.

• Rule that transforms an UML 2.0 port with provided

interface to an SCA Service. This rule allows also
the transformation of each port in UML 2.0 into
aPartner Link BPEL in SCA model.

• Rule that transforms a Protocol State Machine to a
BPEL process.

V. IMPLIMENTATION AND EXECUTION OF THE

TRANSFORMATION RULES

At first, we have developed two ECORE models
corresponding to source metamodel and target metamodel,
after we have implemented the transformation rules in the
ATL language. Once the transformation program
UML2SCA.atl is created, then we can start the execution.
The general context of the ATL transformation is illustrated
in Figure 5 below.

The engine of transformation allows generating the SCA
model, which is consistent to SCA metamodel, from the
UML 2.0 model which is consistent to UML 2.0 metamodel
using UML2SCA.atl program which must be also consistent
to metamodel that defines the semantics of ATL
transformation. All metamodels must be consistent to the
Ecore metamodel.

Figure 5. General context of ATL transformation

rule component2componentsca
{
from c:UML!Component
to cs:SCA!Component(
name<-c.name+ '_serviceComponent' ,
proporties<-c.ownedattribute),
p:SCA!Partner(name<-c.name,
owner<-c.ownedport-
>first().protocol)
}

rule psm2BPELprocess{
from ps: UML!ProtocolStateMachine
to p: SCA!BPELProcess(name<-ps.name,
targetNamespace<-
'http://' +ps.name+ '.org/' ,
 abstractProcess<- false)}

rule port2service{
from p:UML!Port(
p.provided->notEmpty())
to ps:SCA!Service(
name<-p.name+ '_service port' ,
interface<-p.provided->first(),
component<-p.owner,
bindings<-p.end,process<-
p.protocol),
 pl:SCA!PartnerLink(name<-p.name,
myRole<- 'ITF_' +p.name+ 'Provider' ,
partnerRole<- '' ,
owner<-p.protocol)
}

423

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

To validate our transformation rules, we completed
several tests. As an illustration, we consider the example
below (Figure 6). The example studied is an example of an
automated banking machine (ABM). Any person with an
appropriate card can use the ABM to take money. To take
the money, a customer must be identified.

Our example can be modeled in UML 2.0 as follows: a
customer is modeled by a Customer component with a port
named abm typed by a required interface named authentify.
The ABM is modeled by an ABM component having port
named customer typed by provided interface named identify.
These two components are connected by a connector named
Customer-ABM.

Figure 6. Source model

Behavior of ABM component is described using its
interface identify. Behavior of this last one is described using
a protocol state machine named identification.

We get the following input model as shown in Figure 7.

Figure 7. Source Model in Text Editor View

When the model is validated and there are no errors, the
user can run the ATL model transformation to transform the
UML 2.0 model into SCA model and the SCA Ecore model
is created. The result of this transformation is shown in
Figure 8 below.

Figure 8. Target Model in Text Editor View

We can see from Figure 8 that each UML 2.0 component
has been transformed into an SCA component, each port in
UML 2.0 typed with provided interface has been transformed
into an SCA service, each port with required interface has
been transformed into an SCA reference and each instance of
an assembly connector (in our example Customer-ABM) has
been transformed into an SCA wire (wire Customer-ABM).
Concerning the behavioral part, each instance of Protocol
State Machine in UML 2.0 has been transformed into a
BPEL Process in SCA.

VI. CONCLUSION

We applied the MDE approach to service-oriented

applications engineering. It is a question of generating the
ingredients of an SCA application from an UML 2.0
component diagram. To reach there, we elaborated at first
time the source metamodel representing an UML 2.0
component diagram. At the level of target metamodel, we try
to design all the metaclasses needed to generate a PSM
model respecting the SCA architecture. Transformation rules
have been developed in ATL language. The transformation
process allows generating an XMI file containing a structural
and behavioral description of the SCA application: SCA
components, services, references, interface, operations,
bindings as well as the process BPEL used to describe the
behavior of SCA application.

As future work, we intend to more improve the
behavioral aspect of SCA application and to try to treat the
composite aspect in SCA.

REFERENCES
[1] OSOA, Open Service Oriented Architecture, the Home Page,

2007. http://www.osoa.org/
[2] Open SOA Collaboration, Service Component Architecture

(SCA), SCA Assembly Model v1.00 specifications, 2007.
[3] B. Combemale, “ Approche de Métamodélisation pour la

Simulation et la Verification de Modèle”. Toulouse, 2008.

424

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

[4] J. Troya and A. Vallecillo, “ Towards a Rewriting Logic
Semantics for ATL”. ISUM/ A tenea Research Group.
Universidad de Maalaga, Spain.

[5] J. Bézivin , “Sur les Principes de L’ingénierie des Modèles”,
RSTI_L’objet 10, ou sont les objets?, 2004.

[6] OMG, Meta Object Facility (MOF) specification –version 1.4
formal, April 2002.

[7] The LINA website. Available: http//www.sciences.univ-
nantes.fr/lina/atl

[8] B. Combemale and S. Rougemaille, “–ATL- Atlas
Transformation Language”, 2005.

[9] OMG, “ Meta Object Facility (MOF) specification, version
1.3,” Mars 2000.

[10] X. Blanc, “MDA en Action Ingénierie Logicielle Guidée Par
les Modèles”, Eyrolles 2005.

[11] M. Graiet, “Contribution à une Démarche de Vérification
Formelle d’Architectures Logicielles”, 2007.

[12] OMG, “Unified Modeling Language : Superstructure version
2.0”.

[13] C. Dumez, NAIT-sidi-moh, J. Gaber and M. Wack,
“Modeling and specification of Web services composition
using UML-S”.

[14] F. Curbera, “Component Contracts in Service-oriented
Architectures”, IBM T.J. Watson Research Center, 2007.

[15] OASIS, “Service Component Architecture WS-BPEL Client
and Implementation Specification Version1.1”, 2009.

[16] T. Ambuhler, “UML 2.0 Profile for WS-BPEL with Mapping
to WS-BPEL”.

425

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

