ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

ATL Transformation of UML 2.0 for the Generation of SCA Model

Soumaya Louhichi

MIRACL, ISIMS
BP 1030, Sfax 3018, TUNISIA
louhichi.soumaya@gmail.com

Mohamed Graiet

MIRACL, ISIMS
BP 1030, Sfax 3018, TUNISIA
mohamed.graiet@imag.fr

vl Kmimech

MIRACL, ISIMS
B@3D, Sfax 3018, TUNISIA
mkmimech@gmail.com

Walid Gaaloul
Computer Science Department Télécom SudParis

Mohamed Tahar Bhiri
MIRACL, ISIMS

9, rue ChaFesirier 91 011

walid.gaaloul@it-sudparis.eu

Evry Cedex, France Eric Cariou
Université de Pau et des pays Addur

BP 1030, Sfax 3018, TUNISIA
Tahar_bhiri@yahoo.fr

Abstract— Service Component Architecture specification
(SCA) is an emerging and promising technology for the
development, deployment and integration of Internet
applications. This technology supports the management of
dynamic availability and treats the heterogeneity between the
components of distributed applications. However, this
technology is not able to solve all problems. Currently,
softwar e systems are evolving. This factor makes development
and maintenance of systems more complex than before. One
solution to remedy this was the use of the Model Driven
Engineering (M DE) approach in the development process. The
aim of this paper isto apply an M DE automation type ensuring
the passage from an UML 2.0 model to SCA model. To achieve
this, we study two metamodels: the UML 2.0 component
metamodel and the SCA meta-model. To ensure traceability
between these two meta-modds, we have defined
transformation rulesin ATL language.

Keywords-UML 2.0, SCA, MDE, ATL

l. INTRODUCTION

Nowadays, Service Oriented Architecture (SOA) [dhc
be seen as one of the key technologies to enabtibifity
and reduce complexity in software systems. SOA ssteof
ideas for architectural design and there are soropopals
for SOA frameworks including a concrete architeaktur
language: the Service Component Architecture (SCR)

SCA is a new promising programming model for
constructing service-oriented application which ilfeates
the development of business integration in Ser@dented
Architecture (SOA). SCA technology supports
management of dynamic availability and treats th

the%ears the most used approach for developing quality

Avenue de I'Université BP 1155 64013
PAU CEDEX France
Eric.Cariou@univ-pau.fr

The most adopted modelling language to SCA is the
UML 2.0 which approved itself as a powerful toolr fo
modeling components and services.

Recently, the application development process besom
more and more complex. To remain competitive, cargsa
must significantly reduce their development and
maintenance costs. A solution for this is the uséVBE
approach, a new discipline of software engineenmigich
has emerged to deal with complexity, growth, rapidl
changing and heterogeneity in software applications

The increasing use of MDE solves the problem of
complexity in the development process at a higtellef
abstraction. Thus, an application can be generated
automatically from high level models.

The goal of this paper is to apply an MDE autormatio
type to develop a tool that transforms an UML 2.0
component model to an SCA model. The result of this
transformation is an XMl [3] file, which then cae bsed as
a template to produce the source code of an SChcatipn.

The transformation is expressed in ATL languagela@t
Transformation Language) [4].

This paper is organized as follows: in section &2 w
present the MDE approach, the metamodeling and
transformation languages. In Section 3, we study tow
metamodels for UML 2.0 and SCA. In the next sectiva
develop the transformation rules. Section 5 issthigiect of
the implementation and execution of those rules. &hd
with a conclusion.

Il.
The Model Driven Engineering has become in recent

MODEL DRIVEN ENGINEERING

oftware. This approach more abstract than thergnoging

heterogeneity between the components of distributegdq gl10ws focusing on concepts independently aff@ims,

applications. In spite these advantages, SCA ajuit are
incomprehensible by stakeholders who have not dnou
knowledge in the SOA field. For this, we decideus® the
modelling languages to describe SCA concepts.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

focusing on one or more concerns abstract and shehy to

%btain a complete system by compositon and by

transformation.

418

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

The concept of model is at the heart of the devite,
MDE a model is considered as entity of first classhe
software development [5], it serves not only to tdret
understand and reason about the system we builgléw to
be in position to transform models into other axdtmodels
or into practical implementation one. In the reéttlis
section, we will present the main artifacts of HEwmgiring

Models, languages expressing the metamodels andlmod

transformations. A metamodel is a model that dbssriall
the kind of elements and their relationships thah de
instantiated for forming models. For instance, tH®IL
metamodel describe all the kinds of UML diagramd teir
elements (Class, State, Component, Activity, UseeCa).

In MDE, each model is conformed to a metamodel
Metamodel are key constructions because they makizis
automatically handable by tools. A metamodel define
concretely a modeling language.

The most widely used MDE platform is EMF (Eclipse
Modeling Framework) which provides a
metametametamodel (the metamodel allowing the itiefin
of metamodels) called Ecore. Ecore is aligned enM©OF
(Meta Object Facilities) which is the standard
metametametamodel from the OMG [6]. EMF is a modgli
and code generation framework used to support ribegion
of model driven tools and applications.

Model transformations are at the heart of Model@mi

Engineering, and provide the essential mechanism fo

manipulating and transforming models. The transétiom
of models plays an important role in the Model Briv
Engineering. Indeed, several studies have been done
define transformation languages that ensure effagtithe
passage between models. We will use the ATL frek[@;

it quickly seems to us as the best suited tooh&problem
of transformation. In fact, ATL is a proposal subsidon in
response to the RFP call delivered by the OMG. AsTbne
of the most popular and widely used model transéion
languages. ATL is a hybrid model transformationglzege
containing a mixture of declarative and imperativastructs
based on Object Constraint Language (OCL) [8] fatimg
expressions. ATL transformations are unidirectipnal
operating in on read-only source models and proguci
write-only target models (Figure 1). During the ext®on of

a transformation, source models can be navigated bu
changes are not allowed. Target models can not be

navigated.

+ ECORE .
canformaTa 1 .
-~ canfarms T . conformeTa

ATL Target

Source
Metamodal Meétamodel Matsmndal
3 - :
canfarmETE !w-..‘:n-.s] i-‘--iﬂ*-“l":":
Sourced Terget.atl
Source Target
medel ransformaion model

Figure 1. ATL model transformation schema

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The transformation process requires initially tihesgnce
of two metamodels:
Source metamodel: the UML 2.0 metamodel.
Target metamodel: SCA metamodel.

UML 2.0AND SCA METAMODELS

A. Source Metamodd: UML 2.0 Metamode

The UML 2.0 metamodel definition consists of twatpa
UML 2.0 Superstructure, which defines the userovisand
UML 2.0 Infrastructure, which specifies the metamioty

architecture of UML and its alignment with MOF (Met
Object Facility) [9]. In the remainder of this dea; we

focus firstly on UML 2.0 Superstructure which isngiy

denoted UML 2.0 [10] and then we study the behaVipart
of a component model.

1) Structural concepts of UML 2.0

The main structural concepts of UML 2.0 component
model are: component, port, connector [11].

The component: represents a modular part of a
system that encapsulates its contents and which is
replaceable within its environment. Its description
may include a set of ports and a set of connectors.
Port: allows the component to communicate with its
environment, a port can be equipped with provided
or required interface used to specify the expected
operations of the environment or to specify proglide
operations of the component.

Connector: A connector defines a relationship
between two ports. We find two types of connectors:
The Delegation Connector and the Assembly
Connector. The Delegation Connector represents the
forwarding of messages between a port of a
component and a port of one of its part. The
Assembly Connector must only exist between a
provided Port and a required one.

UML 2.0 metamodel represents the different
relationships between UML 2.0 concepts (structuaatl
behavioral concepts). Relations between these ptaege
defined in the following points:

A component inherits the metaclass Class. It also
inherits EncapsulatedClassifier. So, it can havgspo
typed by provided and required interfaces.

The metaclass EncapsulatedClassifier inherits
StructuredClassifier. Therefore, a component can
have an internal structure and may define
connectors.

The metaclass Property models the properties of an
instance of StructuredClassifier.

The metaclass Port represents an interaction point
between a classifier and its environment.
EncapsulatedClassifier is a classifier with poptety

by interfaces.

The metaclass connector represents a link thatsllo
instances to communicate with each other.

Every extremity of connector named ConnectorEnd
represents a distinct role of the communication
represented by the connector.

419

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

« The metaclass ConnectorEnd represents an endpoint
of a connector, which attaches the connector to a
connectable element. Each connectorEnd is a part of
one connector. .
2) Behavior concept of UML 2.0
UML is a popular representation and methodology for
characterizing software. In fact, UML supports thedeling
of system behavior through the use of state mashine

A state without region is a simple state; a firtates

is a specialization of a state representing the
completion of a region.

A state containing one or more regions is a
composite state that provides a hierarchical gafup
(sub) states; a state containing more than onermegi
is an orthogonal state that models a concurrent
execution.

UML has two types of state machines: .
* Behavioral state machines.
* Protocol state machines.

A submachine state is semantically equivalent to a
composite state. It refers to a submachine (sub
Protocol State Machine) where its regions are the
In UML 2.0, the state machines can be used to §peci regions of the composite state.

the behavior of several elements of the modelsritestin Figure 2 corresponds to the UML 2.0 metamodel for
UML 2.0, such as instances of an UML 2.0 class. l&vhi describing components illustring the different tielaships
protocols state machines may be used profitablgximess between concepts (structural and behavioral cosgepta
protocols related to scenarios of use of servicesomponent UML 2.0.

offered by interfaces or ports[12]. Behavioral grdtocol B. Target Metamode: SCA Metamodel

state machines share common elements like staj@nre)]))
vertex, pseudostate, transition... In this section, we describe the different struaitiand
. State: models a situation during which somebehavioral concepts of SCA model necessary for the

invariant conditions holds. construction of its metamodel.

» Region: is an orthogonal part of either a composite 1) Structural concepts of SCA]
state or a state machine. It contains states and Services Component Architecture (SCA) is a set of
transitions. specifications describing a model for building apgtions

« Vertex: is an abstraction of a node in a state inach @nd systems using Service Oriented Architecture $TIA

graph, it can be the source or destination of anyCA complete previous approaches in the implemientaf
number of transitions. services, and focuses on open standards such as Web

« Pseudostate: is an abstraction that encompassg§™VICeS: o
different types of transient vertices in the state SCA Provides an application code based on compsnent
machine graph. and divides the deployment of a service-orientguliegttion

e Transition: it shows the relation ship, or path,Into two stages: .)
between two states or pseudostates. Each transiton © 1he implementation of components that provide and
can have a guard condition that indicates if the consume services.
transition can even be considered (enabled), garig The assembly of sets of components to deploy
that causes the transition to execute if it is &thb applications, by connecting the references to

and any effect the transiton may have when it services. _ .
0CCUrS. An SCA implementatiorrepresents a reusable service

A protocol state machine has the characteristics géneric ~ COMponent that encapsulates the business logistpgorts

state machine (composite states, concurrent regipngith ~ ON€ Or more services. Implementations can be iariety of
the next restrictions on states and transitionk [13 languages, including Java, BPELAWS [15], C, and ODB
. States cannot show entry actions, exit actions/mplementations also define the references depereteion

internal actions, nor do activities. _(’Jther components’ services Fhat the implementaﬁmst
. State invariants can be specified. |nvoke_dur|ng normal operation as well as configiora
¢ Pseudostates cannot be deep or shadow histoE}/rOpe.rt'es' Interface. types (typically WSDL por.t'éysp)
kinds; they are restricted to initial, entry poard escribe both services .and references. Seryu;es
exit pbint kinds. ' references use SCA bindings to configure the iotema

. T it t sh ffect acti rotocol used for providing or using a service. fapes of
ransitions - cannot show €fiect actions or sen indings are the Web services binding (the Webisesv
events as generic state machines can.

- N IIi')rotocol stack) or a messaging backbone.

* Transitions have pre and post-conditions; they can geryices, references, and properties define an SCA
be associated to operation calls. , implementation’s configurable aspects.

* A protocol state machine may contain one or more " ap SCA component is a configured SCA implementation
regions which involve vertices and transitions. Athat sets property values and resolves the refesetacother
protocol transition connects a source vertex 10 &CA components by specifying the component wires
target vertex. A vertex is either a pseudostat@ or (interconnections). An SCA composite (or SCA asdg)iib

The SCA composite can provide for the interactietween
internal components and external applications bijnitg

and

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 420

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

composite services, references, and properties fgEans .
that an SCA composite can be an SCA component rwithi
another SCA composition, with the first SCA comp®si
providing that component’s implementation. In SGHis is

called recursive service composition.

Basic activities specify the actual operations of a
BPEL process. There are three activities involving
Web Services: invoke for synchronous or
asynchronous calls to a remote Web Service, receive
to wait for the receipt of a specific message, and
reply for responding to a remote request.
2) Behavior concepts of SCA All these activities reference a partner link apacfy
SCA specification are based on services which aréput and/or output variables for messages.

becoming more and more popular as means for ddogupl
systems from each other while at the same time mgaki

functionality and data available to all authorizgaplications

on the network.

3) SCA metamodel
Figure 2 corresponds to the SCA metamodel illugtrin

the different relationships between SCA conceptsi¢giral

and behavioral concepts). Relations between theseepts

Behavioral descriptions of services can be defingidg are defined in the following points:
higher level standards such as BPEL (Business Bsoce « An SCA component may have zero or more than one

Execution Language). BPEL is an XML-based langubge service.
models a business process as a composition froet afs « An SCA component may have zero or more than one
elementary web services. reference.

The main concept of BPEL [16] is BPEL process which

) J . €SS An SCA component may have many properties used
defines several concepts like basic and structaotidities,

to configure its implementation

variables, partner links, and handlers. In a singase, a « A service is defined by only one interface and dym
BPEL process defines partner links, variables,atidities. have multiple bindings and it may have also mutipl
« Partner links represent message exchange BPEL process to describe it's behavior.

relationships between two parties. Via a referdonce .
a partner link type the partner link defines theuml
required endpoints of a message exchange: the
myRole and a partnerRole attributes defines who is
playing which role. Partner links are referenced by
basic activities that involve Web Service requests.

* Variables are used to store workflow data as eIl
input and output messages that are exchanged by
Web Services activities via partner links.

¢ Handlers specify responses to unexpected behavior
like time or message events, faults, compensaion,
termination.

A reference is defined by only one interface and it
may have multiple bindings and it may have also
multiple BPEL process to describe it's behavior.
* An interface describes the set of operations affere
by the service or used by the reference.
A composite may be considered as a set of
components, having many properties, services,
references and wires.
A BPEL process is a set of partners, partnerLinks,
variables and activities.
e A partner may have zero or more than one

Nesting of structured activities is used to express partnerLink.
L] .
controlgflow in BPEL. There are specific structﬁred * A parnerlink may have zero or one
S PR P : partnerLinkType which may contain one or two
activities for loops (while, forEach, repeatUntil), Role
sequential execution (sequence), conditional ‘
branching based on data (if) or events (pick), and
concurrent branches (flow).
proporties |5 Broperty . N;b“QSen-ice “fmf‘arli:\tel:a:e EDI.:‘\::S\CQ aperation: Qn(?:“e::ﬁun
0.* = name = name - 0.*
0.*
proportied0--* 0..*fervices I partnerLink |0..*
=l pindi procesq0..* [E Partnertink]
H Binding |5 BPELProcess | partnerLinkq = name
= name [m] [Partner I = name — = myRole
components |5 Component o ari v Siname = = target 0..%| = partnerRole
partners © abstractProcess
0.~ =~ name
[Qvli.r.;hl;ariahl“ procss”
references QDREIBI‘BME Z::‘s‘:age'[vpe QA“?\,}'; activity
0.* = = name
0..*references Y\\
Encnl::r:me wires E:.Y::E] Switch I Invoke] Receive [ELReplay | ™ Fiow E B
= targetI¥. Sp —| = source 3
0.*
Figure 2. Ecore metamodel of SCA
Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 421

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Figure 3 presents the UML 2.0 metamodel for deswgib between structural and behavioral concepts of UMQ 2
components. It is used to describe the differelatiomships component model:

E Activity effect H Transition
0.1 = name transitions
o
outgojng incpming £ Activitykind
o Q.* - Receive
[ProtocolTransition| - IRZ‘;:::
£ Pseudostatekind
spltce thrget H state - initial
N 141 o isComposite - deepHistory = e E—r
H Vertex HRegion | 1.* | = is0rthogonal £ Root classifiers |2 Classifier | | - shallowHistory =_P_arameterDlrectmnKlnd
- byertes— —| o isSimple = name = join - n
name ' name regionj = isSubmachine... 0.* - fork . lncltut
- o action = junction _ m’i
region] 1" -~ choice return
| = entryPoint
= exitPoint
= terminate
g StateMachine 0.* comnectionPoint
=L H PseudoState H Connector
= kind H Propertyu - | structuredClassifierownedconnector| = Name
i = name - = o type
ownedattribute L=
A
interfaces P
g - " dpurts * 2.+ end
Interface| provide = -
H ProtocolStateMaching) 1 = name nﬁ;.* E port ownedport H EncapsulatedClassifier QDC:;::zcturEnd
protocol equir"ed 0.* x
Erultomf endf0.”
on ole
0..* |operation [Class 5 ConnectableElmt
[Parameter [Operation = name
o direction | 0..* = name
O name
formalParameter
H Component
Figure 3. Ecore definition of the UML 2.0 component part
W Port with required interface Reference
. THE TRANSFORMATION RULES PartnerLink
In. this section, we present the transformation srule Interface Interface
allowing the passage from an UML 2.0 component rhtmle Operation Operation
an SCA model. The transformation rules are estaddis
between source and target metamodels, in other sword Property Property
between all the concepts of source and target raodel ConnectorEnd Binding
(structural and behavior concepts). These rulesbeedly Connector Wire
fexplalln?d dln the f?AIOVX'_Ir_‘E tablte in natural llan%%zj&d then Protocol State Machine Process BPEL
ormulated using the syntax previously introddc Parameter Variable
TABLE I. SUMMARY OF THE TRANSFORMATIONRULES Region S?QUGH_C?
State Basic Activity
UML 2.0 concepts of source SCA concepts of target model .
model (Receive,Invoke,Replay|
Component Component SCA PseudOState (k|nd: Choice‘) SW|tCh
Partner PseudoState (kind= fork) Flow
Port with provided Service PseudoState (kind= Exit
interface PartnerLink exitPoint)

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 422

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Before starting to define some transformation rules
will give the general form of these:

rule ForExample |

from
1 ¢ InputMetalModel!InputElement
to
o & OQutputMetaModel!OQutputElement (
attributeA <- i,attributeB,
attributeB <- i,attributeC + i,attributeD)|

We will now proceed to the definition of some ofrou after we have implemented the transformation ridethe

transformation rules using the ATL language: ATL language. Once the transformation program

Figure 4. An example of ATL rule

ForExample: is the name of the transformation rule.

i (resp. 0) is the name of the variable represgntin
the identified element source that in the bodyhef t
rule (resp. target element created).

InputMetaModel (resp. OutputMetaModel) is the
metamodel in which the source model (resp. the
target model) of the transformation is consistent.
InputElement means the metaclass of elements of
source model to which this rule will be applied.
OutputElement means the metaclass from which the
rule will instantiate the target elements.

The exclamation point ! used to specify to which
meta model belongs a meta class.

attributeA and attributeB are attributes of the anet
class OutputElement, their value is initializedngsi
the values of attributes i.attributeB, i.attricOtand

r ul e port2service{

f r omp:UML!Port(
p.provided->notEmpty())

t 0 ps:SCA!Service(

name<-p.name+ '_service port' ,
interface<-p.provided->first(),
component<-p.owner,
bindings<-p.end,process<-
p.protocol),
pl:SCA!PartnerLink(name<-p.name,
myRole<- 'ITF_' +p.name+ 'Provider' ,
partnerRole<- "
owner<-p.protocol)

* Rule that transforms a Protocol State Machine to a

BPEL process.

rul e psm2BPELprocess{

f r omps: UML!ProtocolStateMachine

t o p: SCAIBPELProcess(name<-ps.name,

targetNamespace<-

‘http://' +ps.name+ ‘.org/' ,
abstractProcess<- false)}

V. IMPLIMENTATION AND EXECUTION OF THE
TRANSFORMATION RULES

At first, we have developed two ECORE models

i.attributeD of the meta class InputElement. corresponding to source metamodel and target mekamo

Rule that transforms an UML 2.0 component to anUML2SCA.atl is created, then we can start the ettecu
SCA component, here an SCA component takes th&he general context of the ATL transformation lgstrated
same name as a UML 2.0 component. This rule also Figure 5 below.

allows the transformation of each instance of an

The engine of transformation allows generatingSaA

UML 2.0 component in a BPEL Partner in SCA model, which is consistent to SCA metamodel, frdm t
model. UML 2.0 model which is consistent to UML 2.0 metatab
using UML2SCA.atl program which must be also carsits

r ul e component2componentsca

f romc:UML!Component

t o cs:SCAIComponent(

name<-c.name+ '_serviceComponent' ,
proporties<-c.ownedattribute),
p:SCA!Partner(name<-c.name,
owner<-c.ownedport-

>first().protocol)

Rule that transforms an UML 2.0 port with provided
interface to an SCA Service. This rule allows also
the transformation of each port in UML 2.0 into
aPartner Link BPEL in SCA model.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Ecore

consistent to consistent to
T consistent to

UML 2.0

Metamodel SCA Metamodel

R, A
_“ /
\] /,

i consistentto

e S
s
N 4 use

UML2SCA atl .
consistent to

consistent to

UML 2.0 Model SCA Model

A
| use
N .4 ? ouT

Figure 5. General context of ATL transformation

to metamodel that defines the semantics of ATL
transformation. All metamodels must be consistenthe
Ecore metamodel.

423

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

To validate our transformation rules, we completed 2 scAumi 53

SR B platform: fresource JUML2SCA fmodels /SCA. xmi

several tests. As an illustration, we consider ¢ixample
below (Figure 6). The example studied is an exaroplan
automated banking machine (ABM). Any person with an
appropriate card can use the ABM to take moneytake
the money, a customer must be identified.

Our example can be modeled in UML 2.0 as follows: ¢
customer is modeled by a Customer component wjtbra
named abm typed by a required interface named mtifthe
The ABM is modeled by an ABM component having port
named customer typed by provided interface nameitify.
These two components are connected by a conneahoedh

=4 Component ABM_serviceComponent
= 4 Service customer_service port
4 Interface identify
4 Binding attach_customer_bind
#- 4 BPEL Process identification
=4 Component Customer_serviceComponent
= 4 Reference abm_reference port
4 Interface authentify
4 Binding attach_zsbm_bind

Customer-ABM.

authentify

>

component ABM component Customer

customer
abm

component ABN component Customer

m b connector abm

Customer -ABM

Figure 6. Source model

Behavior of ABM component is described using its
interface identify. Behavior of this last one isdébed using

a protocol state machine named identification.
We get the following input model as shown in Figdre

i UML2sourcemodel.xmi &2

SE ¥ platform: fresource /UML 2SCA /models/UML 2sourcemodel xmi
=l 4 Root
=l 4= Component ABM
=4 Connector Customer-ABM
4 Connector End attach_customer
4 Connector End attach_abm
4+ Port customer
=l < Component Customer
4+ Port abm
= 4 Interface identify
-4 Protocol State Machine identification
+- 4 Interface authentify
+ U platform: fresourceUML 25CA fmeta-models UML. ecore

Figure 7. Source Model in Text Editor View

= 4 BPEL Process authentification
4 Partner Link abm
% Wire Customer-ABM
+ |ﬂ platform: fresource /JUML2SCA fmeta-models/SCA. ecore

Figure 8. Target Model in Text Editor View

We can see from Figure 8 that each UML 2.0 compibnen
has been transformed into an SCA component, eathmpo
UML 2.0 typed with provided interface has been sfarmed
into an SCA service, each port with required irzteef has
been transformed into an SCA reference and eatdmices of
an assembly connector (in our example Customer-ABas)
been transformed into an SCA wire (wire CustomeivAB
Concerning the behavioral part, each instance ofoPol
State Machine in UML 2.0 has been transformed imto
BPEL Process in SCA.

VI. CONCLUSION

We applied the MDE approach to service-oriented
applications engineering. It is a question of gatieg the
ingredients of an SCA application from an UML 2.0
component diagram. To reach there, we elaboratditsat
time the source metamodel representing an UML 2.0
component diagram. At the level of target metamodeltry
to design all the metaclasses needed to gener&8h\a
model respecting the SCA architecture. Transfoionatiles
have been developed in ATL language. The transfiioma
process allows generating an XMl file containingtraictural
and behavioral description of the SCA applicati®@CA
components, services, references, interface, dpesat
bindings as well as the process BPEL used to dsthie
behavior of SCA application.

As future work, we intend to more improve the
behavioral aspect of SCA application and to tryreat the
composite aspect in SCA.

REFERENCES

[1] OSOA, Open Service Oriented Architecture, the Hétage,
2007. http://www.osoa.org/

When the model is validated and there are no ertioes 2]
user can run the ATL model transformation to transfthe
UML 2.0 model into SCA model and the SCA Ecore nhode[3]
is created. The result of this transformation isvah in
Figure 8 below.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Open SOA Collaboration, Service Component Architeet
(SCA), SCA Assembly Model v1.00 specifications, 200

B. Combemale, “ Approche de Métamodélisation ptaur
Simulation et la Verification de Modéle”. Toulou2£08.

424

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

[4] J. Troya and A. Vallecillo, “ Towards a Rewritingodic
Semantics for ATL". ISUM/ A tenea Research Group.
Universidad de Maalaga, Spain.

[5] J. Bézivin, “Sur les Principes de L'ingénierie désdéles”,
RSTI_L'objet 10, ou sont les objets?, 2004.

[6] OMG, Meta Object Facility (MOF) specification —viens 1.4
formal, April 2002.

[71 The LINA website. Available: http//www.sciences.ni
nantes.fr/lina/atl

[8] B. Combemale and S. Rougemaille, “-ATL- Atlas
Transformation Language”, 2005.

[9] OMG, “ Meta Object Facility (MOF) specification, n&on
1.3,” Mars 2000.

[10] X. Blanc, “MDA en Action Ingénierie Logicielle Gués Par
les Modéles”, Eyrolles 2005.

[11] M. Graiet, “Contribution a une Démarche de Vérifica
Formelle d’Architectures Logicielles”, 2007.

[12] OMG, “Unified Modeling Language : Superstructuresien
2.0".

[13] C. Dumez, NAIT-sidi-moh, J. Gaber and M. Wack,
“Modeling and specification of Web services composi
using UML-S".

[14] F. Curbera, “Component Contracts in Service-orignte
Architectures”, IBM T.J. Watson Research Centei720

[15] OASIS, “Service Component Architecture WS-BPEL @lie
and Implementation Specification Versionl1.1", 2009.

[16] T. Ambuhler, “UML 2.0 Profile for WS-BPEL with Majpg
to WS-BPEL".

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

425

