ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

A Proof-based Approach for Verifying Composite
Service Transactional Behavior

Lazhar Hamel

MIRACL, ISIMS, TUNISIA
lazhar.hamel@gmail.com

Mourad Kmimech

MIRACL, ISIMS, TUNISIA
mkmimech@gmail.com

Mohamed Graiet

MIRACL, ISIMS, TUNISIA
mohamed.graiet@imag.fr

Mohamed Tahar Bhiri

MIRACL, ISIMS, TUNISIA
Tahar_bhiri@yahoo.fr

Walid Gaaloul

Computer Science Department Télécom SudParis
walid.gaaloul@it-sudparis.eu

Abstract— Web services are software components accessible tools and languages do not provide high-level cptscéor

via Internet. Web services are defined independentifrom any
execution context. A key challenge of Web servicempositions
is how to ensure reliable execution. Due to theirnherent
autonomy and heterogeneity, it is difficult to reaen about the
behavior of service compositions especially in cagé failures.
In this work, we propose an approach to formalize anodel of
Web services composition to check and ensure relieb
execution. To achieve this, we propose a proof orited
approach for the formalization and verification of
transactional behavior of web services compositionusing
Event-B.

Keywords-web service composition; Event-B; transactional
web service; proof; verification.

l. INTRODUCTION

express transactional composite services properiiée
execution of composite service with transactionmapprties

is based on the execution of complex distributadgactions
which eventually implements compensation mechanigns
compensation is an operation the goal of whicloisancel
the effect of other transaction that failed to becgssfully
completed. several transactions models previousipgsed

in  databases, distributed systems, collaborative
environments. In order to manage with this focusnyna
specifications proposed to response to this aspsis-
Coordination [1], WS-AtomicTransaction [2] and WS-
BusinessActivity [3]. Many research in this fieldnéng for
instance to guarantee that an activity is candellabd / or
compensable. The verification step will help ensauertain
level of confidence in the internal behavior of an
orchestration. Several approaches have been pjrogais

Web services are emergent and promising technalogiglirection, based on work related to the transitigstem [4],
for the development, deployment and integration ofprocess algebras [5], or the temporal theories [6].

applications on the internet. One interesting featis the
possibility to dynamically create a new added valaevice
by composing existing web services, eventually refleby

Our work deal with the formal verification of the

transactional behavior of web services compositlonthis

paper, we propose to address this issue using odf

several companies. Due to the inherent autonomy ang@finement based techniques, in particular the EBen

heterogeneity of web services, the guarantee ofecor

method [7] used in the RODIN platform [8]. Our apgch

composite services executions remains a fundamentabnsists on a formalism based on Event-B for spiegjf

problem issue. An execution is correct if it reachts
objectives or fails properly according to the desits

composite service (CS) failure handling policiesisTformal
specification is used to formally validate the dstesicy of

requirement or users needs. The problem, which e athe transactional behavior of the composite semioelel at
interested in, is how to ensure reliable web sesiic design time, according to users’ needs. We prodose

compositions. By reliable, we mean a compositiorenetell
the executions are correct.

formally specify with Event-B the transactional \dee
patterns. These patterns formally specified as tevand

Some web services are used in a transactional x@pnte invariants rule to check and ensure the transagition

for example, reservation in a hotel, banking, ethe
transactional properties of these services carnxpited in

consistency of composite service at design time.stMo
previous work is based on the model checking tegrenand

order to answer their composition constraints ahé t does not support the full description of transatloweb

preferences made by designers and users. Howeweent

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6

services. Refinement and proof techniques offegeBent-

386



ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

B method are used to explore it and in section Hiseuss
this approach.

This paper is organized as follows. In Section 2 w
introduce a motivating example. Section 3 presehts

of our approach is the flexibility that we provide the
designers to specify their requirements in termstafcture
of control and correction. Contrary to the ATMs,[@f start
from designers specifications to determine thesgational

Event- B method, its formal semantics and its proofmechanisms to ensure reliable compositions acaprttn

procedure and introduces our transactional CS mddel
Section 4, we present how we specify a patternebas¢he
transactional behavior using the Event-B. An ovewof the
validation methodology is given in Section 5.

In this section, we present a scenario to illustratir
approach we consider a travel agency scenario rgidu
The client specifies its requirement in terms aoftifations
and hotels via the activity “Specification of ClteNeeds”
(SCN). After SCN termination, the application labas
simultaneously two tasks “Flight Booking” (FB) afidotel
Reservation” (HR) according to customer's choicewcé
booked, the “Online Payment” (OP) allows customirs
make payments. Finally travel documents (air tickatl
hotel reservations are sent to the client via diiheservices
“Sending Document by Fedex” (SDF) ,"Sending Documen
by DHL” (SDD) or “ Sending Document by TNT” (SDT).
To guarantee outstanding reliability of the servite

MOTIVATING EXAMPLE

their requirements. We show how we combine a set of
transactional service to formally specify the temtonal CS
model in EVENT-B.

A. Event-B

B is a formal method based on he theory of sethlary
incremental development of software through sedalent
refinement. Event-B is a variant of B method introeld by
Abrial to deal with reactive system. An Event-B rabd
contains the complete mathematical development of a
discrete system. A model uses two types of entites
describe a system: machines and contexts. A machine
represents the dynamic parts of a model. Maching ma
contain variables, invariants, theorems, variamts avents
whereas contexts represent the static parts ofdeimid may
contain carrier sets, constants, axioms and thesorem

Refinement: The concept of refinement is the main
feature of Event-B. it allows incremental designsgétems.

In any level of abstraction we introduce a detdiltloe

designers specify that services FB, OP and SDT wilfystem modeled. A series of proof obligations mbet

terminate with success. Whereas on failure of e

discharged to ensure the correction of refinementthe

service, we must cancel or compensate the FB servi®roof obligations of the concrete initialization,het

(according to his current state) and in case dfifaiof the
SDF, we have to activate the SDD service as amalige.

The problem that arises at this level is how tockhe
ensure that the specification of a composite sereigsures
reliable execution in accordance with the designer’
requirements. To do so, the verification procesailshcover
the composite service lifecycle. Basically, at gegime the
designer should respect the transactional consigtettes.

ActivateSHD
when SDF fail

Cancel or
compensate FB
when HR fail

SDD

‘[.[ ANY
HOX

SDT

Figure 1. Motivating example

I1l.  FORMALIZING TRANSACTIONAL COMPOSITE SERVICE

WITH EVENT-B

To better express the behavior of web services ave h
enriched the description of web services with taatienal
properties. Then we developed a model of Web sesvic
composition. In our model, a service describes bath
coordination aspect and a transactional aspectth®rone
hand it can be considered as a workflow services.tf@
other hand, it can be considered as a structuegddction

refinement of events, the variant and the provd tima
deadlock in the concrete and the abstract machine.
Correctness checking: Correctness of Event-B mashin
is ensured by proving proof obligations (POs); treg
generated by RODIN to check the consistency oftbeel.
For example: the initialization should establisk thvariant,
each event should be feasible (FIS), each giventesk®uld
maintain the invariant of its machine (INV), anc thystem
should ensure deadlock freeness (DLKF). The guiddtize
action of an event define a before-after predidatethis
event. It describes relation between variables reethe
event holds and after this. Proof obligations amedpced
from events in order to state that the invariamdiibon is
preserved. Let M be an Event-B model with v being
variables, carrier sets or constants. The properté
constants are denoted by P(v), which are predicaves
constants, and the invariant by I(v). Let E be aené of M
with guard G(v) and before-after predicate R(v,. ihe
initialization event is a generalized substitutmithe form
v: init(v). Initial proof obligation guarantees thahe
initialization of the machine must satisfy its imiaaat: Init(v)
=1(v). The second proof obligation is related torgge Each
event E, if it holds, it has to preserve invariaihe
feasibility statement and the invariant preservatoe given
in these two statements[10].
I(v) AG(V) AP(V)= 3V R(v, V')
I(v) A G(V) A P(V) A R(v, V)= I(V)
An Event-B model M with invariants | is well-formed
denoted by M |= | only if M satisfies all proof adgtions.

when the services components are sub-transactiods a

interactions are transactional dependencies. Tlgnality

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6

387



ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

B. Transactional web service model

complete enables to finite the execution of a serwith
uccess and pass it from active status to completed

By Web service we mean a self-contained modula
program that can be discovered and invoked across t
Internet. Each service can be associated to ayifée or a
statechart. A set of statemifial, active, cancelled, failed,
compensated, completed) and a set of transitionadtivate(),
cancel (), fail(), compensate (), complete()) are used to
describe the service status and the service bahario
service ts is said to be retriable(r) if it is stoecomplete
after finite number of activations. ts is said to be
compensatable(cp) if it offers compensation pdiici®
semantically undo its effects. ts is said to betfp) if once
it successfully completes, its effects remain aadnot be
semantically undone. Naturally, a service can combi
properties, and the set of all possible combinatisr{r; cp;

p; (r; cp); (r; p)H11].

The initial model includes the conteSdrviceContext and
the machineServiceMachine. The contextServiceContext
describes the conceptsSWT which represents all
transactional web services alIATES represents all the
states of a givenSWT. These states are expressed a
constants. A set name8TATES is defined in the SETS
clause which represents the states that describbehavior
of such a service. A set nam@W/S is defined in the SETS
clause which represents all transactional web cesvi
CONTEXT ServiceContext
SETS

SWT
STATES

AXIOMS
Axml: STATES= {active, initial, aborted, cancelledhiled,
completed, compensated}

The service state which is represented by a fumatio
relation service_state defined in VARIABLES clause gives
the current state of such a service. The transadtlmehavior
of a transactional web service is modeled by a inachnvl
the invariant specifies thaervice state is a total function,
and that each service has a state.

MACHINE ServiceMachine
SEES ServiceContext
VARIABLES

Service_state

SWT_C

SWT_P

SWT_R

INVARIANTS

Invl: service_staBESWT—-STATES
Inv2: SWT_Cc SWT

Inv3: SWT_RCc SWT

Inv4: SWT_Pc SWT

In our model, transitions are described by the eveor
instance the event activate changes the statusef/ice and
pass it from initial status to active. The eveninpensate
enables to compensate semantically the work ofreicse
and pass it from completed status to compensa.evant
retry changes the status of a service and activatiéer his
failure and pass it from failed status to activée Tevent

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6

Activate2= ANY s WHERE

grdl : €&SWT

grd2 : service_state (s) =initial
THEN

actl : service_state (s):=active
END

CompensateeANY s WHERE

grdl : &€SWT_C

grd2 : service_state (s) =completed
THEN

actl : service_state (s):=compensated
END

C. Transactional composite service

A composite service is a conglomeration of existivigh

services working in tandem to offer a new valueeatd

ervice [12]. It orchestrates a set of servicess asmposite
service to achieve a common goal. A transactionaiposite

(Web) service (TCS) is a composite service compaxfed
transactional services. Such a service takes aalyardf the
transactional properties of component services pecify
failure handling and recovery mechanisms. Congretal
TCS implies several transactional services andritescthe
order of their invocation, and the conditions ungéiich
these services are invoked.

To formally specify in Event-B the orchestration we
introduced a new contegtompositionContext which extends
the context ServiceContext that we have  previously
introduced. The first refinement includes the crnte
CompositionContext and the machin€ompositionMachine
which refine the machine introduced at the initi@del. In
this section we show how formally the interactidretween
CS are modeled. We introduce the concept
dependenciedépA, depANL, depCOMP...).

MACHINE CompositionMachine
REFINES ServiceMachine
SEES CompositionContext

of

Dependencies are specified using Relations condejs.
simply a set of couples of services. For examgdpA
represents the set of couples of services that lzave
activation dependency.

Axml : depAeSWT-SWT
Axm2 : depALESWT—SWT

These dependencies express how services are coapded
how the behavior of certain services influenceshileavior
of other services. Dependencies can express différads
of relationships (inheritance, alternative, comagios, etc.)
that may exist between the services. We distingoéttveen
“normal” execution dependencies and “exceptional” o
“transactional” execution dependencies which expriae
control flow and the transactional flow respectyelhe

388



ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

control flow defines a partial services activatioosler
within a composite service instance where all sewiare
executed without failing cancelled or suspendedniadly,

we define a control flow as TCS whose dependenaies
only “normal” execution dependencies.

tightly related to the control flow. The recovergohanisms
(defined by the transactional flow) depend on thei@n
process logic (defined by the control flow).

The use of the recovery mechanisms described ttirew

Alternative transactional behavior varies from one pattern riottzer.

dependencies allow us to define forward recovery!Nus, the transactional behavior flow should resmecne

mechanisms. A compensation dependency allows us
define a backward recovery mechanism by compensatio

cancellation dependency allows us to signal a eservi

execution failure to other service(s) being exeduie
parallel by canceling their execution.
dependencies express a succession relationshigoetwo
services g@and $.But it does not specify when svill be

(é‘pnsistency rules(INVARIANT) given a pattern. Thegkes
e

Activation

scribe the appropriate way to apply the recovery
mechanisms within the specified patterns. Recogerin
properly a failed composite service means: tryimgt fan
alternative to the failed component service, otlisgw
canceling ongoing executions parallel to the failed
component service, and compensating the partialk wor
already done. The transactional consistency rulesure

activate event which refines the activate event of thaahit

pattern. In the following we formally specify thepatterns

model expresses when the service will be activeaas and related transactional consistency rules usiemeB.

successor to other (s) service (s) (only afterténmination
of these services). For example, our motivatingmgle
defines an activation dependency from HR and FBOR
such that OP will be activated after the completidrHR

and FB. That means there are two normal dependencie

from HR to OP and from FB to OP.

At this level, the refinement of the compensatenei®a
strengthening of the event guard to take into cmration
the condition of compensation of a service whererzice
will be compensated. The guagid4 in the compensate
event in expresses that the compensation of acgesviis
triggered when a service sO failed or was compedsand
there is a compensation dependency from s to séreldre
compensate allows to compensate the work of acgeafter
its termination, the dependency defines the mesharior
backward recovery by compensation, the conditiateddas
a guard specifies when the service will be compedsa

Compensatee REFINES Compensate

grd43s0-sESWTAsO-sedepCOMP>((service_state(s0)=failed)
V (service_state(s0) = compensated))

THEN
actl :
END

service_state (sjcompensated

IV. TRANSACTIONAL SERVICE PATTERNS

The use of workflow patterns [13] appears to be an

interesting idea to compose Web services. Howexgrent
workflow patterns do not take into account the $eartional
properties (except the very simple cancellationtepas
category). It is now well established that the seational
management is needed for both composition
coordination of Web services. That is the reasory e
original workflow patterns were
transactional dependencies, in order to providesl@hie
composition [14]. In this section, we use workflpatterns
to describe TCS's control flow model as a compositi
pattern. Afterwards, we extend them in order tocsgpe
TCS’s transactional flow, in addition to the cohfiow they
are considering by default. Indeed, the transaatifiow is

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6

and

augmented  with

T [F—0—1 [

AND-split XOR-split AND-join

Figure 2. Studied patterns

Our model introduces a new conteéxtd-patternContext
which extends the contex€Composition-Context and a
machine transactional patterns which refines thehine
CompositionMachine. To extend these patterns we introduce
new events that can describe them. For examplextend
the pattern AND-split the machine introduces a reaent
AND-split which defines the pattern AND-split. Due to the
lack of space, we put emphasis on the followingeghr
patterns AND-split, AND-join and XOR-split to exjotaand
illustrate our approach, but the concepts preseméed can
be applied to other patterns.

An AND-split pattern defines a point in the process
where a single thread of control splits into mudtithreads
of control which can be executed in parallel, thillewing
services to be executed simultaneously or in adgror

AND-split 2

ANY

SO

SWToutside

WHERE

grdl : SWToutsideSWT_AS
grd2 : S@SWT_AS

grd3 : S@SWToutside
grd4 : service_state(S0)=complete
THEN

actl : stateSWTostactivated
END

389



ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

The SWToutside represent the set of services..(s)
and sO is represented by sAS.
To verify the transactional consistency of thestepas

The transactional consistency rules of the AND-join
pattern supports only compensation dependencies for
SWToutside, sAJ can not be compensated BNToutside

we add predicates in the INVARIANT clauses. Theseservices as they are executed after (inv 24).

invariants ensure transactional consistency aaegrth the
context of use. These rules are inspired from [id]ch
specifies and proves the potential transactionpédéencies
of workflow patterns. The transactional consistendgs of
the AND-split pattern support
dependencies fro@VToutside (Inv 23).
¢ Inv23: Vs.seSWToutside?sAS>stdepCOMP

The compensation dependencies can be applied vaty o

already activated services. The transactional stersiy
rules supports only cancellation dependencies leztvomly
the concurrent services. Any other cancellatioaltarnative
or compensation dependencies between the pattrvies
(Inv 11, 12) are forbidden.

e Inv11: Vs.se SWT_AS=s>sAStdepANL

e Invl2:V's, sl.s= SWT_AS/A sl€ SWT_AS=s»slé

depAL

Our example illustrates the application of AND-spli

pattern to the set of services (SCN, HR, FB) aretiips
that exist a dependency of compensation from HRB@nd
a cancellation dependency also from HR to FB. Tieedjof

the AND-split event represents the conditions of activation of

the pattern. In our example SCN must terminatesvask
before activating the pattern. In order to ensameormal
execution of the event an invariant must be preskrdyy
AND-split event that express that @WToutside services
have an activation dependency fraAS

* Inv13: Vs.s= SWToutside>sAS>sédepA

An AND-join pattern defines a point in the processere
multiple parallel subprocesses/services converge ane
single thread of control, thus synchronizing midtifhreads.
To extend the pattern AND-join, the machine introgki a
new eventAND-join which defines the control flow of the
AND-join pattern.

AND-join =

ANY

SO

SWToutside

WHERE

grdl : SWToutsideSWT_AJ
grd2 : SeSWT_AJ

grd3 : S@SWToutside

grd4 : vses=SWToutside>service_state(s)=complete
THEN

actl : service_state(S8) active
END

Our example illustrates the application of AND-join

pattern to the set of services (HR, FB, OP). Thardwof the
AND-join event represents the conditions of actomf the

e Inv 24: Vs.s= SWToutsideAd>s>sAFdepCOMP

The transactional consistency rules of the AND-joi
pattern support also cancellation dependenciesdestwnly
the concurrent services. Any other cancellatioaltarnative

only compensationor compensation dependencies between the patsvies

are forbidden.

e  Inv25:Vs.s= SWToutsideAds>sAkdepANL

An XOR-split pattern defines a point in the process
where, based on a decision or control data, ongewéral
branches is chosen. To extend the pattern XOR-gpkt
machine introduces a new eve{®R-split which defines the
pattern XOR-split.

XOR-split &

ANY

SO

SWToutside

S

WHER

grdl : SWToutsideSWT_XS
grd2 : S@SWT_XS

grd3 : S@SWToutside

grd4 : service_state(S0)=complete
grd5 : swSWToutside
THEN

actl : service_state(swhctive
END

The XOR-split pattern supports alternative depenigsn
between only the serviceSNToutside, as the alternative
dependencies can exist only between parallel and no
concurrent flows. The XOR-split pattern support oals
compensation dependencies fr&Toutside to sXS

e Inv18:Vs.s= SWT_XS\{sXS}=>ssXSEdepCOMP

Any other cancellation or alternative or compersati
dependencies between the pattern’s services drielden.

e Invl5: V's.se SWT_XS=g>sXStdepAL

e Inv22:Vs.5= SWT_XS\{sXS}=sXS>stdepCOMP

Our example illustrates the application of XOR-spli
pattern to the set of services (OP, SDD, SDF, Sax)
specifies that exist an alternative dependency ftdiR to
FB. The guard of theXOR-split event represents the
conditions of activation of the pattern. The ex&puof OP
service must be completed for activate XOR-splittgpa.
After the activation one service from (SDD, SDF,F5vill
be active.

V. VALIDATION
In the previous section, we showed how to formsfigcify

pattern. HR and FB must terminates its work beforét TCS using Event-B. The objective of this sectisrio

activating the pattern. The termination of HR isemsary
and not efficient to activate the pattern. 8iWToutside , HR
and FB, services must complete their work.

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6

show how we verify and validate our model usingofand
ProB animator[15]. In the abstract model the dekire
properties of the system are expressed in a prtedozded
invariant, it has to prove the consistency of tinigariant

390



ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

compared to system events by a proof. We find nprogf
obligations (Figure 3). Each of them has got a coumpl
name for example, « evt / inv/ INV ». A green Iagjtuated
on the left of the proof obligation name statest thdas
been proved (an A means it has been proved autcetig}i

can not exist a compensation dependency from SGiRto
A red logo with a "?” appear in the proof tree antheans
that is not discharged. This basic example shows ihds

possible to formally check the consistency of teaignal
flow using Event-B. To repair this error we canereto the

In our case shown in Figure 3 the tool generates thinitialization of the machine and verify the compation

following proof obligations « activate / invl / IN¥ and «
compensate / invl / INV » . This proof obligationler
ensures that the invariaimv1 in theCompositionMachine is
preserved by events activate and compensate. Fgsiiew
also the proof obligations «compensate / grd2 / $WDhis
proof obligation rule ensures that a potentiallydgfined
guard is indeed well defined.

Ewent
P activate { <52
b abort {<a)

- Fail =&

P cancel =62
= compensate

P complete { &3

FParameteris)
ECD
ECD
ECD
EDD

E: Ewvent-B Explorer =32 = Rodin Problems

E”+H

<
== composition_context
=@ serviceContext
=1 [ Machine
* - @ “ariables
+ - ¢ Inwarianks
=l L Events
Fl W INITIALISATION
=l FF  activate
@3 ackivabteigrdz s

@ activars/grd3fivwD
A" activatefiree 1 TR
abort

Fail

cancel

compensate

@ compensatefardz WD

4

@@ compensate/ard3/wWD
3" compensate finw 1 FIRY
complste

rekry

FProof Obligations

e
ESp

=) G

Figure 3. Proof obligations and animation

Our work is proof oriented and covers the transaecti web
services. All the Event-B models presented in thaper
have been checked within the RODIN platform. Theopr
based approaches do not suffer from the growingbeurof
explored states. However, the proof obligationsipoed by
the Event-B provers could require an interactiveopr
instead of automatic proofs. Concerning the praoicess
within the Event-B method, the refinement of trarizmal

dependencies.

After the initialization of the ServiceMachine the
compensate event is disabled and after the teriaimaf the
execution of a service the event will be enabledBRoffer
to the developer which parameter is used in thenatibon
by clicking right on the event.

B IMITIALISATIOMNfr S I
& ! !
B IMNITIALISATION N2 IMNY
S IMITIALISATIORN In LOFINY
S IMITIALISATION M 1 1 FIMY
S IMNITIALISATIORN M LSIIMNY
S IMNITIALISATIORN M LSS IMNY
B IMITIALISATION M 1S TR
& ! !
S IMNITIALISATIORN N2 1 FIMY
S INITIALISATION N2 T
S IMITIALISATIOMNS N2 S TR
7 ol ! i
S IMNITIALISA TION N 2SI
3" AMD-splitfgrda i wio
@ ArD-split finw 29 I
@3 ArD-splicfgrdziGRD
@3 ArD-splicfgrdeGROD

Figure 4. A red logo indicates that the proof obligationad discharges

In the development of our model some proof oblayati
are not discharged but the specifications is comaecording
to our work in [6] which is specified and validateding
Event Calculus. To do so, we use ProB animatoretafyv
our specification of transactional web servicesisTtase
study has shown that the animation and model-chgckie
complementary to the proof, essential to the vabdaof
Event-B models. In other case, many proved mogelsof
obligations are discharged) still contain behavideailts,
which are identified with the animators. The mailvantage
of Event-B develop that can repair errors during th
development. It allows the backward to correct gjpation.
With refinement, the complexity of the system istdbuted;
the step by step proofs are more readily. Eventi@&®more
flexibility and expressivity than the input langeagof model
checkers.

web services Event-B models can be performed. This

refinement allows the developer to express thevagie
properties at the refinement level
expressible. The refinement is a solution to redths
complexity of proof obligations.

In our example the designer can initially specig CS
transactional behavior, that FB will be compensated
cancelled if HR fails, SDD is executed as alteneatf SDF
failure. The Event-B formalization of our motivagin
example defines a cancellation
compensation dependency from HR to FB and altemmati
dependency from SDF to SDD. For example, by chmecki

the compensation dependency between SCN and HR tr&%

RODIN platform mentioned that the proof obligatiomas
not been discharged (Figure 4). As HR is execuftst,at

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6

where they ar

dependency an

VI. CONCLUSION AND FUTURE WORKS

®rhe paper addresses the formal specification, igatibn

and validation of the transactional behavior ofvims
compositions within a refinement and proof baseutagch.
The described work uses Event-B method, refinenfient
establishing proprieties. This paper presents oodehof
web service enriched by transactional propertiebetier
gxpress the transactional behavior of web servéoes to
nsure reliable compositions. Then we describe hawv
combine a set of services to establish transadtiona
composite service by specifying the order of execubf
mposed services and recovery mechanisms in dase o
failure. Finally we introduced the concept of comsipion

391



ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

pattern and how we uses it to specify a transaation
composite service.
In our future works we are considering the daling
perspectives:
* Using automation approach of MDE type to verify
transactional behavior of services compositions.

REFERENCES
[1] L.P. Cabrera, G. Copeland, M. Feingold, R.W. Freuhd

Freund, J. Johnson,S. Joyce, C. Kaler, J. Klein, D.

Langworthy, M. Little, A. Nadalin, E. Newcomer,Drchard,
I. Robinson, J. Shewchuk, and T. Storey. Web
servicescoordination(ws-coordination), 2005.

[21 L.P. Cabrera, G. Copeland, M. Feingold, R.W. Freuhd

Freund, J. Johnson, S. Joyce,C. Kaler, J. Klein, D.

Langworthy, M. Little, A. Nadalin, E. Newcomer, D.
Orchard,l. Robinson, T. Storey, and S. Thatte. Wetvices
atomic transaction (wsatomictransaction), 2003.

[3] L.P. Cabrera, G. Copeland, M. Feingold, R.W. Freuhd
Freund, S. Joyce,J. Klein, D. Langworthy, M. LittlE.
Leymann, E. Newcomer, D. Orchard, I. Robinson, orét,
and S. Thatte. Web services business activity freongws-
businessactivity), 2003.

[4] R. Hamadi and B. Benatallah, “ A petri net-basediehdor
web service composition,” Fourteenth Australasiatabase
Conference (ADC2003), 2003.

[5] G. Sala’un, A. Ferrara, and A. Chirichiello, “Neigtibn
among web services using lotos/cadp,” European €ente
on Web Services (ECOWS 04), 2004.

[6] W. Gaaloul, S. Bhiri, and M. Rouached, “Event-BaBesign
and Runtime Verification of Composite Service Tat®nal
Behavior ,” IEEE Transactions on Services Compuytiog
Feb. 2010. IEEE computer Society Digital LibranEEE
Computer Society.

[71 J.R. Abrial: Modeling in Event-B: System and Softea
Engineering, cambridge edn. Cambridge UniversitgsBr
(2010).

[8] J.R. Abrial., M. Butler, and S. Hallerstede, “ Arpem
extensible tool environment for Event-B,” .ICFEMAB\CS
4260, Springer, pp. 588-605, 2006.

[91 A. K. Elmagarmid, Database transaction models ftwaaced
applications. San Francisco, CA, USA: Morgan Kaufma
Publishers Inc., 1992.

[10] C. Metayer, J. Abrial, and L. Voisin , “Event-B Lgumge.
Technical Report D7,” z RODIN Project Deliveraki?@05.

[11] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silsdratz, “A
transaction model for multidatabase systems.” ID@S,
1992, pp. 56-63.

[12] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H.Ngu,
and A. K. Elmagarmid, “Business-to-business int&oas:
issues and enabling technologies,” The VLDB Jouraal.
12, no. 1, pp. 59-85, 2003.

[13] W. M. P. van der Aalst, A. P. Barros, A. H. M. tdofstede,
and B. Kiepuszewski, “Advanced Workflow Patternis, '5th
IFCIS Int. Conf. on Cooperative Information Systems
(CooplS’00), ser. LNCS, O. Etzionand P. Scheuermads.,
no. 1901. Eilat, Israel: Springer-Verlag, Septent&; 2000,
pp. 18-29.

[14] S. Bhiri, C. Godart, and O. Perrin, “Transactiopatterns for
reliable web services compositions,” in ICWE, D. Mé&y, N.
Calder, C. Brooks, and A. Ginige, Eds. ACM, 2008, p37—
144,

[15] M.Leuschel and M.Butler, “ProB: A Model Checker 8y,
in K. Araki, S. Gnesi, D. Mandrioli (eds), FME 2Q03ormal
Methods, LNCS 2805, Springer-Verlag, pp. 855-8002

Copyright (c) IARIA, 2011.  ISBN: 978-1-61208-165-6

392



