

Towards Complementing User Stories

Christian Kop
Institute of Applied Informatics

Alpen-Adria-Universitaet Klagenfurt
Klagenfurt, Austria

chris@ifit.uni-klu.ac.at

Abstract—User stories are well established in agile software
development processes. However, user stories should not be
seen as detailed requirements specifications. In agile processes
it is accepted that the end users do not know all the
requirements at once. Therefore, user stories only give hints
about the expectations of an end user. In order to get more
details in a communications process, a computer supported
strategy is proposed in this paper. This strategy focuses on the
agile development of information systems. Namely, it is
proposed that additional information (not found in a user
story) is extracted from natural language queries. Afterwards,
this information is compared with the already existing work in
progress model. Thus, the natural queries should help to find
gaps and misunderstandings in the current work in progress
model.

Keywords-agile process; user stories; domain models; natural
language queries;

I. INTRODUCTION
In agile processes, user stories are a common way to

gather the necessary information from the end user (e.g., an
on-site customer). In a user story, the end user typically
specifies what a certain actor (i.e., a system or person, which
plays a role with respect to the system under development)
can do with the system. Though, user stories are a well
established technique in the early phase of agile software
development, a user story is not a finished and well defined
requirement or written contract. Instead, user stories are seen
as short description of a piece of functionality, which act as a
reminder for a communication process between end users
and developers. In this process, details have to be negotiated
[27]. So, the question is: How can this communication and
negotiation process look like? Usually, developers can use
questionnaires to ask for further information. They can make
observation. If a first prototype is already developed, the
communication is based on the prototype implementation.
The software developers might ask what end users can do
wrong if they are in a certain state of the prototype.

For information system development (ISD) an additional
information gathering technique will be introduced here.
Namely, natural language queries will be used. It will be
shown how both steps
• extraction of model information from user stories and
• extraction of additional details from queries

can be supported by a tool.

The paper is therefore structured as follows. Firstly, an
overview of the related work is given (Section II).
Afterwards, an overall description is given, of how an agile
process can be achieved in domain modeling. The next two
sections (Section IV and Section V) focus on the two
important parts of this agile process (user stories and natural
language queries) and focus on computer supported
information extraction. In Section VI, it will be argued, that
this approach fits into the Agile Software Development
Manifesto. Afterwards, it will be described how the
computer support was tested. Finally, this section gives an
overview of the prototype implementation. In Section VII
conclusions and an outlook to future work are drawn.

II. RELATED WORK
Apart from user stories, some other research fields must be
considered in the context of this work. These research topics
will be described in the following sections.

A. Quality of Conceptual Models
The validation of artifacts in requirements engineering is

always based on several techniques like inspections,
walkthroughs, scenarios, verbalization, prototype evaluation,
[16][21] or colored Petri Nets [22].

In [17] three dimensions for conceptual model quality are
defined. They are syntax, semantics and pragmatics. If the
model follows the rules and grammar defined in its meta-
model then it is syntactically correct. Semantic quality is
given if the model only contains true statements of the
domain and is complete (no important concepts or statements
are missing). Lastly, pragmatic quality relates the model to
the interpretation of the user. A pragmatic quality is given, if
it is understandable to the user.

An extensive research on quality of models was also
made in [19]. It was proposed that conceptual modeling must
shift from an art to an engineering discipline. Any
engineering discipline aims at continuous quality checks of
products and intermediate products.

There are also many other research results how to check
and improve model quality [1], [4], [5], [8], [18]. The several
research activities focused on model transformations [1],
graphical aspects on conceptual models [18], verbalization
strategies of conceptual models [4] [8] and viewpoints [5].

374

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

B. Queries
Rumbaugh et al. use queries for checking model

completeness [35]. In their book [35], the authors give the
exercise to check a partially completed object model with
natural language queries. However, no computer support was
found for this kind of task.

Current research on natural language query processing
[2], [9], [12], [14], [13], [20], [23], [24], [15], [7],[26] only
focuses on the retrieval of data or the generation of SQL.
That means, these approaches expect that a finished and
stable database already exist. A work in progress model and
the consequences for natural language query processing was
not the focus of these approaches. In these approaches, it is
thus not the task of the natural language query to validate if
something in the model is missing. Research works that
describe visual queries [3], [10], [11] and form based query
languages [6], [25] are based on the same assumption (i.e.,
existing and finished conceptual model or database). In
visual query languages an SQL statement is generated by
navigating through a final conceptual model.

C. Test Driven Development
Test driven development [31] is another agile method. The
main idea is to write a first test case before a requirement is
implemented. Afterwards, the developer tries to develop an
implementation, which can pass the test case. Both the test
cases and implementations to successfully pass the test cases
are refined and improved iteratively in test driven
development. The paradigm behind this is pointed out by
Kent Beck: “Failure is progress” (see [31] p. 5).

User stories and natural language queries match very
well to this paradigm. User stories represent the initial
expectations (“requirements”) of the end users. Natural
language descriptions represent the test cases.

D. Linguistic Instruments
In the succeeding sections and sub sections the linguistic

instruments tagging and chunking are needed. A tagger is a
tool, which takes as input a text and returns a list of
sentences with tagged (categorized) words (i.e., words
categorized as noun, verb, adjective etc.). The chosen
Stanford Tagger categorizes the words according to the
Penn-Treebank Tagset [32]. In this tagset the word
categories together with some important syntactical features
of a word are encoded. For instance if a noun is in plural then
the category NNS is chosen. If a proper noun is detected then
NNP is used. Current taggers can achieve about 97 %
percent correctness [30]. This means, that in at least 3% of
the categorization cases, a word is wrongly categorized. This
has to be considered if a tagger is used.

Chunking is based on the tagger result. Chunking is
useful to group words to so called chunks that can be seen as
a phrase (e.g., a verb phrase or a noun phrase). This grouping
is based on patterns found in the preceding tagging result.
For instance the following groups of word categories can be
subsumed to a noun phrase: Noun + noun; article + noun;
article + adjective + noun. Details of chunking are described
in [32].

III. OVERVIEW OF THE AGILE DEVELOPMENT SCENARIO
Before details of the domain concepts extraction and the

completion process will be explained, this section gives an
overview. The main idea is to combine user stories and
natural language queries. Whereas user stories are needed to
get a first initial model, natural language queries are used as
test cases.

A. User Stories
A user story is a small piece of text. According to [27] it

describes a functionality that will be valuable to either an end
user or purchaser of a system or software. A user story
follows a certain pattern. Currently two patterns are
discussed and used. The first pattern is a declarative sentence
in active voice that follows the SPO (subject, predicate,
object) style. Examples for the first pattern are: “A user can
fill out a resume”; “A customer can place an order”. A
possible tool support for such a pattern is mentioned in [36].
The second pattern [34] emphasizes that in a user story
sentence an actor is involved. Therefore, the pattern looks as
follows “As a(n) <role/actor> , I can <feature>. The above
examples would look as follows in the second style: “As a
user, I can fill out a resume”; “as a customer, I can place an
order”. With the words “as a”, the speaker makes it more
explicit, that with customer or user respectively not a
concrete thing inside the system is described. Instead, the
role of an external thing with respect to the future system is
defined. Although, user stories are well accepted in agile
processes, they provide minimal information. The developer
must either strongly communicate with the end user or he
has to rely on his personal experiences in a certain domain.
Since it is always good that an end user is involved, the focus
of agile development processes is on communication! In this
paper a natural way of doing this in the area of information
system development (ISD) and data centric applications is
proposed. Namely, additional natural language queries
should help to get more information about the model.

B. Completing the Story with Natural Language Queries
User stories help to get a first impression of what the user

wants. For instance, for the user story “a customer can place
an order” the following information can be extracted:
• The noun “customer” might be an actor in this story
• The noun “order” might be the domain class
• The verb “to place” is an operation or service, which

probably belongs to order.
In agile processes, the developer now has to design and

implement this user story. In order to implement this
properly, additional information is necessary. For instance:
Which attributes does order have? Can the notion customer
be treated only as an actor or can it be treated as a full
domain class? Usually this information is collected in a
communication process with an end user. The question now
is: Can this communication process be somehow supported?
Here, it is proposed to use natural language queries.
Continuing the given scenario with the user story “A
customer can place an order”. The developer can now ask the
end user, which queries should be executed later on in the

375

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

information system. Particularly, he should ask, which
queries will be needed later for a database table, which is
currently only represented as the domain class “order”. Since
it cannot be expected that the end user knows SQL, natural
language queries should be used instead.

Now let us suppose that only “order” is currently
collected as a domain class. At the moment, customer is only
seen as an (external) actor, which can communicate with the
system. Furthermore let us assume that the end user states
the following natural language queries:
• Which customer has placed Order 123
• Tell me the order items that belong to an order.

From these queries, the following can be learned.
Customer is not only an actor. Since he is mentioned in a
query, which will be later on used as a database query,
customer information is also needed in the database. In other
words the information about customers represented by the
word customer must be also modeled as a domain class.
Since both words “customer” and “order” are mentioned in
the query, a path between them must exist. In its simplest
form an association between customer and order must be
modeled. Not any order is mentioned in the first query but a
special order, which has a certain value. Since order is a
class and values are instances of attributes the developer
must ask the right attribute. An answer of the end user can be
a revised and improved query (e.g., which customer has
placed the order with order number 123). With this
information the first domain model, which only contains
“order” can be extended. Order gets the attribute order
number. Furthermore “customer” is inserted as a domain
class in the model. An association can be created between
order and customer. The same procedure is applied on the
second query. From this query, the developer can derive the
information, that there will be a domain concept (i.e., the
domain class “order item”), which can be related to order.
Hence, the initial model, which had only “order” as its model
element is iteratively refined.

C. Summary of the Overview
In the above two subsections it was explained how an

initial domain model was generated using a user story. Since,
such a model is still very incomplete; natural language
queries can be used to complete it.

In the next Sections IV and V it will be shown how
certain needed information (e.g., concepts) can be extracted
automatically from user stories and natural language queries.
Section IV focuses on the automatic extraction of actors and
domain concepts (domain classes and attributes) from user
stories. Section V will focus on the domain concept
extraction from natural language queries.

IV. EXTRACTING CONCEPTS FROM USER STORIES
Domain concepts can be extracted from user stories by

using the linguistic instruments tagging and chunking.

A. Tagging
At the first level, a tagger analyzes the user story text. The

several word tokens are analyzed. Since taggers do not work
100 % correctly and a failure rate of 3 % must be considered,

the result of the tagger is analyzed once again for failures.
This is done by broadening the context window. In this step
a certain categorized word is compared with its previous and
its succeeding neighbors. If a certain pattern appears, which
can be seen as a wrong combination of word categories (i.e.,
the tagger has detected a noun but in this context a verb is
the correct categorization), then the categorization is
changed.

B. Chunking
After the tagging step, the chunking reanalyzes the tagger

output. Chunking subsumes certain combination of
categorized words (e.g., noun + noun; article + noun;
article + adjective + noun) to noun phrases. Chunking helps
to reduce the pattern variations and therefore is a good basis
for the next step (interpretation).

C. Interpretation
In the interpretation step the concepts are extracted from

the linguistically analyzed user story. The SPO pattern that is
introduced in Section III looks like follows with the support
of the chunker: <noun phrase> <verb phrase> <noun
phrase>. After chunking, the second mentioned pattern (“as a
<actor/role>, I can <feature>”) follows the linguistic pattern:
<preposition> <noun phrase>, <personal pronoun> <verb
phrase> <noun phrase>. The interpretation collects the noun
phrases of the sentence. Since a user story itself is based on
patterns, the interpretation can consider this for noun phrase
selection and categorization. The first <noun phrase> is
always treated as the actor/role that is mentioned in the user
story. The second <noun phrase> contains the domain
concept (class or attribute). The domain concept and the
actor respectively are extracted from the noun phrases by
ignoring the article.

V. EXTRACTING CONCEPTS FROM NATURAL LANGUAGE
QUERIES

The query analyzer that extracts concepts from natural
language queries is also based on the linguistic instruments
tagging and chunking. Upon these, an interpretation and
matching component is built.

A. Tagging
The same tagger that is used for analyzing user stories, is

also used for analyzing the queries. In addition to the general
optimizations which were introduced, the query tagger also
have some additional optimization rules. These rules are
necessary since query sentences might start with a verb.
Furthermore, noun phrases are more complex than noun
phrases which appear in the user story patterns.

B. Chunking
The chunker module has also an extra mode for query

sentences. If this mode is switched on, one exception exists
regarding the grouping of words and word categories. If the
words “many” or “much” follow the word “how” (e.g., “how
many persons”) then the implemented chunker behaves
slightly different. A word like “many” is not chunked with
“person” to a noun phrase but it is grouped with “how”.

376

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Hence, instead of the output [how] [many persons] the query
chunker generates the output [How many] [persons].

C. Interpretation
Interpretation of linguistically analyzed query sentences

is a combination of noun phrase extraction and more refined
parsing of specific patterns.

In a first step the query interpreter extracts all the noun
phrases. This guarantees that at least query notions can be
extracted, even if a more specific pattern cannot be detected.
The found query notions are used to check if they match
against existing concepts, views or examples (see subsection
D).

More specific patterns are constraint sentences (e.g.,
“The age must be greater than 20”). These sentences can be
used within a query text to constrain the concept. Such
constraint sentences can also have adjectives at the end (e.g.
“must be old”). If such adjectives are found, then these
adjectives are collected as value descriptor candidates.
Constraint patterns can also appear within a query (e.g.,
“Which customer has placed Order 123”). In this example
not any order is meant but a specific order (Order 123).

 Another task of the interpretation module is to filter out
most often used meta-information (e.g., “list of …”, “set of
… “).

D. Matching
If all the notions are extracted the system tries to match

the notions found in the query with elements in the model.
The matching procedure also checks if a constraint is applied
on an attribute in the model. If this is not the case (e.g.,
Order 123), a warning is given to the user. If all the notions
in the queries are found in the model or in model related
information, then the query is successful. To achieve this,
the extracted notions are firstly compared with the concepts
in the model (i.e., can the extracted notion, or its singular
form be found in the model). If this does not work then the
extracted notion is searched in the list of similar words or
examples which can be stored during modeling as additional
information. Since the similar notions as well as the
examples are related to a model concept, these notions can
be traced back. Therefore, in any of the above mentioned
cases, the notion found in the query can be replaced by the
concept in the model to accomplish the next step (path
finding). If all the notions extracted from the query are found
in the model, then the tool can determine a path between
these model concepts. Path finding is done by checking if all
the concepts, which are necessary for the query belong to the
same connected component within the conceptual model
graph.

VI. DISCUSSION, TEST AND PROTOTYPE

A. Discussion
The four important factors of agile software development
are [33]

1. Individuals and interactions over process and tools.
2. Working software over comprehensive

documentation.

3. Customer collaboration over contract negotiation.
4. Responding to change over following a plan.

Comparing the approach with the above manifesto, the
following can be said. Yes, there is a tool and tool support
was one aim of this approach. However, it should be clear
from the previous sections, that the tool does not dictate any
process. In contrary, the aim of the tool is to enforce the
interaction between individuals (stakeholders). If a query is
not successful, then the stakeholders must discuss the
failures and the communication process between them is
improved!

Natural language queries are created for a very special
purpose. From natural language queries, developers can
manually and easily derive SQL queries, which can be
embedded into an implementation of the future information
system. Hence, these natural language queries represent
parts of the future software. Thus, this approach fulfills
“working software over comprehensive documentation”.

Since the queries represent expectations of the customers,
these customers will not understand themselves as a part in
a contract negotiation but as an important part of a
collaboration.

Finally, the need for responding to a change request is not
restricted by using natural language queries as test cases.

B. Tests
Natural language queries, which were found in literature

and own created queries were taken as test cases to test and
improve the linguistic instruments. Among these test cases,
the greatest set of natural language queries came from the
Geo Query Project [28]. In this project 880 query sentences
are used. Theses sentences can be categorized in queries
starting with “What”, “How”, “Which”, “Where” and other
queries. These other queries do not start with an interrogative
but start with a verb (e.g., “list”, “give me”, “name the”, etc.)
or they neither start with a verb nor with an interrogative
(e.g., only a noun phrase is used for the query). The majority
of query sentences is provided for queries starting with
“What” followed by “How” and “Which”. With the Geo
Query Corpus a substantial test set was used. This high
number of test cases is also important to get a good
impression about the several different possibilities to express
queries. All the queries in the test sets were applied on the
query analyzer.

The user story interpreter currently accepts the two user
story patterns as described in Section IV.

C. Tool Prototypes
 The tools are implemented in Java. Currently, there are

three sorts of tools. The first tool accepts a user story and
extracts the actors and domain concepts (e.g., customer,
order, order number, order item, etc). It stores this extracted
concepts into an XML file, which can then be imported to
the second tool, the concept editor. The concept editor
graphically displays domain concepts (i.e., domain classes
and attributes) but not actors. The third tool is the query
analyzer tool. It is an add-on of the concept editor. A query
analyzer window is opened if the user presses the Q-Button

377

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

in the concept editor. The query analyzer tool has a text area
for the query and an error and warnings display area. Figure
1 and Figure 2 show the concept editor and the query
analyzer interface. Figure 1 shows the model after the end
user has stated the user story example: “As a customer, I can
place an order”. Since “customer” firstly is seen as an actor
and not as a domain class, it does not appear in the model
presented by the concept editor. Only “order” is presented.
Let’s continue with the already known natural language
query examples and suppose, the end-user would like to
execute the following two queries:
• Tell me the order items that belong to an order.
• Which customer has placed Order 123.

Figure 1: Initial model

Figure 2: Applying Query on the model

Figure 3: Result of an interaction process after 2 queries

After applying the first query on the query analyzer, the
query analyzer returns failures (Figure 2). In addition, also
the query “which customer has placed Order 123” is applied
on the initial model. For the second query, the tool returns
the information, that a constraint can only be defined on an
attribute. The stakeholders must discuss what is missing
(e.g., order number). If afterwards a refinement step is done,
then the improved model might look as follows (see Figure
3). This iterative refinement by testing with natural language
queries is similar to the paradigm of test driven development.

VII. CONCLUSION AND FUTURE WORK
In this paper the tool supported extraction of concepts out of
user stories were described. Since such user stories are not
detailed requirements but should give an idea what an end
user might expect from the future systems, these stories must
be complemented by additional information. In this paper
one strategy of gathering additional information was
presented. Particularly, natural language queries can be used
even in an early phase of information system development. It
was also shown how this strategy itself can be supported by a
tool using linguistic instruments.

This work will be continued with a technical refinement of
the query analyzer. Beside the explained interactive mode
(see Figure 2), a batch mode will be implemented. In the
batch mode many queries will be executed on the actual
model. All problems will be stored in a report file.

 Refinement of the user story interpreter is another future
task. Though, the above two mentioned patterns are the most
famous ones and are very often mentioned in the context of
user stories, variations of these patterns exist. For instance,
the “As a <role> I can <feature>” pattern can be extended to
“As a <role> I can | want <feature> (so that | because)
<reason>. Attention will also be paid on these variations and
automatic extraction of necessary information from these
variations.

REFERENCES
[1] P. Assenova and P. Johannesson, “Improving the Quality in

Conceputal Modelling by the Use of Schema
Transformations,” Proceedings of the 15th International
Conference on Conceptual Modeling, Cottbus, Germany,
Lecture Notes in Computer Science (LNCS), Vol. 1157.
Springer Verlag Berlin Heidelberg New York, 1996, pp. 277
– 291.

[2] H. Berger, M. Dittenbach, and D. Merkl, “Quering Tourism
Information Systems in Natural Language,” Information
Systems Technology and its Applications – Proceedings of
the 2nd Conference ISTA 2003, GI Lecture Notes in
Informatics, Vol. p-30, Koellen Verlag,, Bonn, 2003, pp. 153
– 165.

[3] A.C. Bloesch and T.A. Halpin, “ConQuer: A Conceptual
Query Language,” Proceedings of the 15th International
Conference on Conceptual Modeling, Cottbus, Germany,
Lecture Notes in Computer Science (LNCS), Vol. 1157.
Springer Verlag Berlin Heidelberg New York, 1996, pp. 121
– 133.

[4] H. Dalianis, “A method for validating a conceptual model by
natural language discourse generation,” Proceedings of the
Fourth International Conference CAiSE’92 on Advanced

378

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Information Systems Engineering, Lecture Notes in Computer
Sciences (LNCS) Vol. 594, Springer Verlag, pp. 425 - 444.

[5] St. Easterbrook, E. Yu, J. Aranda, Y. Fan, J. Horkoff, M.
Leica, and R.A. Quadir, “Do Viewpoints Lead to Better
Conceptual Models? An Exploratory Case Study,”
Proceedings of the 13th IEEE Conference on Requirements
Engineering (RE’05). IEEE Press, pp. 199 – 208.

[6] D. W. Embley, “NFQL: The Natural Forms Query
Language,” ACM Transactions on Database Systems, Vol.
14(2), 1989, pp. 168 – 211.

[7] R. Ge and R.J. Mooney, “A Statistical Semantic Parser that
Integrates Syntax and Semantics,” Proceedings of the Ninth
Conference on Computational Natural Language Learning,
Ann Arbor, MI, 2005, pp. 9-16.

[8] T. Halpin and M. Curland, “Automated Verbalization for
ORM 2,” Proceedings of OTM 2006 Workshop - On the
Move to Meaningful Internet Systems 2006, Lecture Notes in
Computer Science (LNCS 4278), Springer Verlag, pp. 1181 –
1190.

[9] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide,
“Exploring Fact Verbalizations for Conceptual Query
Formulation,” Proceedings of the Second International
Workshop on Applications of Natural Language to
Information Systems, IOS Press, Amsterdam, Oxford, Tokyo,
1996, pp. 40 – 51.

[10] H. Jaakkola and B. Thalheim, “Visual SQL – High Quality
ER Based Query Treatment,” Proceedings of Conceptual
Modeling for Novel Application Domains, Leture Notes in
Computer Science (LNCS), Vol. 2814, Springer Verlag,
Berlin, Heidelberg, New York, 2003, pp. 129 – 139.

[11] K. Järvelin, T. Niemi, and A. Salminen, “The visual query
language CQL for transitive and relational computation,”
Data & Knowledge Engineering, Vol. 35, 2000, pp. 39 – 51.

[12] Z.T. Kardovácz, “On the Transformation of Sentences with
Genetive Relations to SQL Queries” Proceedings of the 10th
International Conference on Applications of Natural
Language to Information Systems (NLDB 2005), Lecture
Notes in Computer Science (LNCS), Vol. 3531, pp. 10 – 20.

[13] M. Kao, N. Cercone, and W.-S. Luk, “Providing quality
responses with natural language interfaces: the null value
problem,” IEEE Transactions on Software Engineering,
Volume 14 (7), 1988, pp. 959 – 984.

[14] E. Kapetainos, D. Baer, and P. Groenewoud, “Simplifying
syntactic and semantic parsing of NL-based queries in
adavanced application domains,” Data & Knowledge
Engineeing Journal , Vol. 55, 2005, pp. 38 – 58.

[15] R.J. Kate and R.J. Mooney, “Using String-Kernels for
Learning Semantic Parsers,” COLING/ACL Proceedings,
Sydney, 2006, pp. 913-920.

[16] G. Kotonya and I. Sommerville, Requirements Engineering,
Wiley Publ. Company, New York, 1998.

[17] O. Lindland, G. Sindre, and A. Solvberg, “Understanding
Quality in Conceptual Modeling,” IEEE Software, March
1994, pp. 29 – 42.

[18] D. Moody, “Graphical Entity Relationship Models: Towards a
More User Understandable Representation of Data,”
Proceedings of the 15th International Conference on
Conceptual Modeling, Cottbus, Germany, Lecture Notes in

Computer Science (LNCS), Vol. 1157. Springer Verlag Berlin
Heidelberg New York, 1996, pp. 227 – 245.

[19] D. Moody, “Theoretical and practical issues in evaluating
quality of conceptual models: current state and future
directions,” Data & Knowledge Engineering Volume 55,
2005, pp. 243 - 276.

[20] V. Owei, H-S. Rhee, and Sh. Navathe, “Natural Language
Query Filtration in the Conceptual Query Language,”
Proceedings of the 30th Hawaii International Conference on
System Science, Vol. 3. IEEE Press , 1997, pp. 539 – 550.

[21] K. Pohl, Requirements Engineering, Grundlagen, Prinzipien,
Techniken, dPunkt Publ. Company, Heidelberg, 2007.

[22] O. R. Ribeiro and J. M. Fernandes, “Validation of Scenario-
based Business Requirements with Coloured Petri Nets,”
Proceedings of the 4th International Conference on Software
Engineering Advances, IEEE Press (IEEE Digital Library),
2009, pp. 250 – 255.

[23] N. Stratica, L. Kosseim, and B.C. Desai, “Using semantic
templates for a natural language interface to the CINDI virtual
library,” Data & Knowledge Engineering Volume 55, 2005,
pp. 4 – 19.

[24] L.R. Tang and R.J. Mooney, “Using Multiple Clause
Constructors in Inductive Logic Programming for Semantic
Parsing,” Proceedings of the 12th European Conference on
Machine Learning (ECML-2001), 2001, pp. 466 - 477.

[25] J.F. Terwillinger, L.M. Delcambre, and J. Logan, “Querying
through a user interface,” Data & Knowledge Engineering,
Volume. 63, 2007, pp. 774 – 794.

[26] Y.W. Wong and R.J. Mooney, “Learning for Semantic
Parsing with Statistical Machine Translation,” Proceedings of
the Human Language Technology Conference of the North
American Chapter of the Association for Computational
Linguistics (HLT/NAACL-2006), New York, 2006, pp. 439-
446.

[27] M. Cohn, “User Stories Applied – for Agile Software
Development”, Addison Wesley Publ.Company, 2004.

[28] Geo Query Project
http://www.cs.utexas.edu/users/ml/geo.html (last access: 31.
May .2011)

[29] Penn-Treebank TagSet: http://www.cis.upenn.edu/~treebank
(last access: 31. May 2011).

[30] C. Manning and H. Schütze, “Foundations of Statistical
Natural Language Processsing,” MIT Press, 2003.

[31] K. Beck, “Test Driven Development by Example,” Addison
Wesley Publishing Company, 5th Printing, 2004.

[32] E.F.T. K. Sang, and S. Buchholz, “Introduction to the
CoNLL-2000 Shared Task: Chunking,” Proceedings of
CoNLL-200 and LLL-2000, 2000, pp.127-132.

[33] Manifesto for Agile Software Development:
http://agilemanifesto.org/ (last access: 31. May 2011)

[34] User Stories: http://www.codesqueeze.com/the-easy-way-to-
writing-good-user-stories/ (last access 31. May 2011)

[35] J. Rumbaugh, M. Blaha, W. Premelani, F. Eddy, and W.
Lorensen, “Object-Oriented Modeling and Design,” Prentica
Hall Internatianal Inc. Publ. Company, 1991

[36] M. Smialek, J. Bojarski, W. Nowakowski, and T. Strazak,
“Writing Coherent User Stories with Tool Support,” H.
Baumeister, M. Marchesi, M. Holcombe (eds), 6th
International Conference on Extreme Programming and Agile
Processes in Software Engineering (XP 2005), LNCS, Vol.
3556, 2005, pp. 1217 – 1221.

379

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

