
Formal Specification of Software Design Metrics

 Meryem Lamrani

Laboratoire Conception et Systèmes

University Mohammed V Agdal

Department of Computer Science

BP 1014 RP Rabat, Morocco

 lamrani@fsr.ac.ma

Younès El Amrani

Laboratoire Conception et Systèmes

University Mohammed V Agdal

Department of Computer Science

BP 1014 RP Rabat, Morocco

elamrani@fsr.ac.ma

Aziz Ettouhami

Laboratoire Conception et Systèmes

University Mohammed V Agdal

Department of Computer Science

BP 1014 RP Rabat, Morocco

touhami@fsr.ac.ma

Abstract—Given the significant interest in applying formal

methods to object oriented paradigms, this paper presents a

formal approach to define software design quality metrics

upon a formal specification of the UML metamodel using the

Z language. This multi-level formalization benefits greatly to

design metrics as it allows a non ambiguous interpretation

and a more rigorous definition, which, in turn, can assist the

implementation of tools to measure the software design

quality for industrial application. Our achievement gives

precise meaning to software design metrics definitions in

order to facilitate verification and validation. We, especially,

applied our approach to one of the most well known set of

metrics: the CK metrics.

Keywords-formalization; UML metamodel; Z; CK metrics;

I. INTRODUCTION

“Door meten tot weten” [24] is a famous saying of the

Dutch physicist and Nobel laureate Kamerlingh Onnes

(1853 - 1926) literally translated as “Through

measurement to knowledge”. It attests that the quantifying

process leads to a better insight and understanding over

the measured element. The software engineering area is

no exception. It has been widely recognized that the use

of software metrics, for being considered as quality

indicators, can accurately help improve the final results

and keep time and cost estimation under control while

assuring quality according to the desired properties.

At first, code metrics such as cyclomatic complexity

measure or lines of code measure were defined and

applied to track faultiness during software development

but have soon shown a weak side for being measured till

the implementation phase, which is already a very late

phase considering the whole software life cycle. Since

then, many software metrics concerned with the design

phase were defined and commonly known as design

metrics. A combination of both code and design metrics

has also been explored with positive results [25].

Several authors have proposed various design metrics

such as the MOOD and MOOD2 (Metrics for Object-

Oriented Design) [28], MOOSE (Metrics for Object-

Oriented Software Engineering) also known as the CK

metrics [5], EMOOSE (Extended MOOSE) [29] and

QMOOD (Quality Model for Object-Oriented Design)

[30]. Most of them are lacking rigor and formalism in

their definition.

This paper addresses the problematic lying in software

measurement area due to the lack of formalization.

Therefore, we present an approach to define formally

software design metrics using the Z language [1, 2] over

our proposed formal specification of the UML metamodel

[3] based on the Laurent Henocque [4] transformation of

UML class structures concept. This approach is intended

to provide precise and complete formalized definition of

software design metrics.

The rest of this paper is organized as follows: Section 2

discusses related work. Section 3 presents a brief

overview of the Z language. Section 4 illustrates the Z

formalization of the UML metamodel. Section 5

introduces an approach to formalize software design

metrics definition and finally, conclusions are drawn in

Section 6.

II. RELATED WORK

Measurement has always been a fundamental step to

understandability and control. When it comes to quality,

measurement is obviously more difficult to obtain due to

its subjectivity, however, some of its aspects can be

measured and verified and thus be considered as

objective. Software engineering, for being a very recent

field and especially a more human-intensive discipline

[26], suffers from a lack of measurement which,

undeniably, leads to an out of control in delivery and cost

estimation of the software production.

With a massive research concerns, measurement has

reached an early stage of the software life cycle.

Therefore, the software design metrics were defined

according to the commonly approved properties

considered as quality indicators.

Many software metrics exist nowadays [5-7] however

their practical use remains unpopular in the software

348

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

industry mostly because of their ambiguity and non

reliability [8]. Knowing that measurements have to be

standard to mean the same thing to everyone, metrics

should enforce their definitions using formal methods to

become more useful, convenient and trust worthy.

Among authors who attempt to give a formal definition

of software metrics, Baroni et al. [10], which proposed a

Formal Library for Aiding Metrics Extraction (FLAME)

[9] that uses OCL [11] as a metric definition language. El-

Wakil et al. [12] built metric definitions using XQuery

[13] language. McQuillan et al. [14] based their work on

Baroni’s approach and extended the UML metamodel 2.0

to offer a framework for metric definitions. Harmer and

Wilkie [15] expressed metric definitions as SQL queries

over a relational schema. Goulao et al. [16] also used the

Baroni’s approach for defining component based metrics

and used the UML 2.0 metamodel as a basis for their

definitions. In all related approaches, the UML

metamodel is described in a subset of UML itself,

supplemented by a set of well-formedness rules provided

in OCL and natural language (English). Unfortunately,

these approaches neither offer the possibility to check

certain system properties nor they exclude the ambiguous

use of UML itself to express the UML metamodel.

Whereas in this article, there are two main contributions:

the first contribution is to express UML metamodel in a

formal language without any reflexive reference to UML,

it results in more clarity. The second contribution is to

express the CK metrics in a rigorous definition that

enables to check certain system properties involving

metrics. This could not be achieved with previous

definitions using OCL.

In this paper, a Z formal model of UML metamodel is

described. The model is enough general to express any set

of metrics defined upon the UML metamodel 2.3. Then

the authors provide a formal definition of the CK metrics.

Expressing, for the first time, the CK metrics in a state-

based formal method.

III. Z OVERVIEW

Z [1, 2] is a formal specification language originally

created by J.-R. Abrial and then developed by the

Programming Research Group at Oxford. Its notation is

based upon set theory and mathematical logic, which

consists in a first-order predicate calculus.

One aspect of the Z notation is the schemas. The notion

of schema in Z is closely related to a class structure in

Object-oriented concept. It combines two parts: a

declaration part and a predicate part. Another particularity

of Z is the use of types. Types in Z can be either basic or

composite.

We used Z notation to build our formalization because

of its maturity and the ability to check consistency of the

design using proof theorems unlike the Object-Z [17]

language, which was specifically developed to gain

facilities with object oriented specification aspects to the

detriment of formalization advantages mentioned earlier

for Z language.

Some authors proposed a formalization of UML class

constructs using PVS specification language (PVS-SL)

[31], a language based on higher-order logic, where

relationships and other constituents of UML diagrams are

represented as PVS theories. Other approaches suggested

the use of Description Logics (DLs) [32-33] where

Object-oriented concepts are modeled in means of

concepts (unary relations) and relations (n-ary relations).

However, most attempts were done using Z. Among

them, there are Hall [18-19] and Hammond [20], which,

in their approaches, supported class, association and

inheritance. Malcolm Shroff and Robert B. France [21-

22] based their approach on the Hall and Hammond’s Z

formalization approach of the class structures with the

particularity of introducing inheritance relationship as an

attribute in the inheriting class. We disgarded Hall’s

original approach because it predates UML definition and

it does not consider aggregation which is used in the core

backbone of the UML metamodel. We also disgarded

France’s modeling because it uses a global system

approach, he models properties of objects as functions

from identities to property values. This approach is less

appealing than the intuitive encapsulation of each object’s

state which is more natural to object-oriented thinking.

After investigating these different methods, we choose

the Laurent Henocque approach [4], which was elaborated

to give a formal specification to Object Oriented

Constraint Programs. This choice is mostly justified by

the approach to represent inheritance and aggregation

relationships and also its responds to our need for a

formalization of the object system as part of the

specification.

Since the objective of this paper is to present a

formalization of design metrics, we settled for providing a

description of the Henocque approach [4], gradually

through our formalization of the UML metamodel.

IV. Z FORMALIZATION OF THE UML METAMODEL

The UML metamodel is the result of many years of

effort to standardize software engineering practices. Itself

defined in UML, it is considered as the standard model to

represents object models using UML. The following

transformation concerns the core backbone of the UML

metamodel, captured and reconstituted from the UML

metamodel 2.3.

A. Different Level of Abstractions of the Metrics

Definition of each metric considered in the

formalization is done upon the UML metamodel at

different levels of abstraction:

349

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Element

NamedElement

Namespace

+namespace
0..1

Feature

StructuralFeature BehavioralFeature

Classifier

Parameter

+parameter*

0..1

Property

Class

Operation

RedefinableElement

Package

Method

1 *

1

*

*

+feature

0..1

*

Figure 1. A fragment of the core backbone of the UML metamodel

B. Z Transformation

The following formalization is analyzed and validated

using Z/EVES tool [23].

At the beginning, Laurent Henocque [4] defines an

uninterpreted dataType [ObjectReference] considered as

a set of object references and [ReferenceSet] as a finite

set of object references later used to model object types.

ReferenceSet  ObjectReference

For practical reasons, a global class names is defined

using free type declaration syntax:
CLASSNAME ::= ClassElement | ClassNamedElement | ...

A function instances describes the mapping between class

names and the set of instances of that class

instances: CLASSNAME  ReferenceSet

And then, he defines ObjectDef as a predefined super

class for all future classes. This class will be used to

bijectively map each object to a unique individual from

the set ObjectReference.

An instance of each class presented is identified by its

respective object identifier ident which is of type declared

as a basic type.

ObjectDef
ref: ObjectReference

class: CLASSNAME



For our metrics transformation, we extend the ObjectDef

with a NIL object to represent a undefined object.

NIL: ObjectDef

According to Henocque [4], each class is implemented via

two constructs:

 A class definition: a schema in which we find, in its
invariant part, both the class attributes and the
inheritance relationships and in its predicate part,
specification of class invariants.

ClassDefElement
name: seq CHAR



with [CHAR] being a given set containing all
characters. The attribute name was introduced in this
transformation because the Z/EVES tool [23] does not
allow the construction of an empty class. In the following,
even though the UML metamodel class constructs
contains attributes and predicates, we will only focus on
the relationship between classes in order to simplify
readability of our metrics transformation.

 A class specification: a combination of a class
definition extended with the ObjectDef and class
references.

ClassSpecElement ClassDefElement  ObjectDef

class = ClassElement

The symbol offers a different way to define a schema

and the logical operator allows the extension.

As stated in the first part of the class constructs,

inheritance relationship is defined in the class definition:

ClassDefNamedElementClassDefClassifier 
ClassDefElement ClassDefNamespace

 ClassDefRedefinableElement


In both cases, simple inheritance or multiple inheritance,

the inheritance relationship is built simply by importing

the schema definition of inherited superclasses into the

class that inherit from them.

Beside the inheritance relationship, we are also concerned

with the aggregation and relations with multiplicities.

General relations are free of constraints, which mean that

every tuple can be accepted. The multiplicity is naturally

stated in the predicate part as the cardinal of related target

objects for each source object.

pc: Parameter  Classifier


 c: Classifier # pc  c   1

350

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

The aggregate relation is more constrained than a general

one, thus we have to change the type of relation to make a

distinction between both. In the different aggregate

relations given in our UML metamodel fragment, the

multiplicity is of 0..1 which means that each component

occurs in at most one composite. Consequently, its

relational inverse is an injective partial function.

hasNamedElement: Namespace  NamedElement


hasNamedElement ~  NamedElement  Namespace

The  symbol represents the partial function and the
~

stands for the relational inverse.

And finally, we define class types for a better

understanding of what the types really represent. They are

defined using an axiomatic definition:

Element, NamedElement, Namespace, … : ReferenceSet


Element = instances ClassElement  NamedElement

NamedElement

 = instances ClassNamedElement  Namespace 

RedefinableElement  Feature


instances ClassElement

 =  o: ClassSpecElement o.class = ClassElement o.ref
instances ClassNamedElement

 =  o: ClassSpecNamedElement o.class = ClassNamedElement

o.ref
. . .
 i: instances ClassElement  x: ClassSpecElement x.ref = i

 i: instances ClassNamedElement  x: ClassSpecNamedElement

x.ref = i



The type sets defined in the declaration part

correspond to the existing classes of our given model.

Each type is defined as a finite set of object references.

The predicate part describes the properties of these sets.

First, we have a type equal to the union of the

corresponding class instances and the type of all its

subclasses. And then, that each object reference is used at

most once for an object which means that no two distinct

object bindings share the same object reference.

V. AN APPROACH TO FORMALIZE DESIGN QUALITY

METRICS DEFINITIONS

Among existing metrics, we will discuss the CK

Metrics [5] proposed by Chidamber and Kemerer, one of

the most well known suites of Object-oriented metrics.

These metrics help measuring different aspects of an

Object-Oriented design including complexity, coupling

and cohesion. Several studies [26-27] have confirmed

their usefulness as quality indicators.

An OCL formalization of the CK metrics was proposed

by the authors Baroni et al. [10], defined using functions

formalized in FLAME [9]. Although, OCL is based on

mathematical logic, it still does not provide a formally

defined semantics, furthermore, its syntax is given by a

grammar description and no metamodel is available

unlike the metamodel of UML which means that it suffers

from an absence of well-formedness rules.

Considering that most metrics formalization efforts are

made in OCL but yet still unpopular in the software

industry, we argue that a more rigorous method of

formalization should be explored in order to overcome

OCL limitations.

As a simple example, the expression iterate, used in the

OCL formalization of the DIT metrics, is known to be

potentially non-deterministic since there is no precision

on order evaluation leading to different possible

results[34].

Classifier:: DIT(): Integer

= if self.isRoot() then 0

else if PARN() = 1 then

1 + self.parents() -> iterate(elem:

GeneralizableElement; acc: Integer = 0

| acc + elem.oclAsType(Class).DIT())

else

self.parents() -> iterate(elem: GeneralizableElement;

acc: Integer = 0

| acc + elem.oclAsType(Class).DIT())

endif

endif

Also, in each metrics defined with OCL, we could find

many OCL keywords (self, asSet…) and predefined

functions (OclAsType, OclIsKindOf…) that are not

precise enough semantically. Therefore, we propose a

formal definition for those frequently used predefined

functions in order to obtain a complete and precise

definition of the CK metrics.

A. Formalizing OCL Predefined Functions

OclIsTypeOf and OclIsKindOf have the same

signature. They are both applied to an object, take a type

as parameter and return a Boolean as a result. The only

difference is that the first one deals with the direct type of

the object when the second one determines whether the

type given in parameter is either the direct type or one of

the supertypes of the object.

When it is certain that the actual type of the object is

the subtype, the object can be re-typed using the

OclAsType operation. Otherwise, the expression is

undefined.

We propose a Z-formalization of these predefined

operations using the Henocque approach [4].



351

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

oclIsTypeOf: ObjectDef  ReferenceSet  Boolean


 o: ObjectDef; t: ReferenceSet instances o.class = t oclIsTypeOf

o t = TRUE

 o:ObjectDef; t: ReferenceSet instances o.class  toclIsTypeOf

o t = FALSE

The formalization is given as an axiomatic function. It

takes the ObjectDef and a ReferenceSet as parameter and

it returns a Boolean. When instances of o.class referering

to the object’s type is equal to the type given in parameter

the expression of OclIsTypeOf is true. When both types

are not the same, the operation return false.

oclIsKindOf: ObjectDef  ReferenceSet  Boolean


 o: ObjectDef; t: ReferenceSet instances o.class  t oclIsKindOf

o t = TRUE

o:ObjectDef;t:ReferenceSet instances o.class  toclIsKindOf

o t= FALSE

When the type of the object given in parameter (expressed

as instances o.class) is part of the ReferenceSet given in

parameter, the expression oclIsKindOf returns true.

Otherwise, it returns false.

oclAsType: ObjectDef  ReferenceSet  ObjectDef


 o: ObjectDef; t: ReferenceSet instances o.class = t oclAsType

o t = o

 o: ObjectDef; t: ReferenceSet  instances o.class  t oclAsType

o t = NIL

 o: ObjectDef; t: ReferenceSet instances o.class  t

  r: ObjectDef r.ref = o.ref  instances r.class = t oclAsType

o t = r

With oclAsType operation we distinguish between three

cases:

The first one is when the type given in parameter

corresponds to the object’s type, which means the result

of applying oclAsType is the object itself.

The second one is when the object’s type is not the

same nor is it a part of the ReferenceSet given in

parameter, which means that the expression is undefined

and in that case we return the NIL value defined earlier as

an extension to ObjectDef.

Finally, the third one is when the object’s type is part of

the ReferenceSet given in parameter. In that case, the

expression OclAsType returns an object which has the

same reference as the object in entry (that means it is the

same object) but having as type the ReferenceSet in

parameter.

B. Formalizing the CK metrics

Each of the above metrics refers to an individual class and

not to the whole system.

 Weighted Methods Complexity: the sum of the

complexity of all methods for a class. If all method

complexities are considered to be unique, WMC is

equal to the number of methods.

WMC: ObjectDef  Classifier  


 o: ObjectDef; c: Classifier; S:  Operation S = allOperations o
c
 WMC o c = # S

 Number of Children: counts the number of children

classes that inherit directly from the current class.

NOC: ObjectDef  Classifier  


 o: ObjectDef; c: Classifier; n:  n = CHIN o c NOC o c =

n

 Depth of Inheritance Tree: measures the length of the
inheritance chain from the current class to the root.

DIT: ObjectDef  RedefinableElement  


 o: ObjectDef; r: RedefinableElement isRoot o r = TRUE DIT

o r = 0

 o: ObjectDef; r: RedefinableElement; R:  RedefinableElement; n:

; S:  

 PARN o r  1

  R = parents o r
  S =  depth:   r': R depth = DIT o r'
  n = max S DIT o r = n

 Coupling Between Classes: the number of coupling

with other classes.

CBO: ObjectDef  Classifier  


 o: ObjectDef; c: Classifier; C:  Classifier C = coupledClasses

o c
 CBO o c = # C

 Response for Class: the number of methods in the

current class that might respond to a message received

by its object, including methods both inside and

outside of this class. It can be defined as | RS | where

RS is the response set for the class expressed as:

RS = { M all i { R i }

with:

- { Ri} = set of methods called by method i
- { M } = set of all methods in the class.

352

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

RFC: ObjectDef  Classifier  


 o: ObjectDef; c: Classifier; m, mc:  Operation

 m = allOperations o c  mc = allClientOperations o c
 RFC o c = # m + # mc

 Lack of Cohesion of Methods: The degree of

similarity of methods in the current class. This metric

was first improved by Chidamber and Kemerer

themselves, calling it LCOM2, then by Henderson-

Sellers by proposing the following expression:

LCOM3 = (m-sum(mA)/a)/(m-1)

with:

- m: number of methods in a class.

- a: number of attributes in a class.

- mA: number of methods that access the attribute a.

- sum(mA): sum of all mA over all the attributes in the

class.

LCOM3: ObjectDef  Classifier  


 o: ObjectDef; c: Classifier; m:  Operation; a:  Property; n: 

 m = allOperations o c
  a = allAttributes o c
   A: a n = n + sum mA A m
 LCOM o c = # m - n div # a div # a - 1

VI. CONCLUSION AND FUTURE WORK

 In this work, we were mainly concerned about the

formal definition of the CK metrics as a restricted

application of our formalization approach, which consists

on expressing formally the UML metamodel and then

giving a formal definition of software design quality

metrics for the sake of validation and verification.

 As future work, we plan to extend our contribution to

MOOD and MOOD2 - Metrics for Object-Oriented

Design [28], EMOOSE- Extended MOOSE [29] and

QMOOD Quality Model for Object-Oriented Design [30].

We, also, plan to build a support tool that will, first,

automate the formal Z representation of design models

according to our UML metamodel formalization and then,

implement already formalized metrics expressions to

automate their calculation and compare results.

REFERENCES

[1] M. Spivey, “The Z Notation,” Prentice-Hall, 1992.

[2] J. Woodcock and J. Davies, “Using Z: Specification, Proof
and Refinement,” Prentice Hall International Series in
Computer Science, 1996.

[3] The Object Management Group, UML 2.3 superstructure
specification, 2010 http://www.omg.org/spec/uml/2.3/

[4] Laurent Henocque, “Z specification of Object Oriented
Constraint Programs,” RACSAM , 2004.

[5] Shyam R. Chidamber and Chris F. Kemerer, “A metric
suite for Object Oriented Design," Journal IEEE
Transactions on Software Engineering Volume 20 Issue 6,
1994, pp. 476 – 493.

[6] Lorenz M. and Kidd J., “Object-Oriented Software
Metrics,” Prentice Hall Object-Oriented Series, 1994.

[7] Norman E. Fenton and Lawrence Peeger S., “Software
Metrics: A Rigorous and Practical Approach,”
International Thompson Computer Press, 1996.

[8] L. Briand, J. Daly and J.Wüst, “A unified framework for
coupling measurement in object-oriented systems,” IEEE
Transactions on Software Engineering 25, 1999.

[9] Aline L. Baroni and F. Brito e Abreu, “An OCL-Based
Formalization of the MOOSE Metric Suite,” In
Proceedings of the 7th International ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software
Engineering (QUAOOSE'2003) , Darmstadt, Germany,
2003.

[10] Aline L. Baroni and F. Brito e Abreu, “A Formal Library
for Aiding Metrics Extraction,” International Workshop on
Object-Oriented Re-Engineering at ECOOP, 2003.

[11] The Object Management Group, Object Constraint
Language 2.2, 2010 http://www.omg.org/spec/OCL/2.2/

[12] Mohamed M. El-Wakil, A. El-Bastawisi, Mokhtar B. Riad,
and A. Fahmy., “A novel approach to formalize Object-
Oriented Design,” 9th International Conference on
Empirical Assessment in Software Engineering (EASE
2005), April 2005.

[13] XQuery 1.0 Standard by W3C XML Query Working
Group. http://www.w3.org/TR/2010/REC-xquery-
20101214/

[14] Jacqueline A. McQuillan and James F. Power, “Towards
re-usable metric definitions at the meta-level,” In PhD
Workshop of the 20th European Conference on Object-
Oriented Programming (ECOOP 2006), Nantes, France, 3-
7, July 2006.

[15] F. Wilkie And T. Harmer, “Tool support for measuring
complexity in heterogeneous object-oriented software,” In
Proceedings of IEEE International Conference on Software
Maintenance, Montreal, Canada, 2002.

[16] M. Goulao and F. Brito e Abreu, “Formalizing metrics for
COTS,” In Proceddings of the ICSE Workshop on Models
and Processes for the Evaluation of COTS Components,
Edinburgh, Scotland, 2004.

[17] D. Duke, P. King, G.A. Rose, and G. Smith, 1991. The
Object-Z Specification Language, version 1, Technical
Report 91-1, Department of Computing Science, University
of Queensland, Australia.

[18] J. A. Hall, “Specifying and Interpreting Class Hierarchies
in Z,” In Bowen and Hall, pp. 120-138.

[19] J.P. Bowen and J.A. Hall, editors, Z User Workshop,
Cambridge 1994, Workshops in Computing. Springer-
Verlag, New York , 1994.

[20] J. A. R. Hammond, “Producing Z specifications from
Object-Oriented Analysis,” In Bowen and Hall, pp. 316-
336.

[21] Robert B. France, J.-M. Bruel, M. M. Larrondo-Petrie, and
M. Shroff, “Exploring the Semantics of UML Type
Structures with Z”, In: Proceedings of the Formal Methods
for Open Object-based Distributed Systems (FMOODS'97),
Springer, pp. 247-257.

[22] M. Shroff and Robert B. France, “Towards a Formalization
of UML Class Structures in Z”, In Proceedings of the 21st
Computer Software and Application Conference (COMP-
SAC'97), IEEE Press, 646-651.

353

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

http://www.omg.org/spec/uml/2.3/
http://www.omg.org/spec/OCL/2.2/
http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.emn.fr/x-info/ecoop2006/

[23] I. Meisels and M. Saaltink, The Z/EVES 2.0 Reference
Manual. Technical Report TR-99-5493-03e, ORA
Canada, October 1999.

[24] 'The Significance of Quantitative Research in Physics',
Inaugural Address at the University of Leiden (1882). In
Hendrik Casimir, Haphazard Reality: Half a Century of
Science (1983), 160-1.

[25] Y. Jiang, B. Cukic, T. Menzies, and N. Bartlow:
“Comparing Design and Code Metrics for Software quality
Prediction”: PROMISE (2008).

[26] Sandro Morasca: Software Measurement (2007).

[27] Victor R. Basili, Fellow, IEEE, Lionel C. Briand, and
Walcelio L. Melo: “A Validation of Object-Oriented
Design Metrics as Quality Indicators”: In IEEE
Transactions on Software Engineering, vol. 22, NO. 10,
October 1996, pp. 751 – 761,

[28] F. Brito e Abreu and R. Carapuça, “Object-Oriented
Software Engineering: Measuring and Controlling the
Development Process," 4th Int. Conf. on Software Quality,
McLean, VA, USA, 3-5 October 1994.

[29] W. Li, S. Henry, D. Kafura and R. Schulman, “Measuring
object-oriented design,” Journal of Object-Oriented
programming, vol. 8, NO. 4, pp. 48-55. July/August 1995.

[30] J. Bansiya and C. Davids: “Automated metrics and object-
oriented development,” Dr. Dobbs Journal, pp. 42–48,
December 1997.

[31] Demissie B. Aredo, I. Traore, and K. Stølen: “Towards a
formalization of UML Class Structure in PVS,” Research
Report no. 272, Department of Informatics, University of
Oslo, August 1999.

[32] A. Calì, D. Calvanese, G. De Giacomo, and M. Lenzerini:
“Reasoning on UML Class Diagrams in Description
Logics,” In Proceedings of IJCAR Workshop on Precise
Modelling and Deduction for Object-oriented Software
Development (PMD 2001). 2001.

[33] L. Efrizoni, W.M.N Wan-Kadir and, R. Mohamad:
“Formalization of UML Class using Description Logics,”
In the International Symposium in Information Technology
(ITSim), 2010.

[34] M. Richters and M. Gogolla: “On Formalizing the UML
Object Constraint Language,” In Proceedings of the 17th
International Conference on Conceptual Modeling.
Springer-Verlag, London, UK, 1998.

Appendix:

The whole specification, of 426 lines in Latex, was

entirely written and verified using the Z/EVES tool but

for space reason, this appendix does not contain all of it.

The following is a description of the previously

declared functions in the metrics formalization chapter.

%Subset of Properties (from one set of Features) belonging to the
current Classifier.

feature2AttributeSet: ObjectDef   Feature   Property


 o: ObjectDef; S:  Feature

 instances o.class = Feature

  S =  f: Feature oclIsKindOf o Property = TRUE
 feature2AttributeSet o S =  f: S oclAsType o Property =

o

%Subset of Operations (from one set of Features) belonging to the
current Classifier.

feature2OperationSet: ObjectDef   Feature   Operation


 o: ObjectDef; S:  Feature

 instances o.class = Feature

  S =  f: Feature oclIsKindOf o Operation = TRUE
 feature2OperationSet o S =  f: S oclAsType o Operation =

o

%Set of Features declared in the Classifier, including overridden
Operations.

definedFeatures: ObjectDef  Classifier   Feature


 o: ObjectDef; c: Classifier; p:  Feature

 instances o.class = Feature  p =  f: Feature f  Classifier
 definedFeatures o c = p

%Set of Classes from which the current GeneralizableElement derives
directly.


parents: ObjectDef  RedefinableElement   RedefinableElement


 o: ObjectDef; r: instances ClassRedefinableElement

 instances o.class = RedefinableElement

 parents o r
 =  r': RedefinableElement

 instances ClassRedefinableElement  instances o.class

%Set of directly derived Classes of the current GeneralizableElement.

children: ObjectDef  RedefinableElement   RedefinableElement


 o: ObjectDef; r: RedefinableElement instances o.class =

RedefinableElement

 children o r
 =  r': RedefinableElement

 instances o.class  instances ClassRedefinableElement

%Number of directly derived Classes.

CHIN: ObjectDef  RedefinableElement  


 o: ObjectDef; r: RedefinableElement; S:  RedefinableElement

 S = children o r CHIN o r = # S

354

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

%Number of Classes from which the current RedefinableElement
derives directly.

PARN: ObjectDef  RedefinableElement  


 o: ObjectDef; r: RedefinableElement; S:  RedefinableElement

 S = parents o r PARN o r = # S

%Indicates whether the RedefinableElement has ascendants
or not.

isRoot: ObjectDef  RedefinableElement  Boolean


 o: ObjectDef; r: RedefinableElement PARN o r = 0 isRoot o
r = TRUE

 o: ObjectDef; r: RedefinableElement PARN o r  0

 isRoot o r = FALSE

%Set containing all Features of the Classifier itself and all its inherited
Features.

allFeatures: ObjectDef  Classifier   Feature


 o: ObjectDef; c: Classifier; r: RedefinableElement

 allFeatures o c =  allFeatures oclAsType o Classifier
c

% Set containing all Properties of the Classifier and all its inherited
Attributes (directly and indirectly).

allAttributes: ObjectDef  Classifier   Property


 o: ObjectDef; c: Classifier; S:  Property

 S = feature2AttributeSet o allFeatures o c
 allAttributes o c = S

% Set containing all Operations of the Classifier itself and all its
inherited Operations.


allOperations: ObjectDef  Classifier   Operation


 o: ObjectDef; c: Classifier; S:  Operation

 S = feature2OperationSet o allFeatures o c
 allOperations o c = S

% Types (Classifiers) of all attributes that are accessible within the
current Classifier.

typesOfAllAccessibleAttributes: Classifier   Classifier


 o: ObjectDef; c: Classifier; S:  Property; F:  Feature; T: 

Classifier

 S = allAttributes o c  feature2AttributeSet o F = S  F  T

 typesOfAllAccessibleAttributes c = T

% True if the first Classifier has an accessible attribute of type given as
second Classifier.

hasAttribute: Classifier  Classifier  Boolean


 c, c': Classifier c'  typesOfAllAccessibleAttributes c

 hasAttribute c c' = TRUE

 c, c': Classifier c'  typesOfAllAccessibleAttributes c

 hasAttribute c c' = FALSE

% Set of Classifiers to which the current Classifier is coupled
(excluding inheritance).

coupledClasses: Classifier   Classifier


 c: Classifier; S:  Classifier

 S =  c': Classifier hasAttribute c c' = TRUE
 coupledClasses c = S

% Set of Operations that might respond to a message received by its
object.

allClientOperations: ObjectDef  Classifier   Operation


 o: ObjectDef; c: Classifier; C:  Classifier; M:  Operation

 coupledClasses c = C  M =   c': C allOperations o c'
 allClientOperations o c = M

355

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

