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Abstract—Given the significant interest in applying formal 

methods to object oriented paradigms, this paper presents a 

formal approach to define software design quality metrics 

upon a formal specification of the UML metamodel using the 

Z language. This multi-level formalization benefits greatly to 

design metrics as it allows a non ambiguous interpretation 

and a more rigorous definition, which, in turn, can assist the 

implementation of tools to measure the software design 

quality for industrial application. Our achievement gives 

precise meaning to software design metrics definitions in 

order to facilitate verification and validation. We, especially, 

applied our approach to one of the most well known set of 

metrics: the CK metrics.  

Keywords-formalization; UML metamodel; Z; CK metrics;  

 

I. INTRODUCTION 

“Door meten tot weten” [24] is a famous saying of the 

Dutch physicist and Nobel laureate Kamerlingh Onnes 

(1853 - 1926) literally translated as “Through 

measurement to knowledge”. It attests that the quantifying 

process leads to a better insight and understanding over 

the measured element.  The software engineering area is 

no exception. It has been widely recognized that the use 

of software metrics, for being considered as quality 

indicators, can accurately help improve the final results 

and keep time and cost estimation under control while 

assuring quality according to the desired properties. 

At first, code metrics such as cyclomatic complexity 

measure or lines of code measure were defined and 

applied to track faultiness during software development 

but have soon shown a weak side for being measured till 

the implementation phase, which is already a very late 

phase considering the whole software life cycle. Since 

then, many software metrics concerned with the design 

phase were defined and commonly known as design 

metrics. A combination of both code and design metrics 

has also been explored with positive results [25].    

Several authors have proposed various design metrics 

such as the MOOD and MOOD2 (Metrics for Object-

Oriented Design) [28], MOOSE (Metrics for Object-

Oriented Software Engineering) also known as the CK 

metrics [5], EMOOSE (Extended MOOSE) [29] and 

QMOOD (Quality Model for Object-Oriented Design) 

[30]. Most of them are lacking rigor and formalism in 

their definition.    

This paper addresses the problematic lying in software 

measurement area due to the lack of formalization. 

Therefore, we present an approach to define formally 

software design metrics using the Z language [1, 2] over 

our proposed formal specification of the UML metamodel 

[3] based on the Laurent Henocque [4] transformation of 

UML class structures concept. This approach is intended 

to provide precise and complete formalized definition of 

software design metrics.  

The rest of this paper is organized as follows: Section 2 

discusses related work. Section 3 presents a brief 

overview of the Z language. Section 4 illustrates the Z 

formalization of the UML metamodel. Section 5 

introduces an approach to formalize software design 

metrics definition and finally, conclusions are drawn in 

Section 6.     

 

II. RELATED WORK 

Measurement has always been a fundamental step to 

understandability and control. When it comes to quality, 

measurement is obviously more difficult to obtain due to 

its subjectivity, however, some of its aspects can be 

measured and verified and thus be considered as 

objective. Software engineering, for being a very recent 

field and especially a more human-intensive discipline 

[26], suffers from a lack of measurement which, 

undeniably, leads to an out of control in delivery and cost 

estimation of the software production. 

With a massive research concerns, measurement has 

reached an early stage of the software life cycle. 

Therefore, the software design metrics were defined 

according to the commonly approved properties 

considered as quality indicators. 

Many software metrics exist nowadays [5-7] however 

their practical use remains unpopular in the software 
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industry mostly because of their ambiguity and non 

reliability [8]. Knowing that measurements have to be 

standard to mean the same thing to everyone, metrics 

should enforce their definitions using formal methods to 

become more useful, convenient and trust worthy.  

Among authors who attempt to give a formal definition 

of software metrics, Baroni et al. [10], which proposed a 

Formal Library for Aiding Metrics Extraction (FLAME) 

[9] that uses OCL [11] as a metric definition language. El-

Wakil et al. [12] built metric definitions using XQuery 

[13] language. McQuillan et al. [14] based their work on 

Baroni’s approach and extended the UML metamodel 2.0 

to offer a framework for metric definitions. Harmer and 

Wilkie [15] expressed metric definitions as SQL queries 

over a relational schema. Goulao et al. [16] also used the 

Baroni’s approach for defining component based metrics 

and used the UML 2.0 metamodel as a basis for their 

definitions. In all related approaches, the UML 

metamodel is described in a subset of UML itself, 

supplemented by a set of well-formedness rules provided 

in OCL and natural language (English). Unfortunately, 

these approaches neither offer the possibility to check 

certain system properties nor they exclude the ambiguous 

use of UML itself to express the UML metamodel. 

Whereas in this article, there are two main contributions:  

the first contribution is to express UML metamodel in a 

formal language without any reflexive reference to UML, 

it results in more clarity. The second contribution is to 

express the CK metrics in a rigorous definition that 

enables to check certain system properties involving 

metrics. This could not be achieved with previous 

definitions using OCL. 

In this paper, a Z formal model of UML metamodel is 

described. The model is enough general to express any set 

of metrics defined upon the UML metamodel 2.3. Then 

the authors provide a formal definition of the CK metrics. 

Expressing, for the first time, the CK metrics in a state-

based formal method. 

 

III. Z OVERVIEW 

Z [1, 2] is a formal specification language originally 

created by J.-R. Abrial and then developed by the 

Programming Research Group at Oxford. Its notation is 

based upon set theory and mathematical logic, which 

consists in a first-order predicate calculus. 

One aspect of the Z notation is the schemas. The notion 

of schema in Z is closely related to a class structure in 

Object-oriented concept. It combines two parts: a 

declaration part and a predicate part. Another particularity 

of Z is the use of types. Types in Z can be either basic or 

composite.  

We used Z notation to build our formalization because 

of its maturity and the ability to check consistency of the 

design using proof theorems unlike the Object-Z [17] 

language, which was specifically developed to gain 

facilities with object oriented specification aspects to the 

detriment of formalization advantages mentioned earlier 

for Z language. 

Some authors proposed a formalization of UML class 

constructs using PVS specification language (PVS-SL) 

[31], a language based on higher-order logic, where 

relationships and other constituents of UML diagrams are 

represented as PVS theories.  Other approaches suggested 

the use of Description Logics (DLs) [32-33] where 

Object-oriented concepts are modeled in means of 

concepts (unary relations) and relations (n-ary relations).  

However, most attempts were done using Z. Among 

them, there are Hall [18-19] and Hammond [20], which, 

in their approaches, supported class, association and 

inheritance. Malcolm Shroff and Robert B. France [21-

22] based their approach on the Hall and Hammond’s Z 

formalization approach of the class structures with the 

particularity of introducing inheritance relationship as an 

attribute in the inheriting class. We disgarded Hall’s 

original approach because it predates UML definition and 

it does not consider aggregation which is used in the core 

backbone of the UML metamodel. We also disgarded 

France’s modeling because it uses a global system 

approach, he models properties of objects as functions 

from identities to property values. This approach is less 

appealing than the intuitive encapsulation of each object’s 

state which is more natural to object-oriented thinking.  

After investigating these different methods, we choose 

the Laurent Henocque approach [4], which was elaborated 

to give a formal specification to Object Oriented 

Constraint Programs. This choice is mostly justified by 

the approach to represent inheritance and aggregation 

relationships and also its responds to our need for a 

formalization of the object system as part of the 

specification.  

Since the objective of this paper is to present a 

formalization of design metrics, we settled for providing a 

description of the Henocque approach [4], gradually 

through our formalization of the UML metamodel.  

 

IV. Z FORMALIZATION OF THE UML METAMODEL 

The UML metamodel is the result of many years of 

effort to standardize software engineering practices. Itself 

defined in UML, it is considered as the standard model to 

represents object models using UML. The following 

transformation concerns the core backbone of the UML 

metamodel, captured and reconstituted from the UML 

metamodel 2.3. 

A. Different Level of Abstractions of the Metrics 

Definition of each metric considered in the 

formalization is done upon the UML metamodel at 

different levels of abstraction: 
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Figure 1.  A fragment of the core backbone of the UML metamodel 

B. Z Transformation 

The following formalization is analyzed and validated 

using Z/EVES tool [23]. 

At the beginning, Laurent Henocque [4] defines an 

uninterpreted dataType [ObjectReference] considered as 

a set of object references and [ReferenceSet] as a finite 

set of object references later used to model object types. 
 
ReferenceSet  ObjectReference 

 

For practical reasons, a global class names is defined 

using free type declaration syntax: 
CLASSNAME ::= ClassElement | ClassNamedElement | ... 
  

A function instances describes the mapping between class 

names and the set of instances of that class  
 
instances: CLASSNAME  ReferenceSet 

 

And then, he defines ObjectDef as a predefined super 

class for all future classes. This class will be used to 

bijectively map each object to a unique individual from 

the set ObjectReference. 
 

An instance of each class presented is identified by its 

respective object identifier ident which is of type declared 

as a basic type.  

 
ObjectDef
ref: ObjectReference 

class: CLASSNAME 



For our metrics transformation, we extend the ObjectDef 

with a NIL object to represent a undefined object. 

 
NIL: ObjectDef 

 

According to Henocque [4], each class is implemented via 

two constructs: 

 A class definition: a schema in which we find, in its 
invariant part, both the class attributes and the 
inheritance relationships and in its predicate part, 
specification of class invariants. 

 
ClassDefElement
name: seq CHAR



with [CHAR] being a given set containing all 
characters. The attribute name was introduced in this 
transformation because the Z/EVES tool [23] does not 
allow the construction of an empty class. In the following, 
even though the UML metamodel class constructs 
contains attributes and predicates, we will only focus on 
the relationship between classes in order to simplify 
readability of our metrics transformation. 

 

 A class specification: a combination of a class 
definition extended with the ObjectDef and class 
references.  

 

ClassSpecElement ClassDefElement  ObjectDef 

class = ClassElement 
 

The symbol offers a different way to define a schema 

and the logical operator allows the extension. 

 

As stated in the first part of the class constructs, 

inheritance relationship is defined in the class definition: 

 
ClassDefNamedElementClassDefClassifier 
ClassDefElement                            ClassDefNamespace 

  ClassDefRedefinableElement
 

 

In both cases, simple inheritance or multiple inheritance, 

the inheritance relationship is built simply by importing 

the schema definition of inherited superclasses into the 

class that inherit from them. 

 

Beside the inheritance relationship, we are also concerned 

with the aggregation and relations with multiplicities. 

General relations are free of constraints, which mean that 

every tuple can be accepted. The multiplicity is naturally 

stated in the predicate part as the cardinal of related target 

objects for each source object. 

 
pc: Parameter  Classifier 


 c: Classifier # pc  c   1 
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The aggregate relation is more constrained than a general 

one, thus we have to change the type of relation to make a 

distinction between both. In the different aggregate 

relations given in our UML metamodel fragment, the 

multiplicity is of 0..1 which means that each component 

occurs in at most one composite. Consequently, its 

relational inverse is an injective partial function.  
 

hasNamedElement: Namespace  NamedElement 


hasNamedElement ~  NamedElement  Namespace 

 

The  symbol represents the partial function and the 
~ 

stands for the relational inverse. 

 

And finally, we define class types for a better 

understanding of what the types really represent. They are 

defined using an axiomatic definition: 

 
Element, NamedElement, Namespace, … : ReferenceSet 


Element = instances ClassElement  NamedElement 

NamedElement 

  = instances ClassNamedElement  Namespace  

RedefinableElement  Feature 

  
instances ClassElement 

  =  o: ClassSpecElement o.class = ClassElement o.ref
instances ClassNamedElement 

  =  o: ClassSpecNamedElement o.class = ClassNamedElement 

o.ref
. . .
 i: instances ClassElement  x: ClassSpecElement x.ref = i 

 i: instances ClassNamedElement  x: ClassSpecNamedElement 

x.ref = i 


 

The type sets defined in the declaration part 

correspond to the existing classes of our given model. 

Each type is defined as a finite set of object references. 

The predicate part describes the properties of these sets. 

First, we have a type equal to the union of the 

corresponding class instances and the type of all its 

subclasses. And then, that each object reference is used at 

most once for an object which means that no two distinct 

object bindings share the same object reference. 
 

V. AN APPROACH TO FORMALIZE DESIGN QUALITY 

METRICS DEFINITIONS 

Among existing metrics, we will discuss the CK 

Metrics [5] proposed by Chidamber and Kemerer, one of 

the most well known suites of Object-oriented metrics. 

These metrics help measuring different aspects of an 

Object-Oriented design including complexity, coupling 

and cohesion. Several studies [26-27] have confirmed 

their usefulness as quality indicators. 

An OCL formalization of the CK metrics was proposed 

by the authors Baroni et al. [10], defined using functions 

formalized in FLAME [9]. Although, OCL is based on 

mathematical logic, it still does not provide a formally 

defined semantics, furthermore, its syntax is given by a 

grammar description and no metamodel is available 

unlike the metamodel of UML which means that it suffers 

from an absence of well-formedness rules.  

Considering that most metrics formalization efforts are 

made in OCL but yet still unpopular in the software 

industry, we argue that a more rigorous method of 

formalization should be explored in order to overcome 

OCL limitations. 

As a simple example, the expression iterate, used in the 

OCL formalization of the DIT metrics, is known to be 

potentially non-deterministic since there is no precision 

on order evaluation leading to different possible 

results[34]. 

 

Classifier:: DIT( ): Integer 

= if self.isRoot( ) then 0 

else if PARN( ) = 1 then 

1 + self.parents( ) -> iterate( elem: 

GeneralizableElement; acc: Integer = 0 

| acc + elem.oclAsType( Class ).DIT( ) ) 

else 

self.parents( ) -> iterate( elem: GeneralizableElement; 

acc: Integer = 0 

| acc + elem.oclAsType( Class ).DIT( ) ) 

endif 

endif 

 

Also, in each metrics defined with OCL, we could find 

many OCL keywords (self, asSet…) and predefined 

functions (OclAsType, OclIsKindOf…) that are not 

precise enough semantically. Therefore, we propose a 

formal definition for those frequently used predefined 

functions in order to obtain a complete and precise 

definition of the CK metrics. 

 

A. Formalizing OCL Predefined Functions  

OclIsTypeOf and OclIsKindOf have the same 

signature. They are both applied to an object, take a type 

as parameter and return a Boolean as a result. The only 

difference is that the first one deals with the direct type of 

the object when the second one determines whether the 

type given in parameter is either the direct type or one of 

the supertypes of the object.  

When it is certain that the actual type of the object is 

the subtype, the object can be re-typed using the 

OclAsType operation. Otherwise, the expression is 

undefined. 

We propose a Z-formalization of these predefined 

operations using the Henocque approach [4]. 


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oclIsTypeOf: ObjectDef  ReferenceSet  Boolean 


 o: ObjectDef; t: ReferenceSet instances o.class = t oclIsTypeOf 

o t = TRUE 

 o:ObjectDef; t: ReferenceSet instances o.class  toclIsTypeOf 

o t = FALSE 

The formalization is given as an axiomatic function. It 

takes the ObjectDef and a ReferenceSet as parameter and 

it returns a Boolean. When instances of o.class referering 

to the object’s type is equal to the type given in parameter 

the expression of OclIsTypeOf is true. When both types 

are not the same, the operation return false. 

 
oclIsKindOf: ObjectDef  ReferenceSet  Boolean 


 o: ObjectDef; t: ReferenceSet instances o.class  t oclIsKindOf 

o t = TRUE 

o:ObjectDef;t:ReferenceSet instances o.class  toclIsKindOf 

o t= FALSE 

 

When the type of the object given in parameter (expressed 

as instances o.class) is part of the ReferenceSet given in 

parameter, the expression oclIsKindOf returns true. 

Otherwise, it returns false. 

 
oclAsType: ObjectDef  ReferenceSet  ObjectDef 


 o: ObjectDef; t: ReferenceSet instances o.class = t oclAsType 

o t = o 

 o: ObjectDef; t: ReferenceSet  instances o.class  t oclAsType 

o t = NIL 

 o: ObjectDef; t: ReferenceSet instances o.class  t 

     r: ObjectDef r.ref = o.ref  instances r.class = t  oclAsType 

o t = r 

 

With oclAsType operation we distinguish between three 

cases: 

The first one is when the type given in parameter 

corresponds to the object’s type, which means the result 

of applying oclAsType is the object itself. 

The second one is when the object’s type is not the 

same nor is it a part of the ReferenceSet given in 

parameter, which means that the expression is undefined 

and in that case we return the NIL value defined earlier as 

an extension to ObjectDef. 

Finally, the third one is when the object’s type is part of 

the ReferenceSet given in parameter. In that case, the 

expression OclAsType returns an object which has the 

same reference as the object in entry (that means it is the 

same object) but having as type the ReferenceSet in 

parameter. 

B. Formalizing the CK metrics 

Each of the above metrics refers to an individual class and 

not to the whole system. 

 

 Weighted Methods Complexity: the sum of the 

complexity of all methods for a class. If all method 

complexities are considered to be unique, WMC is 

equal to the number of methods.  

 
WMC: ObjectDef  Classifier   


 o: ObjectDef; c: Classifier; S:  Operation S = allOperations o 
c
    WMC o c = # S 

 

 Number of Children: counts the number of children 

classes that inherit directly from the current class. 

 
NOC: ObjectDef  Classifier   


 o: ObjectDef; c: Classifier; n:  n = CHIN o c NOC o c = 

n 

 

 Depth of Inheritance Tree: measures the length of the 
inheritance chain from the current class to the root. 

 
DIT: ObjectDef  RedefinableElement   


 o: ObjectDef; r: RedefinableElement isRoot o r = TRUE DIT 

o r = 0 

 o: ObjectDef; r: RedefinableElement; R:  RedefinableElement; n: 

; S:   

    PARN o r  1 

       R = parents o r
       S =  depth:   r': R depth = DIT o r'
       n = max S DIT o r = n 

 

 Coupling Between Classes: the number of coupling 

with other classes. 

 
CBO: ObjectDef  Classifier   


 o: ObjectDef; c: Classifier; C:  Classifier C = coupledClasses     

o c
    CBO o c = # C 

 

 Response for Class: the number of methods in the 

current class that might respond to a message received 

by its object, including methods both inside and 

outside of this class. It can be defined as | RS | where 

RS is the response set for the class expressed as: 

 

RS = { M all i { R i } 

 

with: 

- { Ri} = set of methods called by method i  
- { M } = set of all methods in the class. 
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RFC: ObjectDef  Classifier   


 o: ObjectDef; c: Classifier; m, mc:  Operation 

    m = allOperations o c  mc = allClientOperations o c
    RFC o c = # m + # mc 

 

 

 Lack of Cohesion of Methods: The degree of 

similarity of methods in the current class. This metric 

was first improved by Chidamber and Kemerer 

themselves, calling it LCOM2, then by Henderson-

Sellers by proposing the following expression: 

 

LCOM3 = (m-sum(mA)/a)/(m-1) 

 

with: 

- m: number of methods in a class. 

- a: number of attributes in a class. 

- mA: number of methods that access the attribute a. 

- sum(mA): sum of all mA over all the attributes in the 

class.  

 
LCOM3: ObjectDef  Classifier   


 o: ObjectDef; c: Classifier; m:  Operation; a:  Property; n:  

    m = allOperations o c
       a = allAttributes o c
        A: a n = n + sum mA A m
    LCOM o c = # m - n div # a div # a - 1 

 

VI. CONCLUSION AND FUTURE WORK 

    In this work, we were mainly concerned about the 

formal definition of the CK metrics as a restricted 

application of our formalization approach, which consists 

on expressing formally the UML metamodel and then 

giving a formal definition of software design quality 

metrics for the sake of validation and verification. 

    As future work, we plan to extend our contribution to 

MOOD and MOOD2 - Metrics for Object-Oriented 

Design [28], EMOOSE- Extended MOOSE [29] and 

QMOOD Quality Model for Object-Oriented Design [30]. 

We, also, plan to build a support tool that will, first, 

automate the formal Z representation of design models 

according to our UML metamodel formalization and then, 

implement already formalized metrics expressions to 

automate their calculation and compare results. 
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Appendix:   

The whole specification, of 426 lines in Latex, was 

entirely written and verified using the Z/EVES tool but 

for space reason, this appendix does not contain all of it. 

The following is a description of the previously 

declared functions in the metrics formalization chapter. 

 

%Subset of Properties (from one set of Features) belonging to the 
current Classifier. 

 

feature2AttributeSet: ObjectDef   Feature   Property 


 o: ObjectDef; S:  Feature 

    instances o.class = Feature 

       S =  f: Feature oclIsKindOf o Property = TRUE
    feature2AttributeSet o S =  f: S oclAsType o Property = 

o
 

%Subset of Operations (from one set of Features) belonging to the 
current Classifier. 
 
feature2OperationSet: ObjectDef   Feature   Operation 


 o: ObjectDef; S:  Feature 

    instances o.class = Feature 

       S =  f: Feature oclIsKindOf o Operation = TRUE
    feature2OperationSet o S =  f: S oclAsType o Operation = 

o
 

%Set of Features declared in the Classifier, including overridden 
Operations. 

 
definedFeatures: ObjectDef  Classifier   Feature 


 o: ObjectDef; c: Classifier; p:  Feature 

    instances o.class = Feature  p =  f: Feature f  Classifier
    definedFeatures o c = p 

 
 
%Set of Classes from which the current GeneralizableElement derives 
directly. 


parents: ObjectDef  RedefinableElement   RedefinableElement 


 o: ObjectDef; r: instances ClassRedefinableElement 

    instances o.class = RedefinableElement 

    parents o r
        =  r': RedefinableElement 

               instances ClassRedefinableElement  instances o.class
 

 

%Set of directly derived Classes of the current GeneralizableElement. 

 
children: ObjectDef  RedefinableElement   RedefinableElement 


 o: ObjectDef; r: RedefinableElement instances o.class = 

RedefinableElement 

    children o r
        =  r': RedefinableElement 

               instances o.class  instances ClassRedefinableElement
 

%Number of directly derived Classes. 
 
CHIN: ObjectDef  RedefinableElement   


 o: ObjectDef; r: RedefinableElement; S:  RedefinableElement 

    S = children o r CHIN o r = # S 
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%Number of Classes from which the current RedefinableElement 
derives directly. 

 
PARN: ObjectDef  RedefinableElement   


 o: ObjectDef; r: RedefinableElement; S:  RedefinableElement 

    S = parents o r PARN o r = # S 

 

%Indicates whether the RedefinableElement has ascendants 
or not.  
 
isRoot: ObjectDef  RedefinableElement  Boolean 


 o: ObjectDef; r: RedefinableElement PARN o r = 0 isRoot o 
r = TRUE 

 o: ObjectDef; r: RedefinableElement PARN o r  0 

    isRoot o r = FALSE 

 

 
%Set containing all Features of the Classifier itself and all its inherited 
Features. 
 
allFeatures: ObjectDef  Classifier   Feature 


 o: ObjectDef; c: Classifier; r: RedefinableElement 

    allFeatures o c =  allFeatures oclAsType o Classifier 
c
 

% Set containing all Properties of the Classifier and all its inherited 
Attributes (directly and indirectly). 
 
allAttributes: ObjectDef  Classifier   Property 


 o: ObjectDef; c: Classifier; S:  Property 

    S = feature2AttributeSet o allFeatures o c
    allAttributes o c = S 

 

% Set containing all Operations of the Classifier itself and all its 
inherited Operations. 


allOperations: ObjectDef  Classifier   Operation 


 o: ObjectDef; c: Classifier; S:  Operation 

    S = feature2OperationSet o allFeatures o c
    allOperations o c = S 

 

% Types (Classifiers) of all attributes that are accessible within the 
current Classifier. 
 
typesOfAllAccessibleAttributes: Classifier   Classifier 


 o: ObjectDef; c: Classifier; S:  Property; F:  Feature; T:  

Classifier 

    S = allAttributes o c  feature2AttributeSet o F = S  F  T 

    typesOfAllAccessibleAttributes c = T 

 

% True if the first Classifier has an accessible attribute of type given as 
second Classifier. 
 
hasAttribute: Classifier  Classifier  Boolean 


 c, c': Classifier c'  typesOfAllAccessibleAttributes c 

    hasAttribute c c' = TRUE 

 c, c': Classifier c'  typesOfAllAccessibleAttributes c 

    hasAttribute c c' = FALSE 

 

% Set of Classifiers to which the current Classifier is coupled 
(excluding inheritance). 
  
coupledClasses: Classifier   Classifier 


 c: Classifier; S:  Classifier 

    S =  c': Classifier hasAttribute c c' = TRUE
    coupledClasses c = S 

 

% Set of Operations that might respond to a message received by its 
object.  
 

allClientOperations: ObjectDef  Classifier   Operation 


 o: ObjectDef; c: Classifier; C:  Classifier; M:  Operation 

    coupledClasses c = C  M =   c': C allOperations o c'
    allClientOperations o c = M 
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