ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Component-oriented Softwar e Development with UML

Nara Sueina Teixeira

Graduate Program in Computer Science
Federal University of Santa Catarina - UFSC
Florian6polis, Brasil
E-mail: narasueina@inf.ufsc.br

Abstract— This paper proposes to automate the process of
structural and behavior analysis of component-oriented
software fully specified in UML. The structural specification
uses component, class and deployment diagrams, and the
behavior specification, state machine diagram. The produced
structural analysis tool analyzes a connection between pairs of
components at a time. The produced behavioral analysis tool
considers the behavior of the system as a whole, leading to
behavioral specification of the application automatically from
the machine state of each connected component. It is
performed the convertion of the state machines of the
individual components and of the application to Petri netsin a
transparent manner to the user. The behavioral assessment is
done by analyzing Petri net properties, considering the context
of the components. Analysis results are produced without
demand effort, allowing early location of design problems.

Keywords-Component-oriented development; structural
compatibility analysis; behavioral compatibility analysis; UML;
Petri Nets.

. INTRODUCTION
For the component-based software
approach, software construction consists in

interconnection of a collection of units: the coments. “A

Ricardo Pereira e Silva

Department of Informatics and Statistics - INE
Federal University of Santa Catarina - UFSC
Florianépolis, Brasil
E-mail: ricardo@inf.ufsc.br

Mouakher, Lanoix and Souquieres [8] improved the
approach [6] by adding an interface protocol, dbscr in
PSM (Protocol State Machine), to the Cl specifmatand
proposing adapters when incompatible interfacesewer
identified. However, the analysis is also perforrbetiveen
two connected interfaces, disregarding problemecisted
with the whole set of application components. |hg6d [8]
the notion of component port is not treated.

Bracciali, Brogi and Channel [9] describe the ifgee of
components through IDLs (Interface Description Lizage)
and they use a subset of Lambda Calculus to repréise
behavior of components. This low level solution drees
difficult to be applied to describe complex systems

The component compatibility analysis should be
performed based on the CI specification and mussider
three distinct aspects: structural, behavioral, famdtional.
“The structural aspect concerns the static featwkes
component and corresponds to the set of requiretd an
provided operation signatures of the Cl. The befraVi
aspect defines constraints in the invocation oodi@rovided
and required operations. The functional aspect riesc

developmenfyhat the component does, not necessarily goingdetails
arpf its implementation” [10].

The lack of a widely accepted standard for the

component represents a modular part of a system thgpecification of CI makes the analysis of comptitybi
encapsulates its contents and whose manifestation jetween components difficult and hence, their redde

replaceable within its environment” [1]. “A comparie
interface (Cl) is a collection of service accesgs) each
one with a defined semantics” [2]. The latter elishbs the

services required and provided by a component,
considering implementation details.

second version of UML, called henceforth UML [1ppides
mechanisms to deal with components, but does mhailesh
a standard for complete specifications.

not |n a previous publication [11] were proposed ways o

specifying component-oriented software and Cl, imiclv the

Some research efforts suggest the automation afpecification is based on the object-oriented pgnadand

component compatibility analysis evaluating thelis.Dias
and Vieira [3] use the Argus-I tool integrated ke tSPIN
tool [4] for the component compatibility analysis,which
specifications are produced in ADL

Description Language) and state machine diagram

uses only UML diagrams. For the CI structural sfeation
component and class diagrams are used and for the C
behavioral specification is utilized the state niaeh

(Architecture diagram. Thus, each component has its own statdineac
iESM) representing its externally observable behavibeing

converted to PROMELA [5]. The architectural anadysi this observable behavior the sequence of requined a

considers the "super state model”, but the autborsot
detail how it is generated.

Chouali and Souquiéres [6] use refinement in Brave
the compatibility between two interfaces, througle tool
AtelierB [7]. The ClI specification is convertedttte formal

method B and consists of a data model associatédeach

component provided and the required

interoperability does not cover behavioral aspebisrefore
it does not assess the feasibility of the compobhestd

application.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

provided operations performed during the composent’
operation. The organization of components of arliggijon
is described by using the deployment diagram.

This paper proposes the automation of the comptnent

compatibility analysis process from the componeaseul
software specification [11]. The approach usecia paper
: js implemented in the current version of the SEA
interface. Théénvironment [10] [12] [13], which uses UML. SEA &
development environment in which the object-oridnte

paradigm is used for production and use of reussdiftevare

269

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

artifacts. Some tools were built in this environtnéa a design specification without changing it and pical
automate the analysis of structural and behavioraleports with the specification features. The td®&T and
compatibility. BAT are analyzers.

The structural analysis tool (SAT) handies at etwe, Ill. SPECIFICATION OFCOMPONENT-BASED SOFTWARE
pairs of connected ports. The behavioral analysik (BAT) '
considers not only the individual behavior of eachA. Structural Specification
component, but also the behavior of the systemvetsade. It The structural specification concerns to all therafion
involves the entire set of application’s intercocted signatures of the Cl. “The CI refers to the portiointhe
components at the same time. In this work, theieg@n component responsible for communicating with ittemal
SM is automatically obtained from the union of ®#ls of environment. Taking into account the nomenclatdirg L,

each connected component. the Cl is composed by a port collection, each as®cated
For the behavioral analysis, the UML state machin&o one or more UML interfaces” [11].
diagram is converted in Petri net (PN). This coei®r is In this approach, producing the CI structural sipeation

done automatically in a transparent way to the ,us#0 requires the specification of all interfaces assted with the
does not need any knowledge of this modeling teglmi component (in class diagram) and the definition tiod
Behavioral ~problems are identified through thecomponent ports, associating required or provideerfaces
interpretation of PN properties, considering thenponent to each of them in component diagram.

context. The conversion method (of SM to PN) usethis With the establishment of the interfaces relatedh®
study is similar to that proposed in [14], howevierpnly ~ component ports through realization or ~dependency
handles PNs of the ordinary kind and presentsquaatiies ~ 'elationship, it becomes possible to check wharaimns

of the treaty context. are provided or required from a component’s port.

; P ; P ; Figure 1 illustrates the structural specificatioh @
Functional compatibility analisys consists in ewdéuif - .
the execution steps of an operation are in agreemih gxf)/i?ghnerg(;lt ngltljhoen?ir]tﬁt ;:ig;n?r?érer?sq[ﬁe I(?I d.ther:amSEA
the need of the component that invokes the omeralihis) 9 g

. . . . with the interfaces; at the left side, a componént,a
kind of analisys is not automatable and is beydredscope component diagram, that is related to the decli b faces
of this work. i '

. . . . In the SEA environment, the connection between
The following sections are organized as: Section Il

“'1 Tcomponents is made in the deployment diagram,fmkine
presents concepts related to OCEAN / SEA, and Sedt ports of connected components. Figure 2 illustrates
presents the approach to specify Compone”t'bém- deployment diagram with a hypothetical softwarefat
In Section 1V, the automated structural compatip#inalysis consisting of the interconnection of three compameAll
is described, while in Section V, the behavioradlgsis is o components must be declared in component diagrel
presented. Software specification and analysisapported | the interfaces. in class diagram
by the tools inserted in SEA environment. Sectioh V ST ’
presents how the evaluation of the produced tootsimed. B- Behavioral Specification

The article ends with conclusions, in Section VII. The CI behavioral specification sets restrictioms tbe
invocation order of operations provided and reqliog the
Il OCEAN/SEA IMPLEMENTATION component. In this approach, the behavioral spetifin is

OCEAN [10] is an object-oriented framework for the represented by a UML state machine diagram. Thie ke
domain of the software development environmentsnr is that each state represents a situation thareckuing the
this framework, SEA environment, a software develept ~ operation of a component, which is characterizedttigy
support, was built. operations required ar]q prowde;d that can be peddrat

The software development using SEA starts with thdhe time. Each transition leaving a state reprasehe
production of a UML design specification. In this €xecution of an operation — provided or requiretthat can
environment, a design specification is an objecat th leave the component in the same state or lead dthen
aggregates models and concepts (that are objeots) astate. Some conventions have been established:
includes relationships between these objects. Kkauh of

UML diagram is defined as a class related to theper SR e Sl
diagram elements, that is, to the classes that mibee Component Interface
diagram elements. O l <interface>> | |<<interface>>
In the SEA environment, tools are also definedlasses 8y e e
and they are related to one or more kinds of sigatibn — A = metX() metZ()
the ones that can be handled by these tools. Ti& dan be) companenten
produced to be accessed by a menu or to be autathati L CompB <<interface>>
called in a specific situation. O
Tools of an OCEAN-based environment are produced by | ; o
means of framework extension (subclassing). Thexd¢haee 5 . UML Interface 2;\,\%
kinds of tool: editors (such as a diagram editoonverters 4

(such as a code generator), and analyzers. Thyzanakread Figure 1. Component structural specification in$eA environment.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 270

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

application X

O O

/{ﬂntﬂ IntEv\

Deployment Diagram

<=companent=>
CompB

==component=»>

CompC

IntE

Figure 2. Software artifact consisting of the intemection of components
CompA, CompB, CompC

State Machines \
CompC
®

QpA

CompB

Figure 3. Behavioral specification of componentsngd, CompB and
CompC.

- The state identifiers are combinations of lettarsl
numbers, which only differentiate a state of thieeat (the
transitions are the elements that define the seaosaot the

model).
-The transitions are labeled according to the faihgy
convention: <direction> <port> <operation>,

<direction> may be <<out>> for the operations insky
the component and <<in>> for provided operations.

Figure 3 illustrates the SMs of the components Comp

CompB and CompC (mentioned in Figure 2).

IV. AUTOMATION OF STRUCTURAL COMPONENTSS
COMPATIBILITY ANALYSIS

Figure 4 illustrates the SAT performance. Its pse&E
to perform structural analysis, which consists ine t
following actions:

A Structural Specification Consistency Analysis

The structural specification consistency analyssfies
if the system is specified with all restrictionst gerth in
approach, such as:

- All components are specified in a component diagr
with at least one port associated to each one.

- Each port is associated with at least one requine
provided interface.

- Each interface referenced in the component diagsa
described in a class diagram.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Structural Specification

Structural Analysis Tool
for Components

Consistency Analysis of
the Structural
Specification

‘ Analysis of the ’
connected ports

Figure 4. Structural Analysis Tool of the SEA eoviment (SAT).

- Each interface defined in the class diagram hasaat
one declared operation.

- At least two components are connected in a depdoy
diagram.

B. Connected Port Analysis

The structural compatibility is evaluated for eguir of
connected ports of the application components. “Séteof
required operations by a port includes the operatiof all
interfaces related to that port by dependency. &hes
operations should be provided by the port on theroside
of the connection through its set of provided ofiens,
in other words, the set of operations of all irdeds related
to that port by realization” [11]. Otherwise, stwml
incompatibility is identified in the connection.

The analysis of the connected ports compares, dh e
pair of connected ports, the operations requiretiénport of
a component with the operations provided by thé pbthe
other component attached to it, considering oparatame,
return type, number of parameters and parameter typ

At the end of the analysis, SAT reports the resulith
the structural incompatibilities found.

V. AUTOMATION OF THECOMPONENTBEHAVIORAL
COMPATIBILITY ANALYSIS

Figure 5 illustrates the BAT operation in the SEA
environment. In this approach, the behavioral aislyf

where components involves the following actions:

A Behavioral Specification Consistency Analysis

The behavioral specification consistency analybiscks
whether the specification complies with the resitits
established in the approach, such as those medtione
Section IlI-B.

Behavioral Analisys
Tool for Components

Consistency Analysis of
the Behavioral
Specification

Behavioral Specification

Component
Diagram

Deployment

Diagram Generation of the

Application
State Machine

S)

Conversion of State
Machines to Petri nets

Analysis of Petri nets
properties

L N

Figure 5. Behavioral Analysis Tool of the SEA eowiment (BAT).

271

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

For each analyzed SM, a behavioral specificatiorthe analyzer, through state enumeration, reporstiven or

evaluation report is generated, assessing the atape
component, with the found errors.

B. Generation of the application behavioral
specification
“Behavioral compatibility is observed between

components if the restrictions on the operationogation

order of the required and provided operations éste in

each component are compatible with the other commtsn
connected to it. This type of evaluation involvhs twhole

set of connected components” [11].

not it has a certain property. The interpretatidneach
property is done for the treated context. The foiig
properties are considered:

1. Safeness: the PNs that represent component-based
applications must be safe. Otherwise, it denotdgmlieral
error.

2. Reversibility: in this study, the conclusion ttteaPN
that represent component-based applications isewetsible
causes a warning which should be evaluated bygée u

3. Deadlock: a deadlocked PN characterizes a befzhvi
error. This can occur for two reasons: one is beeahe

The method for generating the application SM Wasestrictions associated to the execution order lé t

proposed in a previous work [11] and consists of:

1. Identifying pairs of related transitions. Twartsitions
are related if they involve interconnected portd arecution
of the same operation, which is required on one sidd
provided by the other side;

2. Inserting fork and join pseudostates (a singtaagtic
element) that synchronizes the related transitiohghe
different machines. This link will convert the e$tSMs in a
single one — the component-based application Sivhd- a
synchronizes an operation invocation with its exieol

3. Synchronize the transitions of the initial psestdtes
of various machines with a fork pseudostate (iimsgra
single initial pseudostate for the application SWhis step
preserves the initial state of all SMs.

From this algorithm, the application SM will incledhe
states of all involved components. Figure 6 illatgs the SM
(automatically generated by BAT) of the application
consisting of the interconnection of components @Am
CompB and CompC, illustrated in the Figures 2 and 3

C. Conversion of State Machinesin Petri Nets

The user of the SEA environment manipulates onhyL UM
diagrams to specify component-based software. e &e
converted into the corresponding PNs automaticatlya
completely transparent way to the user, who neeer BN
diagrams.

operations, established by a component, are npecesd by
other components connected to it. Another reasothas
occurrence of unconnected port(s) in one or mopiGgtion
components. It occurs when the component requires o
provides operations, through this port, which ageatial to

its operation.

4. Liveness: an alive PN representing a componasi:db
application characterizes a behavioral specificatigthout
errors. However, the absence of this property does
necessarily denote behavioral error. A not alive Pbly
have almost alive or dead transitions and is ther'sis
responsibility to assess whether or not this isehalioral
compatibility problem.

5. Almost alive transitions: this characteristiads to a
warning, because it is necessary that the useonateal if the
unavailability of an operation, at a certain momehtthe
execution, is a behavior compatibility problem.

6. Dead transitions: this feature also requires uker
evaluation, that is, if the permanent unavailapilitf an
operation is a problem for the application.

7. Transition invariants: In the analysis of thelag@ation
PN, the invariants are identified and compared with
invariants of the individual component PNs, because
possible cyclic sequences of operations of a compomay
not be possible when it is connected to others.

The analysis of the PN properties is made for both

The algorithm for conversion of the SMs in PNs isgpplicaton PN and individual component PNs. The

summarized in the following steps:

1. For each state of the SM, create a place iPbhe

2. |dentify the states related to the initial psestdte and
mark the corresponding places with a token at &ath

3. For each SM transition not related to anotheyate a
transition and connect it with arcs to its inpudasutput
places (it applies to the SM transitions of theivitiial
components and the application SM
corresponding to unconnected ports).

4. For each set of SM transitions related to a/joirk in
the application, create a transition with a set av€s
connecting it to their respective input and oufgates.

Figure 7 illustrates the PN obtained from the cosiea
of the SM showed in Figure 6.

D. Petri net propertiesanalysis
The Pipe analyzer tool — Platform Independent Redri
Editor 2, version 2.5 [15] — was integrated to tBEA

environment, with adaptations and extensions. GavétlN,

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

interpretation that occurs to this case is the samehe
application PN, except for the property deadlock:
considering the specification of an individual cament,
deadlock means modeling inconsistency. It is necgs®
compare situations that occur in the component\iehaut
that no longer occur in the application, when tbmponent

is connected to others.

transitions

VI.

Two emphases have been adopted in the evaluation
process: the tools’s ability to identify errorsdasuspicious
situations (reported as warnings) and the apprmméss of
the analysis approach. The evaluation of the implasd
tools was performed with small applications, with a
maximum of ten components. Specifications withaubrs
and specifications with purposely inserted erroreren
treated by the analysis tools in order to evaluale
situations in which they should work.

PROPOSED APPROACIEVALUATION

272

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

ﬂm‘e Machine Application @
<<CompA>> [©
E1

<<CompA>>)
E2

<<CompA>><<int>><<P

. R -
S4
\ <<CompB>><<out>><<P2>>metY|) /

Figure 6. Behavioral specification correspondin¢he application of the figure 2.

/ Petri Net Application (CompA-CompB-CompC) \

ompC>><<out>><<P3>>me

| <<CompC>>
D1

<<CompB>>

<<CompB>>
s2

\ CompA:E2

Figure 7. Petri net obtained from the conversibthe SM showed in Figure 6.

The analysis approach showed to be adequate when

comparing their results with the conclusions of not VII. - CONCLUSION AND FUTURE WORKS
automatic analysis. The tools were not submittedttess This paper has presented an automatic procedutedor
test. The following are some analysis examples. structural and behavioral compatibility analysisheT

Figure 8 shows an exaple of a structural analysp®nt approach was implemented in the SEA environmerihgus
with error detection — in this case, operation paivided tools embedded in it.
and problems with parameteres. Figure 9 shows ampgbe Component and class diagrams have been used for the
of behavioral analysis report with errors due tcanmected Cl structural specification. The behavioral aspést
port, that is, a deadlock caused by the need ofatipa defined using the state machine diagram. The coswion
invocation in an unconnected port. Figure 10 shamsther organization is defined using the deployment diagr
example of behavioral analysis report with warsirtye The structural analysis tool evaluates whether the
the possible changes that may occur in the componepperations required on one side of the connectim a
behavior when it becomes part of a component cdiumec provided by the component on the other side.
In this case, possible service execution cycles aof The behavioral analysis tool generates the apjmitat
individual component not be preserved when it isnexted SM automatically. All SMs are converted into PNsjiei
to other components. Besides that, operations awayare analyzed and interpreted in the given context.
available in the components become temporarily The main advantages of this proposal are: the
unavailable in the application that contains theponents. specification is made with just a single langudd#lL; the
Based on reports like the ones showed, the user capplication behavioral specification is generated
make decisions and define corrective action relatethe automatically, reducing the design effort; the hédval
component and application specifications. For &ibma analysis considers the behavior of individual congus
that represent warnings, the user must evaluatéheher and application, comparing them and identifies rsrrand
not they mean a problem for the application. suspicious situations reported as warnings.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6 273

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

"mModel analysed: Component

- service [metx(par:string):

Type Analysis: structural Compatibility

AnaWyzing Component [CompaA] port [F1]
connected Component [CompE] part [P2]
strin
provided as [metx(parl:Integer

]
g: string].
Divergent tyge of parameters.

- service [metk(): string].
Service NOT provided.
(...0
AnaTyzing Component [CompcC] port [P3]
connected Component [CompE] porto [P4]

- service [metz2():

- service [metv():

- service [metw(parl:string; par2:

Eoolean].
service [metz] provided ok.

Ana1y2ing Caomponent [CompE] paort [P4]

connected Component [CompC] port [P3]

string].

service MOT provided,

Integer):

string].
Integer].

Provided as [metw(parl:stringj:
RETUrn t¥pe differs.
HWumber of parameters differs.

Figure 8. Connected Port Analysis Report with error

mModel analysed: Component

Type Analysis:

Behavioral compatibility

(e

J

Eehavior analysed: application

- Error:

application locked due To unconnected ports.

- Port [P4] Component [CompB]l s not connected with the following

- Port [P4

methods provided essential for its operation: [Metz]
’]:I Component [CompB] s not connected with the following

methods reqguireds walting for connection: [metw]

- Cycles of the service execution
Mot ddentified.

Behavioral analysis with Errors

Figure 9. Behavioral Analysis Report with error.

5]

The developed tools automate the proposed analysis
approach and the tests have shown the ability to
automatically locate structural and behavioral restro [6]

As future work, we highlight the need of assesghng

produced automatic support in the development afela
applications, the development of automated sugpassist
the creation of component adapters and to findradteres

to

assess functional compatibility. Thus, we exptet

possibility of producing component-oriented softevar
specification more accurately, less prone to ermgd
improve its quality.

(1]

(2]

(3]

[4]

Copyright (c) IARIA, 2011.

REFERENCES
Object Management Group. Unified Modeling Language:
Superstructure version 2.4. Available in:

<http:/lwww.omg.org/spec/UML/2.4/Superstructure &PDF>.
Access: 20 January 2011.

C. Szyperski, Component Software: beyond objecrded
programming, 2.ed. Boston, EUA: Addison-Wesley BEssfonal,
2002.

M. S. Dias, and M.E.R. Vieira, “Software ArchitexguAnalysis
based on Statechart Semantics” Rroceedings of the 10th
Internacional Workshop on Software Specification and Design. [S.1]:
IEEE Computer Society, 2000.p.133.ISBN 0-7695-0884-

SPIN. Available in: <http://spinroot.com/spin/wtsgin.html>.
Access: 10 November 2010.

ISBN: 978-1-61208-165-6

(7]
(8]

9]

[10]

[11]
[12]
(13]

[14]

(15]

model analysed: Component
Type analysis: Behavioral Compatibility

Behavior Analysed: Component [CompP]

- Component specified aok.
- Cycles of the service execution
cl: metgl), meth()

Ccz: metr(), metv()

Behavior Analysed: Component [Compg]

- Component specified ok.

- Cycles of the service execution
C3: metgll), metpll
C4: metr(), metw()

Behavior Analysed: Component [CompL]

- warning: cComponent not restartable.

- warning: component services tempararily available.
services: [metg] provided by the part %P

- Cycles of the fervice execution
c5: meth(y, metq(), metp()

Behavior Analysed: application

- warning: application not restartable.
- warning: application services temporarily available.

services: [meth] required by the component [CompP] at the port [P1] and
provided by the component [CompL] at the port [P2].
[metg] required by the component [CompP] at the port [P1] and
provided by the component [CompL] at the port [P2].
[metg] required by the component [CompL] at the port [P4] and
provided by the component [Compl] at the port [P3].
[metp] required by the component [CompL] at the port [P4] and
provided by the component [Compg] at the port [P3].

- Cycles of the service execution
CH: metrfl), metv()

comparative table of component services

Met /Comp| CompP | Compa ComplL | Applicatiaon

temp. available |temp.available
awailable €C5) |temp.availahble

|
metg()|availahle (1) |- |
3 |

| - lavailahle (ced
I
|

meth()|availahle (C1) |-

metr()|availabhle (C2) |available (C4)
metv()|available (c2) |available (c4)
metq) |- lavailahle €c3)
metpC)] - lavailahle €C3)

- |available (C&)
| temp. availahble
| temp. availakle

available (C5)
available (C5)

warning: cycles [cl] [c3] and [c5] presents in the components and absent
in the application.

Behavioral analysis with warnings

Figure 10. Behavioral analysis report with warsing

PROMELA. Process or Protocol Meta Language. Aviglam:
<http://www.dai-arc.polito.it/dai-
arc/manual/tools/jcat/main/node168.html>. Acces® Bovember
2010.

S. Chouali, M. Heisel, and J. Souquiéres, “Providgmponent
Interoperability with B Refinement,” ihnternational Workshop on
Formal Aspect on Component Software, H. R. Arabnia and H.Reza,
Eds. CSREA Press, 2005, to appear in ENCTS 2006.

Atelier-B. Available in: <http://www.atelierb.eufilex-en.php>.
Access: 10 November 2010.

I. Mouakher, A. Lanoix, and J. Souquieres, “Compunfdaptation:
Specification and Verification,” ifProceedings of the International
Workshop on Component-Oriented programming, (WCOP). 2006

A. Braccialia, A. Brogi, and C. Canal, "A formal
approach to component adaptation”, Journal of Systems and
Software Volume 74, Issue 1, 1 January 2005, Pages 45-54.

R. P e Silva, “Suporte ao Desenvolvimento e Usdrideneworks e
Componentes,” PhD DissertationPorto Alegre, UFRGS/II/PPGC,
march 2000.

R. P e Silva, Como Modelar com UML 2, Florian6pohfisual
Books, 2009. ISBN: 978-85-7502-243-6.

A. Coelho, “Reengenharia do Framework OCEAN,” M.Sbesis,
Florianépolis, UFSC. 2007.

T. C. de S. Vargas, “Suporte a Edicdo de UML 2 mabiente SEA,”
M.Sc. Thesis, Floriandpolis, UFSC. 2008.

J. A. Saldhana and S. M. Shatz, “UML Diagrams tge©bPetri Net
Models: An Approach for Modeling and Analysis,” linternational
Conference on Software Engineering and Knowledge Engineering.
Proc. of the Int. Conf. On Software Eng. and Knalgle Eng.
(SEKE), Chicago, 2000.

Pipe. Platform Independent Petri net Editor 2, &er.5. Available
in: <http://pipe2.sourceforge.net/>. Access: 20udan 2011.

274

