ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Towards Executable Business Processes with the Problem Oriented Engineering
Process Algebra

Dariusz Wojciech Kaminski
Computing Department
The Open University, UK
dariusz.kaminski @ gmail.com

Abstract—The paper introduces a process algebra for busi-
ness process models. The algebra is located within Problem
Oriented Engineering, a framework for engineering design, and
is based on a process pattern defined by Hall and Rapanotti
by which Problem Oriented Engineering developments should
be structured. The pattern is a generator for processes being
composable in three ways: in sequence, in parallel and fractally.
In explicating this process algebra, a machine readable and
animatable CSP is used, which forms a semantic basis for
the behaviour modelling of processes. The benefits of this
algebra are: simplicity, support for business process analysis
and synthesis, and explicit recognition of choices (and their
impact) made by agents.

Keywords-process modelling; process algebra; Problem Orien-
tation.

I. INTRODUCTION

Business process analysis and synthesis are greatly facili-
tated by executable models, such as Business Process Execu-
tion Language (BPEL), which can be represented graphically
by Business Process Modeling and Notation (BPMN) [18].
Such approaches provide only the building blocks by which
processes can be built, without any predictive capability of
the properties of processes themselves.

A predictive model is, essentially, one with which “What
if?” questions can be answered. An example question might
be:

What if we asked a stake-holder at this point
whether we have understood their problem well
enough; would the developmental risk we face
change?
Being able to answer such questions may allow us to distin-
guish from all those that solve a business problem, those
business processes best match other criteria such as, for
instance, the availability of resources or our attitude to risk.
In this paper, we provide a model that we have developed
in the context of Problem Oriented Engineering (POE) [6],
[7]. POE has been shown to have predictive capability in
the design of artefacts, and we hope, with this paper, to
begin working towards using POE’s predictive capabilities
for business process design.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Jon G. Hall
Computing Department
The Open University, UK
J.G.Hall@open.ac.uk

Lucia Rapanotti
Computing Department
The Open University, UK
L.Rapanotti @open.ac.uk

The paper is structured as follow. Section II provides a
brief overview of business process modelling and Problem
Oriented Engineering. Section III introduces and explains the
POE Process Algebra, with an example in Section IV. Section
V reflects on the contribution and its potential application.

II. BACKGROUND AND RELATED WORK

POE is motivated by a view of engineering as a problem
solving activity [15]. POE provides many tools for solving
problems, including the POE Process Pattern (PPP) [5],
upon which the treatment of this paper is based. Simply
put, the PPP orders a problem solving activity as iterations
between exploring the problem and exploring the solution,
with interleaved validation activities, whilst recognising that
both problem and solution exploration can also be seen as
problem solving activities.

Under the POE view, business processes are designed
artefacts that solve business problems. We assume that for
any business problem there will be many possible candidate
business process solutions, each with different characteristics
— here we consider cost (or resource use), and risk — in
the solution space. This paper provides the business process
designer with tools that allow the visualisation of business
processes along a ‘risk/resource continuum’, each of which
can then be compared to an organisation’s available resource
and risk appetite, as illustrated in Figure 1.

Business B's risk/
resource capability

BP3_| |

Business A's risk/resource
capability

| BP1 BP2

Increasing Risk of
inadequate solution

Increasingly expensive
problem understanding

Figure 1. Two businesses A and B, each with different risk appetites and
available resources, experience the same problem for which three candidate
solutions — BP1, BP2 and BP3 — exist. Plotting each business process along
the risk/resource continuum allows the most appropriate to be chosen.

Thus, whilst consistent with Aguilar-Savén’s definition [2]:
“a business process is the combination of a set of activities

239

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

within an enterprise with a structure describing their logical
order and dependence whose objective is to produce a desired
result”, we provide hooks for the management of the fol-
lowing risk/resource trade-off [5]: although understanding the
problem can be resource intensive in terms of developmental
and stake-holder time, it can mitigate the risk of solving the
wrong problem. For the purposes of this paper, we call this
the “risk/resource trade-off assumption”.

A. Business process modelling

Many analytical frameworks have been considered for the
classification of business process models. Wang ef al., for
instance, [17] surveys BPELAWS (BPEL for Web Services),
BPMN, UML (Unified Modeling Language), XPDL (XML
Process Definition Language), Petri Nets, IDEFO, and IDEF3.

Given their easy representation of concurrency and their
explicit representation of state, Petri Nets have long been as-
sociated with the modelling of Business Processes, including
the work of Van der Aalst [1], and that based on the Petri
Box model of Best et al. Our model shares with Petri Nets a
formal model in POE, but is focussed on on completeness of
representation only on the accurate representation of problem
solving steps that exist within a business process. Moreover,
we aim for synthesis of business processes not just their
modelling for animation.

Aguilar-Savén provides a comprehensive review of a num-
ber of business process modelling techniques and tools, and
also proposes a framework to classify the techniques/models
according to their purpose. The classification proposed in [2]
is done according to the purposes (descriptive, analytical,
enactable), and change model permissiveness (passive or
active). The approach proposed in this paper aims to be active
in regards to permissiveness, and depending on the context
and modelling goals the purpose falls into all four categories.

Other classification emphasising the link between mod-
elling, decision and planning capabilities, but also their
relation to entities (time, resources, causality and authority),
was provided by Macintosh [11].

Mentzas et al. [13] provide an evaluation of alternative
approaches to business process modelling with workflows.
One of the problems, as cited by Mentzas et al., is the hard-
ship in modelling exceptional tasks or processes, and their
advice is to exclude such processes from process models,
“due to uncertainty either in time or in the processing entities
involved”.

Perhaps unsurprisingly, synthetic approaches to business
processes are fewer in number: A formal definition of
structured workflow in terms of activities was provided by
Kiepuszewski et al. in [9], where it was shown how these can
be composed to form arbitrary workflow models, but require
the use of powerful verification engines to help detect whether
a composed process is well-behaved.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

B. Problem Oriented Engineering

Problem Oriented Engineering is a framework for en-
gineering design, similar in intent to Gentzen’s Natural
Deduction [16], presented as a sequent calculus. As such,
POE supports rather than guides its user as to the particular
sequence of design steps that will be used; the user choosing
the sequence of steps that they deem most appropriate to the
context of application. The basis of POE is the problem for
representing design problems requiring designed solutions.
Problem transformations transform problems into others in
ways that preserve solutions (in a sense that will become
clear). When we have managed to transform a problem to
axioms' we have solved the problem, and we will have a
designed solution for our efforts.

Problem exploration

Solution exploration

Figure 2. The POE Process Pattern: iteration between problem and solution
exploration with interleaved validation (adapted from [5]).

A comprehensive presentation of POE is beyond the scope
of this paper (but can be found in [6], [7]). For this paper it
will be sufficient to consider the structure that POE suggests
for problems solving steps that is illustrated in Figure 2 in
which rectangles are resource consuming activities; diamonds
indicate requests to stake-holders for validation either — on
the left — of problem understanding, or — on the right — of a
candidate solution.

The potential for looping in the POE process pattern
concerns unsuccessful attempts to validate: unvalidated prob-
lem understanding will require problem rework as will an
unvalidated solution. In this way, validation within the pro-
cess has an impact on both (developmental) resources and
risk: resource will vary with validation instances; risk varies
inversely with validation instances.

C. Complex problem solving

Although the POE process pattern provides a structure for
problem solving, in its raw form, a problem will only be
solved when, after iteration, a validated problem is provided
with a validated solution. This ‘bang-bang’ approach is
suitable for simple problems, but is unlikely to form the basis
of any realistically complex problem encountered in software
engineering.

' An axiomatic problem is a problem whose adequate, i.e., fit-for-purpose,
solution is already known.

240

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

To add the necessary complexity, the POE process pattern
combines with itself in three basic ways; in combination, it is
again a process that can be combined. The three ways it can
be combined are in sequence, in parallel and in a fractal-like
manner, as suggested in Figure 3, and as described in the

sequel.
s —c

<

(b) parallel
T
°(a) sequences
(c) fractal

Figure 3. Problem solving can be performed (a) in sequence, and (b) in
parallel. Under POE, problem and solution exploration are problems solving
activities, so that fractal composition is also possible.

Briefly, in sequence, the POE process pattern models
(more or less traditional) design processes in which existing
structures, such as architectures, are used as structure in
the solution space according to significant requirement and
qualities, and according to developmental requirements.

If resources exist, parallel problem solving is possible. Of
course, communications between those involved in parallel
development is a non-trivial issue; we do not consider it here,
though.

Fractal-like Design: [5] explains in detail how problem
and solution exploration can be seen as problem solving
processes: although we do not go into detail, essentially, the
problem to be solved by problem exploration is to find the
problem (or solution) description that satisfies the validating
stake-holder. This allows us to embed within problem and
solution exploration copies of the PPP, making the process
self-similar in the sense that the whole structure resembles
the parts it is made of.

Trusted processes: A POE process is trusted when there
are no validating stake-holders. As argued in [5], trusted
processes exist to ‘bottom out’ problem solving; given that
no validator is involved they do not have a fractal form.

D. Validation

We wish to model the validation relationships that occur
in organisations. In POE, we assume that there are two
types of validation relationship: (i) direct validation, in which
one actor determines whether the problem to solve has
been understood or the solution is adequate; (ii) delegated
validation, in which one actor — the delegator — delegates to
one (or more) actors who then can validate either directly or
through delegation. Of course, delegation does not transfer

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

the responsibility for the outcomes of a choice, so that at
a future point the delegator may check that the choice has
been made, and also that the outcome and justification of that
choice is suitable.

A delegator can clearly not usefully delegate to themselves,
nor can there be cycles in the delegator/delegatee relation-
ship. The reflexive transitive closure of the relationship is,
therefore, a partial order.

Thus, POE see validation as a social choice [3], which can
be expressed as a partially ordered set, or poset, i.e., (X, <),
where X is the domain set and symbol < is the delegation
relation, which we call the validation structure, or VStruct.

Example 1: Consider three validators — v1, vy and vz —
with v; delegates to v;, v; < v;, whenever ¢ > j. The
validation structure is the poset (V, <) with:

(1}1 < ’Ug)7 (UQ < 123)

We now turn to the modelling of business processes in
POE.

V= {’Ul,’UQ,U3},

III. POE PROCESS ALGEBRA

The aim is to define a process algebra to describe POE pro-
cesses in terms of simple operations. These operations should
allow for encoding and modelling of distinct exploration
and validation activities. Firstly, they should provide com-
positions for the three basic ways in which POE processes
combine. Secondly, the operations should be sufficient to
express arbitrarily complex process models, whose structure
and behaviour could be modelled and reasoned about.

To this end, we define the POE Process Algebra (PPA).

A process under PPA is formed under the following syntax:

P=B|P;P|P|P|Pyxy P

in which a basic POE Process, [, combines to produce
sequence P; P, parallel P|| P, and fractal processes Py <y P,
the latter in combination with validation structures?.

The operators correspond to the possibilities for combina-
tion of POE Processes as described in Section II.

A. Executable semantics of PPA

We provide an executable semantics for PPA terms using
machine readable CSP (CSP-M) [4], as implemented in
ProB tool [10]. ProB was chosen as it provides for the
animation and model-checking of the resulting CSP models
and traces [8] on the trusted processes. A CSP semantics
allows us to reason about processes in terms of the effects
of basic process on resource, and on their relationship to
validation, through fractal composition.

2The astute reader will note the lack of a choice composition, often
included in process algebras that express computation. This is because the
PPP describes the structure of the problem solving process and not the
(creative) choices that are expressed therein: POE makes no comment on
the creativity of the design process, that is contextually determined by the
stake-holders whose notions of adequate apply.

241

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

We have already been able to use ProB’s model checking
and animation functionality to test whether POE processes
(encoded as POE Programs) execute and complete as ex-
pected. Examples follow.

B. POE Programs language syntax

We designed a language for encoding POE processes using
the operators from PPA, and as a function over POE Programs
in this language we created a set of tools to translate PPA
encoded input to CSP-M.

The executable model for POE processes was implemented
in the Ruby programming language [12]. The input POE
Program is translated to CSP-M output, and this in turn can
be directly used in ProB tool. Further technical details of the
implementation are beyond the scope of this paper.

C. A CSP-M semantics of PPA

Our semantics is over the domain of CSP-M expressions
and so we must associate with each POE Process expression
a CSP-M term. Most choices for the semantics are made
simple due to the process algebraic nature of the source and
target languages: CSP is an algebra as is PPA. Below, we
describe in detail only the more difficult encodings.

PPA trusted in CSP: Trusted POE processes are the
building block from which others are built. Their defining
characteristic is that they make no use of validators. As such
they can be, essentially, any piece of CSP-M code.

Sequence: Sequential composition under PPA is, as
might be expected, implemented using CSP’s sequential
operator ;. Simply:

Sequence (Left,Right) = Left ; Right

Parallel: Although there are other choices, in this initial
semantics parallel composition under PPA is implemented
using CSP’s interleaving operator. Other choices would allow
the processes involved to communicate with each other to, for
instance, model the passing of documentation between them.
Such details are left for a fuller description.

Parallel (Left,Right) = Left ||| Right

PPA fractal in CSP: Referring to Figure 3, fractal
composition in our CSP-M implementation must accept
four arguments: Upper for the problem exploration process,
Lower for solution exploration process, and the two respec-
tive validation structures, which we will call VSPID (for
Validation Struct for Problem) and VSSID (for Validation
Struct for Solution). Our semantics simply places the CSP-
M semantics of the operands together through CSP-M’s
interleaving operator.

Fractal (Upper, Lower, VSPID,VSSID) = (Upper |||
ValidateUpper (VSPID) ||| Lower |||
ValidateLower (VSSID))

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

Table I
SUMMARY OF KEY TERMS

Term Description

Mortgage Servicing Managing mortgage loans — interest accruals,
billing, collecting due payments, redemption
of loans, etc.

Financial Services Regulatory body for financial institutions
Authority (FSA)
(Mortgage) Servicing
Software

Triage Document

Software used in servicing activities

A form used to report details of a production
issue

IV. CASE STUDY EXAMPLE

As an example of the application of our algebra, we model
the process described in [14], from which the following
description is adapted.

The context of the study is a UK based subsidiary of
an American financial organisation (the Company), with
business, systems and technical analysts based in the UK,
technical architects in the US and development staff in India.
Relevant key terms and stake-holders are summarised in
Tables I and II. The company supplies Mortgage Servicing
Software package to its Client, a product that manages loan
accounts once mortgage payments have been made by the
Client’s customers. The software facilitates business tasks
such as payment calculation and processing, account queries,
early redemption, correspondence, interest rate change and
customer billing. The company also provides support and
assists in the resolution of issues that arise during the use
of the supplied software.

Recently, the company lost a number of subject matter
experts but retains a contractual obligation to provide support
to the Client to enhance and maintain the supplied software
stack. This motivated the company to investigate through
this study the capture of design rationale during Client’s
issue resolution. As many organisations face such losses,
the success of our case study takes on increased importance.
The case study also provided opportunities to consider how
the application of POE techniques could improve the current
issue resolution process. Process improvement is also an issue
faced by many organisations.

A. Issue Resolution Process

When an issue is found in the Client’s use of the Com-
pany’s applications, a Triage Document is raised to describe
the problem with information included that may assist in
tracking down its cause. The reported issue is given a priority
by the Client (low, medium, high) that governs the timeline
for response and solutions, based on service-level agreements.
Once the Triage Document is received by the Supplier’s
Production Support Team, an incident number is generated

242

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Table II
SUMMARY OF KEY STAKE-HOLDERS

Stake-holder Description

Client/Financial Institution ~ The mortgage institution managing cus-
tomer mortgages

Patrons of the client organisation whose
mortgages are being managed
Company that supplies and maintains
mortgage servicing software for the
client. The case study is based in this
organisation

Client-side team tasked with resolving
application software issues. Understand
the workings of the application system
and its platform, provide initial infor-
mation on issues and communicate with
business decision makers when ques-
tions arise of a business policy nature
Supplier-side team tasked with resolv-
ing issues with application software. In
contact with CPST, assign work to the
development and manage releases of so-
lutions to the Client

Reviews a solution to assess if solution
complies with standards

Ensures the quality of the provided so-
lution

Make final sign-off decision

Make decision whether to implement
solution in production

Group of individual on the Supplier side
tasked with developing software

Customers

(Servicing) Software Com-
pany

Client Production Support
Team

Supplier Production Sup-
port Team (SPST)

Application Architect
(AA)

Product Assurance Team

Mort. Bus. Man.
IT Management

(Oftshore)
Team (DT)

Development

and used to track the issue. The information is checked to
see if it is sufficient for the investigation to progress.

Further discussions may be held between the Client and
Supplier Production Support Teams to agree a) which issues
lie with the application software and b) an approach for
dealing with the issue. Additional clarification may be sought
from the Client from which the issue report originated.
The clarification may be in the form of screen shots of
the application error, data extracts, event logs and example
scenarios. When issues are agreed between CPST and SPST,
they are analysed and solution approaches proposed by the
development and architecture resources assigned to the issue.
The proposed solutions are discussed with the CPST. Once
agreement is reached on a solution approach, it is developed
and tested. On completion of development and testing, the
solution is packaged by the SPST with release notes and
a test report, and delivered to the CPST. Subsequently, the
CPST validate the delivered package, perform some further
tests in collaboration with the Client, and may either return
it for rework if it is unsatisfactory or implement it to the
production systems if satisfied with the results.

B. The PPA Model

From this description, we identify four trusted processes,
Report, Raise, Analyse and Deliver, and three frac-
tal instances of Figure 2, here named F1, F2 and F3, with
associated validation structures U; V1 and V2; W1 and W2. We

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

note that only the problem exploration part of F1 is validated.
The process is illustrated in Figure 4.

!

Report Analyse
P Y F2 F3
L2 [[E—— | [i 777777777 I
Raise } ‘} ‘
F1 | Propose }‘ Impl }
| I I
I i I
I 11 I
| I I
I i I
| I I
I i I
| Prepare 11l Package I
| I I
I i I
I 11 I
I i 1
I i I
[] [o

Deliver

5

Figure 4. Processes; adapted from [14]

LET HiddenPV := (HiddenValidator)
LET U := (SPST1<CPST1<Clientl)
LET V1 (SPST2<AAL)

LET V2 (CPST2<Client2)

LET Wl (PAL)

LET W2 (Client3<CPST3)

Fl :=
F2 :=
F3 :=
P :=

(ElaborateP{HiddenPV}><{U}ElaborateS)

(Propose{V1}><{V2}Prepare)

(Impl{Wl}><{W2}Package)
Report;Raise;Fl;Analyse;F2;F3;Deliver

Our tool generates approximately 180 lines of CSP-M to
model the case study process of Figure 4. The part of the
process corresponding to the level of that figure is:

P = Sequence (Sequence (Sequence (Sequence
(Sequence (Sequence (T (pReport),
T (pRaise)), Fractal(T(pElaborateP),
T (pElaborateS), vsHiddenPV,vsU)),
T (pAnalyse)), Fractal (T (pPropose)
T (pPrepare), vsVl, vsV2)),
Fractal (T (pImpl), T(pPackage),
vsWl,vsW2)), T(pDeliver)

V. CONCLUSIONS AND FUTURE WORK

We have described our current model of Hall and Rapan-
otti’s POE Process Pattern. The current model includes initial
executable semantics of all aspects of the process, including
fractal composition from which call-outs to validating stake-
holders take place. Our model is encoded in a new process
algebra, the POE Process Algebra (PPA), introduced here,
and we have defined a semantic function over the algebra,
which maps from CSP-M model that can be analysed in the
ProB tool.

We have illustrated our PPA encoding on a business
process that has appeared in the literature, presented a partial

243

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

CSP-M semantics of it as well as the ProB output of a partial
exploration of its state space.

Our approach contributes to business process modelling by
explicit recognition of choices that can be made by human
agents, and with a devised language for representing POE
Programs in the form of CSP-M, this approach provides
syntax and semantics for behaviour modelling of business
and validation processes in general.

Work that remains will consider how the executable model
can be used to calculate resource usage of the process, and
how risk and resources trade-off under, what we have termed,
the risk/resource trade-off assumption of Section II. For,
with such calculations, comes the possibility of systematic
business process design in POE.

REFERENCES

[1] W.M.P. van der Aalst, “Making Work Flow: On the Applica-
tion of Petri Nets to Business Process Management.” LNCS,
J. Esparza and C. Lakos, Eds. Springer, 2002, vol. 2360, pp.
1-22.

[2] R.S. Aguilar-Savén, “Business process modelling: Review and
framework,” International Journal of Production Economics,
vol. 90, no. 2, pp. 129 — 149, 2004.

[3] G. Brightwell and D. B. West, “Chapter 11: Partially
ordered sets,” in Handbook of Discrete and Combinatorial
Mathematics, K. H. Rosen, J. G. Michaels, J. L. Gross, J. W.
Grossman, and D. R. Shier, Eds. CRC Press, 2000.

[4] M. Butler and M. Leuschel, “Combining CSP and B for
Specification and Property Verification,” in FM 2005: Formal
Methods International Symposium of Formal Methods Europe,
Newcastle, UK, July 18-22, 2005. Proceedings, LNCS, vol.
3582. Springer, 2005, pp. 221-236.

[5] J.G. Hall and L. Rapanotti, “Assurance-driven design in
Problem Oriented Engineering,” International Journal On Ad-
vances in Systems and Measurements, vol. 2, no. 1, pp. 119—
130, 2009.

[6] J.G. Hall, L. Rapanotti, and M. Jackson, “Problem oriented
software engineering: A design-theoretic framework for soft-
ware engineering,” in Proceedings of 5th IEEE International
Conference on Software Engineering and Formal Methods.
IEEE Computer Society Press, 2007, pp. 15-24.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

J.G. Hall, L. Rapanotti, and M. Jackson, ‘“Problem-oriented
software engineering: solving the package router control prob-
lem,” IEEE Trans. Software Eng., 2008.

C.A.R. Hoare, Communicating Sequential Processes, ser. Se-
ries in Computer Science. Prentice-Hall International, 1985.

B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler,
“On structured workflow modelling.” in CAiSE, LNCS,
B. Wangler and L. Bergman, Eds. Springer, 2000, vol. 1789,
pp. 431-445.

M. Leuschel and M. Fontaine, “Probing the Depths of CSP-
M: A New FDR-Compliant Validation Tool,” in ICFEM ’08:
Proceedings of the 10th International Conference on Formal
Methods and Software Engineering, Kitakyushu-City, Japan.
Springer-Verlag, 2008, pp. 278-297.

A. Macintosh, “The need for enriched knowledge representa-
tion for enterprise modelling,” in Al (Artificial Intelligence) in
Enterprise Modelling, IEE Colloquium on (Digest No.078), 7
1993, pp. 3/1 =3/3.

J. McAnally and A. Arkin, Ruby in practice.
Publications Co. Greenwich, CT, USA, 2008.

Manning

G. Mentzas, C. Halaris, and S. Kavadias, “Modelling
business processes with workflow systems: an evaluation of
alternative approaches,” International Journal of Information
Management, vol. 21, no. 2, pp. 123 — 135, 2001.

A. Nkwocha, J.G. Hall, and L. Rapanotti, “Design rationale
capture in the globalised enterprise: An industrial study,” in
Proceedings of Fifth International Conference on Software
Engineering Advances (ICSEA 2010). 1EEE, 2010, electronic
proceedings.

G.E.C. Rogers, The Nature of Engineering: A Philosophy of
Technology. Palgrave Macmillan, 1983.

M.E. Szabo, Ed., Gentzen, G.: The Collected Papers of
Gerhard Gentzen. Amsterdam, Netherlands: North-Holland,
1969.

W. Wang, H. Ding, J. Dong, and C. Ren, “A comparison of
business process modeling methods,” in Service Operations
and Logistics, and Informatics, 2006. SOLI ’06. IEEE
International Conference on, 21-23 2006, pp. 1136-1141.

S.A. White, “Introduction to BPMN,” IBM Corporation, May
2004.

244

