
Optimization of HDF5 Performance for Virtual Reality Objects Enhanced by
Implicit Features

Alexander Tzokev
Faculty of Industrial Technologies

Technical University of Sofia
Sofia, Bulgaria

alextz@tu-sofia.bg

Angel Bachvarov, Stoyan Maleshkov
Faculty of German Engineering Education and Industrial

Management (FDIBA)
Technical University of Sofia

Sofia, Bulgaria
a_bachvarov@tu-sofia.bg, maleshkov@tu-sofia.bg

Abstract—The amount of data used in Virtual Reality
environments can be very large especially when working on
real-world engineering problems. The interaction between the
environment and the user or enhancement the objects therein
with implicit features require integration of a high
performance data management system which allows an
efficient data handling. The deployment of specialized scientific
databases such as Hierarchical Data Format 5 (HDF5) offers
certain advantages over more business-oriented relational
database management systems. This paper presents results
from a study for optimization of the storage efficiency of the
HDF5 data base trough chunked datasets enabling effective
handling of the large data amounts produced within and for
virtual reality environments. Further, a method for predicting
the optimal chunk size or arrays of native data types with rank
1 and 2 is discussed.

Keywords – Virtual Reality; HDF5; Data Chunking; Chunk
Size Prediction; Databases.

I. INTRODUCTION
Recently a concept of so called implicit features of the

objects for enhancement of their immersive representation
within multimodal virtual reality (VR) environments was
proposed in [1]. The implicit features represent “hidden”
properties of an object which normally are not part of the
object model and cannot be perceived directly by the
observer through his/her senses, such as magnetization,
radiation, humidity, toxicity, surface roughness etc.

The VR paradigm assumes that the virtual objects are
fully functional replicas of the physical originals. However,
the commonly used approaches for building the virtual
objects are related to some limitations in their presentation
within the virtual world. Only the so called explicit features
of the objects, meaning the (geometrical, structural and
topological) characteristics which could be perceived directly
by an observer are covered. Furthermore, the mechanism of
integration the newly created objects in the VR environment
imposes some additional restrictions due to the need for
simplification of the data structure describing the model. All
this leads to significant reduction of the informational
content and the use of VR technologies for presentation of

the objects does not give any substantial advantages in
comparison to the much affordable conventional techniques,
which depends mainly on the observer’s visual channel.
Normally, he/she can explore the object model trough a set
of commands which modify its spatial position, size and
attributes.

The new approach using the implicit features extends the
information content and deepens the immersive
representation of the object model through its enhancement
with a set of already mentioned implicit features. An
example for this is shown in Fig. 1 where beside the visually
perceived attributes the observer can get additional
information concerning the functional behavior and
operating modes of the object. Depending on the specific
needs the properties could be presented only visually or in
combination with sonification, which means by aural and/or
tactile channel for perceptualizing data. This approach
extends the underlying general scene-graph structure of the
VR software system incorporating additional effects nodes
for implicit features representation. It is flexible and can be
easily implemented on different hardware configurations on
a single computer or on a computer cluster for immersive
presentation. The use of implicit features not only enhances
the informational content of the virtual objects, but also
enables their exploration in different contexts enabling
representation of different properties sets according, e.g.
narrative, informative, marketing, technical, instructional etc.

The assignment (mapping) of the implicit features to the
CAD model of the object and further manipulation of the
relevant datasets are discussed in detail in [2]. In the general
case, this is done using simulation input and configuration
files from simulation solvers. The reason for this is the fact
that the most of the researchers are still looking at VR
mainly as a CAD/CAE post-processing tool only for
viewing and assessing the design and simulations results in
real time.

Within this context the deployment of a high
performance parallel hierarchical data management and
storing system, such as HDF5 [3] is significant precondition
for successful implementation of the concept.

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

Data Structure of the Virtual World

ROOT

Object nObject 1

Air flow and
temperature
distribution

instance

Groups of Implicit Features

Group
1

Subgroup pSubgroup 1

Group working
zone

Feature:
Air flow

Feature:
Temperature
distribution

Group
m

Subgroup qSubgroup 1

MAPPING

Implicit feature mapping

Object
representation

Implicit feature
representation

Air flow and
temperature
distribution

instance

Implicit feature
modification

Figure 1. Implicit features mapping in VR

A preliminary study [4] analyzes the possibilities for

using NoSQL database management systems (DBMSs)
when storing and retreiving large ammount of scientific
information in form of 2D arrays storing image infromation.
The I/O performance of MySQL is compared to HDF5 and
the results proofs that the HDF technology is faster in terms
of reading and writing data when managing large datasets.
In some cases the information query is faster with MySQL
due to lack of builtin indexing in HDF5.

The computing power used at the scientific and
engineering simulations and the generated ammount of data
require a high degree of parallelism both within the software
applications and at all levels of the underlying architectural
platforms and storage systems [5]. The HDF model was
design for efficient parallel usage and storage of very large
multidimensional datasets of complex data types. To
achieve optimal performance the HDF5 chunk and cache
parameters must be fine-tuned and an algorithm for
prediciting their values will be useful.

Further this paper contains overview of the HDF5,
representing the software model and the implementation of
the technology in VR objects enhanced by implicit features,
a discussion of experiments, and results for the HDF5
performance with different chunk sizes is given. The next
part of the paper presents a model based on the experimental
data for predicting the optimal chunk size for 2D arrays of
double data type. Finnaly, the conclusions and
acknowedgments are given.

II. HDF5 TECHNOLOGY
In order to implement the mapping of the implicit

features in VR as presented in Fig.1, a high performance
database management system is required for managing a
large amount of numerical data of different type (scalar
values, multidimensional arrays, vectors, tensors, etc.). An
easy and convenient way to define the object hierarchy is

use of HDF5 data model or other type of specialized
scientific hierarchical data files. Using relational DBMSs
shall result in complex data and links descriptions and shall
cause possible performance bottlenecks.

The HDF5 consists of a specialized data model, software
libraries and a file format for data management, which
supports different data types. Such a model is very flexible
and efficient when working with high-volume and complex
scientific datasets. An HDF5 file contains variables, arrays,
groups and types which, based on the software model are
known as Datasets, Group and Datatype. The model also
defines simple and extending link mechanism for creating
associations between information items in the file [6]. Fig. 2
shows the HDF5 models and their implementations between
software objects [7].

HDF5
APILibraryProgramming

Model

Abstract Data
Model

Storage DataStorage Model
(Format)

Tr
an

sf
er

 d
at

a

Implements

Implements

La
yo

ut
 D

at
a

Object Manipulation

Object Representation

Figure 2. General HDF5 model and implementation

All these features determine the HDF5 as a favorable
solution for data management system in VR environments.

The HDF5 datasets are array variables whose data
elements are described and shaped as multidimensional
arrays (up to rank of 32). A dataset can shrink and grow its
limits up to predefined maximum extent. Depending on the
storage layout strategy, this maximum extend can be
virtually unlimited [6]. The latest version of the HDF model
supports the following storage layouts:

• Contiguous – array elements are laid out as a single
sequence in the file;

• Chunked – array elements are stored as a collection
of sub-arrays with preliminary defined fixed-size, called
chunks;

• Compact – used for small datasets with size less
than 64 KB. All elements can be read as a part of variable’s
metadata or header retrieval.

The performance and some other capabilities of HDF5
depend mainly on the used storage layout. For partial data
manipulation the so called hyperslab HDF5 object is
required and the storage layout should be chunked.

An important task is to define the optimal chunk size and
shape for each dataset, since this parameter is related to the
overall I/O performance and as stated before to the additional
features (i.e. hyperslabs, data compression, encryption, etc.).
A general metric for the storage efficiency is the expected
number of chunks retrieved by queries under access
workload. In [8], Otoo et al. have presented mathematical
models based on geometrical programming and steepest
descent optimization for defining the chunk parameters.

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

The prediction of the optimal chunk size of HDF5 dataset
based on the size and rank of the input array may improve
the performance of the data storage system and shall lead to
more fluent communication and workflow. Hence, one of the
main purposes of this study is to define a model for adaptive
prediction of the chunk size for HDF5 datasets based on the
size and shape of the data.

Another possibility to improve the I/O performance of
the HDF5 data set is to adapt the chunk cache size by its
automatically resizing as needed for each operation. The
cache should be able to detect when the cache should be
skipped or when it needs to be enlarged based on the pattern
of I/O operations. At a minimum, it should be able to detect
when the cache would severely hurt performance for a single
operation and disable the cache for that operation [7].
However, the chunk cache is relevant to the chunk size and
defining the optimal size for the chunk will lead also to
possible optimization of the cache parameters.

III. EXPERIMENTAL WORK
Four experiment series have been carried out under the

same laboratory conditions (hardware, operating system,
installed software modules and libraries and running
processes):

1. Parsing input and storing data;
2. Sequential reading entire HDF5 dataset to memory

object;
3. Reading partial information from the HDF5

dataset;
4. Partial modification of HDF5 dataset.

The experiment variables are described in Table 1.

TABLE I. EXPERIMENT VARIABLES

Experiment Variables

Variable Description Domain of possible values

1. Data type Type of data
stored in the array integer or double

2. Size of
array

Number of
elements in the
array

Rank 1: 1 to 99 with step 1
and from 100 to 100100 with
step of 500.
Rank 2: 1 to 99 with step 1
and from 100 to 500 with step
of 10.

3. Rank of
array

Rank of array
with data 1 and 2

4. Chunk
size Size of chunk 1 to 100

5. Chunk
shape

Rectangular or
square

Rectangular: [1,x], where
x=[1..100]
Square: [x,x], where
x=[1…100]

For testing purposes, a dedicated Linux application has

been developed in C++ language and compiled as 64-bit
executable with the latest available HDF5 static libraries
(hdf-1.8.11). All tests were automated and with no user
interaction.

The /usr/bin/time Linux command was used to measure
the execution time. This command runs the specified
program with the given arguments. When the execution

finishes, time writes a message to the standard output giving
time statistics about this program run. These statistics
consist of the elapsed real time between invocation and
termination, the user CPU time (the sum of the tms_utime
and tms_cutime values in a struct tms as returned by
times()), and the system CPU time (the sum of the
tms_stime and tms_cstime values in a struct tms as returned
by times()) [9]. The study can be further extended with
direct analysis of the IO operations performed by the HDF5,
but this requires complex modification and new build of the
HDF5 library. The input data for the tests represents results
from a real-world mechanical and heat transfer simulations.

Fig. 3 shows the workflow for analyzing the test result
data and observations.

Parse result
ASCII file

Input data into
TableCurve3D Fit

Analytical
expression

Graphical
repre-

sentation

Graphical
repre-

sentation

C++ code

Application

Predict chunk
size for dataset
size [1..100100]

Graphical
represen-

tation

Figure 3. Analysis of the test result data

The two most important deliverables from the analysis

are the analytical expression for predicting the optimal
chunk size and the derived software application or libraries
based on this model.

IV. DISCUSSION OF EXPERIMENTAL REULTS

A. One Dimensional Integer Array
Fig. 4 shows the results from automated writing test

(data storage) with one dimensional array of integer data
type with varying number of elements according to Table I.

125000
100000

75000
50000

25000

Da
ta

se
t

10
0908070605040302010

Chunk

0

0

0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

3

3.5

3.5

4

4

4.5

4.5

5

5

Ti
m

e

Ti
m

e

Figure 4. Results from writing one dimensional integer array (x – chunk
size [number of elements], y – real time [s], z - size of dataset [number of

records])

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

The resulting data represent a surface with higher values

of analyzed parameter (real time) close to a small chunk size
regarding the size of the dataset. This result is expected and
the chunk size must be kept small in order to optimize the
performance of the software modules and the cache that are
used to store the data into HDF5 file. This will lead to
smaller memory footprint but shall increase the number of
I/O operations for large dataset or frequently modified data.

When using the HDF5 libraries there is a certain amount
of overhead associated with finding chunks. When chunks
are made smaller, there are more of them in the dataset.
When performing I/O on a dataset, if there are many chunks
in the selection, it will take extra time to look up each
chunk. Moreover, since the chunks are stored
independently, more chunks results in more I/O operations.
The additional metadata necessary to locate the chunks also
increases the size of the file as chunks are made smaller. In
the most cases, making chunks larger shall result in fewer
chunk lookups, smaller file size, and fewer I/O operations
[6]. Here should be mentioned that the chunk size of 1 and
the chunk size equal to the size of the dataset shall not be
recommended by the HDF5 developers [7].

The distribution of the test data in Fig. 4 confirms the
hypothesis that the chunk size have to be adaptive and the
optimal value for the corresponding size of the dataset
should be calculated before imitating the writing functions
in the HDF5.

The results from the sequential read test for one
dimensional integer array are presented in Fig. 5.

60000
50000

40000
30000

20000
10000

Da
ta

se
t s

ize

10
0908070605040302010

Chunk size

0

0

0.25

0.25

0.5

0.5
0.75

0.75
1

1
1.25

1.25

R
ea

l t
im

e R
ea

l t
im

e

Figure 5. Results from sequentialy reading one dimensional integer array (x
– chunk size [number of elements], y – real time [s], z - size of dataset

[number of records])

Within the tests for partial reading (Fig. 6) and
modifying (Fig. 7) 1% of the dataset is retrieved and altered.
If the dataset size is less than 1, only one record is used.

60000
50000

40000
30000

20000
10000

Da
ta

se
t s

ize

10
0908070605040302010

Chunk size

0

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

R
ea

l t
im

e R
ea

l t
im

e

Figure 6. Results from partial reading of 1% of the size of one dimensional
integer array (x – chunk size [number of elements], y – real time [s], z -

size of dataset [number of records])

60000
50000

40000
30000

20000
10000

Da
ta

se
t s

ize

10
0908070605040302010

Chunk size

0

0

0.25

0.25

0.5

0.5

0.75

0.75

1

1

1.25

1.25

1.5

1.5

1.75

1.75

R
ea

l t
im

e R
ea

l t
im

e

Figure 7. Results from modify test for one dimensional integer array (x –
chunk size [number of elements], y – real time [s], z - size of dataset

[number of records])

As can be seen from Fig. 4, Fig. 5, Fig. 6, and Fig. 7 the
write test is the slowest test (in terms of real time
parameter).

Another observation is that the chunk size has greater
influence on the data storage than the reading and modifying
tests.

B. Two dimensional double array
The same four experiments have been performed for two

dimensional array of double data type. The results from the
write test are shown in Fig. 8.

51Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

500
450

400
350

300
250

200
150

100
50

Dataset

100908070605040302010

Chunk

0

00.5
0.51
11.5
1.52
22.5
2.53
33.5
3.54
4

Ti
m

e Ti
m

e

Figure 8. Results from writing a two dimensional double array (x – chunk
size [number of elements], y – real time [s], z - size of dataset [number of

records])

The tests for sequential and partial reading and the test

for modifying show simmilar results in comparison to the
resulst obtained for one dimensional array. Here, the slowest
test again is the test for writing the datasets into the HDF5
file.

V. PREDICTING CHUNK SIZE BY THE EXPECTED AMOUNT
OF STORED INFORMATION

The experimental results show that optimizing the chunk
size for writing datasets in HDF5 file shall have positive
influence on the overall performance of the data storage
system integrated in a VR application.

The observed data from the automated tests is analyzed
and approximated using Sigmaplot TableCurve3D software
package. Several approximation functions were tested. For
further use the Chebyshev series X, lnY Bivariate Order 5,
which gives very good results for all analyzed data within
the test cases.

()

() () ()
() () () () () ()
() () () () () ()

() () () ()
() () () ()
() () () () () () ()

1 1 2

1 1 2 3 2 1

1 2 3 4 3 1

2 2 1

4 5 4 1

3 2 2 3 1 4 5

cos(cos())

3

nT x na x

z a bT x cT y dT x

eT x T y fT y gT x hT y T y

iT x T y jT y kT x lT x T y

mT x T y nT x T y

oT y pT x qT x T y

rT x T y sT x T y tT x T y uT y

′ ′=

′ ′ ′= + + + +

′ ′ ′ ′ ′ ′+ + + + +

′ ′ ′ ′ ′ ′+ + + + +

′ ′ ′ ′+ + +

′ ′ ′ ′+ + + +

′ ′ ′ ′ ′ ′ ′+ + + +

 (1)

A. Approximating One Dimensional Integer Array
The approximation with the Chebyshev series for the

write experimental data is presented in Fig. 9.

0
25000

50000

75000

100000

Dataset

0102030405060708090

Chunk

0

00.5

0.51

11.5

1.52
22.5

2.53
33.5
3.54
44.5
4.55
5

Ti
m

e Ti
m

e

Real time
Rank 11 Eqn 444 Chebyshev X,LnY Bivariate Polynomial Order 5

r^2=0.70568157 DF Adj r^2=0.7053038 FitStdErr=0.085516505 Fstat=1961.5425

Figure 9. Results from approximation of experimental data for writing a
one dimensional integer array (x – chunk size [number of elements], y –

real time [s], z - size of dataset [number of records])

The resulting polynomial from (1) and the calculated
parameters are used to create a C++ function for estimating
the optimal chunk size based on the expected number of
records in the dataset. The calculated values from calling the
chunk size prediction function for dataset with size from 1
to 100100 is given in Fig. 10.

Figure 10. Predicted chunk size for optimal writing of one dimensional
integer array (x – size of the input data, y – predicted size of the chunk)

The distribution of the suggested chunk size within

range {1-100} is shown in Fig. 11.

Figure 11. Distribution of the predicted chunk size for optimal writing of
one dimensional integer array (x – predicted size of the chunk, y - count)

52Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

B. Approximating Two Dimensional Double Array
The same approach for results analysis used for one

dimensional array is applied. The surface fit with
Chebyshev series is shown in Fig. 12.

500
450

400
350

300
250

200
150

100
50

Dataset

100908070605040302010

Chunk

0 0
0.5 0.5

1 1
1.5 1.5

2 2
2.5 2.5

3 3
3.5 3.5

4 4

Ti
m

e

Ti
m

e

Real time
Rank 62 Eqn 444 Chebyshev X,LnY Bivariate Polynomial Order 5

r 2̂=0.99423505 DF Adj r^2=0.99422158 FitStdErr=0.0094014247 Fstat=77504.456

Figure 12. Results from approximation of experimental data for writing a

two dimensional array of double data type (x – chunk size [number of
elements], y – real time [s], z - size of dataset [number of records])

The predicted value for chunk size for dataset with 1 to

500 records for the two dimensional array is summarized in
Fig. 13.

Figure 13. Predicted chunk size for optimal writing of two dimensional
double array (x – size of the input data, y – predicted size of the chunk)

The distribution of the predicted chunk size values can be

obtained from Fig. 14.

Figure 14. Distribution of the predicted chunk size for optimal writing of
tow dimensional integer array (x – predicted size of the chunk, y - count)

A separate experiment has been carried out Based on the
function for predicting the chunk size for two dimensional
double array.

The results from 1022 executions of HDF5 dataset (two
dimensional double array containing random values) write
function with random sizes of the chunk and the dataset are
compared to the same number of write operations with
predicted chunk size. The graphical representation of the
results can be obtained from Fig. 15.

Figure 15. Comparing the real time for 1022 writes of two dimensional
dataset with random values for chunk and dataset sizes with real time

observed with predicted chunk size

The real time needed to finish all 1022 write cycles with
random parameter values within the test is 19.15 s.

The same experiment but using the predicted chunk size
took time of 7.14 s.

VI. CONCLUSIONS AND OUTLOOK
The chunk size has a significant influence on the

performance of the HDF5 operations and since chunking is
obligatory for data compression and for using hyperslabs
finding the optimal chunk size for specific dataset is
important task.

Based on the analysis of the experimental data an
analytical model for surface and function approximation has
been derived. This model is based on Chebyshev series X,
lnY Bivariate Order 5.

e analytical equations have been used for nt of software
functions for predicting the chunk size based on expected
dataset size, reading the entire dataset in sequential and
partial orders and for modification of the records in a
dataset.

The proposed approach for chunk size prediction has
been successfully validated by synthetic tests with network
and local data storage. The overall performance
improvement is of 65,56% (based on most important task –
data storage).

A good practice is to predict the chunk size based on the
amount of data before creating the dataset. Each dataset in
HDF5 database should have the appropriate size of the
chunks.

Using the HDF5 for data storage and retrieval has
several benefits like very high performance when working

53Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

with large datasets of complex data types, parallel access to
the data (requires MPI and parallel file system) and the
predicted optimal chunk size based on the expected amount
of data can significantly improve the performance. All these
makes HDF preferred over other SQL and NoSQL DBMSs
when developing VR applications, especially if the objects
are enhanced with implicit features.

The study can be extended to analyze the relation
between the chunk size, chunk cache options and the overall
I/O performance. The results could be used to derive a
model for predicting their optimal values based on the size
of the input data set.

Another important further study is to perform
experiments with dataset dimension larger than 2 and with
complex data types.

VII. ACKNOWLEDGMENT:
The authors wish to thank for the support to:
• EC Research Executive Agency received through

FP7 IAPP grant 285782;
• Project No BG051PO001-3.3.06-0046

“Development support of PhD students,
postdoctoral researchers and young scientists in the
field of virtual engineering and industrial
technologies”. The second project is implemented
with the financial support of the Operational
Programme Human Resources Development, co-
financed by the European Union through the
European Social Fund.

REFERENCES
[1] A. Bachvarov, S. Maleshkov, D. Chotrov, and J. Katicic,

“Immersive Representation of Objects in Virtual Reality
Environment Implementing Implicit Properties”, 4-th
International Conference on Developments in eSystems
Engineering - DeSE 2011, Springer, 2011, pp. 587-592,
ISBN 978-0-7695-4593-6.

[2] A. Bachvarov: S. Maleshkov, D. Chotrov, J. Ovtcharova, and
J. Katicic, "Using implicit features for enhancing the
immersive object representation in multimodal virtual reality
environments", Virtual Environments Human-Computer
Interfaces and Measurement Systems (VECIMS), 2012 IEEE
International Conference, 2012, pp. 91-96.

[3] “The HDF Group”, http://www.hdfgroup.org/, last access on
1.1.2014.

[4] A. Tzokev, “Приложение на не-SQL бази данни за
съхранение на информацията при автоматизиран анализ
на металографски изображения”, Машиностроене и
машинознание 19, 2013, pp. 128-131, ISSN 1312-8612.

[5] A. Shoshani, D. Rotem, “Scientific Data Management –
Challenges, Technology and Deployment”, CRC Press, ISBN
978-1-4200-6980-8, 2009.

[6] M. Folk, G. Heber, Q. Keziol, E. Pourman, and D. Robinson,
“An Overview of HDF5 Technology Suite and Applications”,
Proc. AD’11 EDBT/ICDT 2011 Workshop on Array
Databases, ACM, NY, 2011, pp. 36-47,
doi:10.1145/1966895.1966900.

[7] “HDF5 User’s Guide”, http://www.hdfgroup.org/HDF5/
doc/UG/UG_frame03DataModel.html, last access on
12.8.2013.

[8] E. Otoo, D. Rotem, and S. Seshadri, “Optimal Chunking of
Large Multidimensional Arrays for a Data Warehousing”,
Proc. DOLAP ’07, NY, 2007, pp. 25-32,
doi:10.1145.1317331.1317337.

[9] “AIX 7.1 Information” - http://pic.dhe.ibm.com/
infocenter/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.prftung
d%2Fdoc%2Fprftungd%2Fuse_time_measure_cpu_use.htm,
last access on 14.8.2013.

54Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

http://www.hdfgroup.org/
http://www.hdfgroup.org/HDF5/
http://pic.dhe.ibm.com/

