
Construction Principles for Well-behaved Scalable Systems

Peter Ochsenschläger∗ and Roland Rieke∗†
∗Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Germany

†Philipps-Universität Marburg, Germany
Email: peter-ochsenschlaeger@t-online.de, roland.rieke@sit.fraunhofer.de

Abstract—We formally define scalable systems as
uniformly monotonic parameterised systems and mo-
tivate this definition. With respect to such scalable
systems, we focus on properties, which rely on specific
component types and a specific number of individual
components for these component types but not on
the specific individuality of the individual compo-
nents. We characterise well-behaved scalable systems
by those systems which fulfil such a kind of property
if already one prototype system (depending on the
property) fulfils that property. Self-similar uniformly
monotonic parameterised systems have the above
desired property. Therefore, we define well-behaved
scalable systems as self-similar scalable systems. This
paper presents a formal framework that provides con-
struction principles for well-behaved scalable systems.
It gives sufficient conditions to specify a certain kind
of basic well-behaved scalable systems and shows how
to construct more complex systems by the composi-
tion of several synchronisation conditions.

Keywords-uniformly parameterised systems; mono-
tonic parameterised systems; behaviour-abstraction;
self-similarity of behaviour.

I. Introduction
Scalability is a desirable property of a system. In [1],

four aspects of scalability are considered, i.e., load
scalability, space scalability, space-time scalability, and
structural scalability. In our paper, we focus on structural
scalability, which is “the ability of a system to expand in
a chosen dimension without major modifications to its
architecture” [1]. Examples of systems that need to be
highly scalable comprise grid computing architectures and
cloud computing platforms [2], [3]. Usually, such systems
consist of few different types of components and for each
such type a varying set of individual components exists.
Component types can be defined in such a granularity
that individual components of the same type behave in
the same manner, which is characteristic for the type. For
example, a client-server system that is scalable consists
of the component types client and server and several sets
of individual clients as well as several sets of individual
servers. Let us now call a choice of sets of individual
components an admissible choice of individual component
sets, iff for each component type exactly one set of
individual components of that type is chosen. Then,
a “scalable system” can be considered as a family of

systems, whose elements are systems composed of a
specific admissible choice of individual component sets.
In this paper, we focus on the dynamic behaviour of

systems, which is described by the set of all possible
sequences of actions. This point of view is important
to define security requirements as well as to verify
such properties, because for these purposes sequences of
actions of the system have to be considered [4], [5], [6]. For
short, we often will use the term system instead of systems
behaviour if it does not generate confusions. With this
focus, scalable systems are families of system behaviours,
which are indexed by admissible choices of individual
component sets. We call such families parameterised
systems. In this paper, we define well-behaved scalable
systems as a special class of parameterised systems and
develop construction principles for such systems. The
main goal for this definition is to achieve that well-
behaved scalable systems fulfill certain kind of safety
properties if already one prototype system (depending on
the property) fulfills that property (cf. Section III). To
this end, construction principles for well-behaved scalable
systems are design principles for verifiability [7].
Considering the behaviour-verification aspect, which

is one of our motivations to formally define well-behaved
scalable systems, there are some other approaches to be
mentioned. An extension to the Murϕ verifier to verify
systems with replicated identical components through a
new data type called RepetitiveID is presented in [8]. A
typical application area of this tool are cache coherence
protocols. The aim of [9] is an abstraction method
through symmetry, which works also when using variables
holding references to other processes. In [10], a method-
ology for constructing abstractions and refining them by
analysing counter-examples is presented. The method
combines abstraction, model-checking and deductive
verification. A technique for automatic verification of
parameterised systems based on process algebra CCS
[12] and the logic modal mu-calculus [13] is presented
in [11]. This technique views processes as property
transformers and is based on computing the limit of
a sequence of mu-calculus [13] formulas generated by
these transformers. The above-mentioned approaches
demonstrate that finite state methods combined with de-
ductive methods can be applied to analyse parameterised

32Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

systems. The approaches differ in varying amounts of
user intervention and their range of application. A survey
of approaches to combine model checking and theorem
proving methods is given in [14]. Far reaching results
in verifying parameterised systems by model checking
of corresponding abstract systems are given in [15], [16].
It is well known that the general verification problem
for parameterised systems is undecidable [17], [18]. To
handle that problem, we present (a) a formal framework
to specify parameterised systems in a restricted manner,
and (b) construction principles for well-behaved scalable
systems.
In Section II, scalable systems are formally defined.

Section III and Section IV give sufficient conditions to
specify a certain kind of basic well-behaved scalable
systems. Section V shows how to construct more complex
well-behaved scalable systems by the composition of
several synchronisation conditions. Concluding remarks
and further research directions are given in Section VI.
The proofs of the theorems in this paper are given in [19].

II. Characterisation of Scalable Systems
The behaviour L of a discrete system can be formally

described by the set of its possible sequences of actions.
Therefore, L⊂ Σ∗ holds where Σ is the set of all actions
of the system, and Σ∗ (free monoid over Σ) is the set of
all finite sequences of elements of Σ, including the empty
sequence denoted by ε. This terminology originates from
the theory of formal languages [20], where Σ is called the
alphabet (not necessarily finite), the elements of Σ are
called letters, the elements of Σ∗ are referred to as words
and the subsets of Σ∗ as formal languages. Words can be
composed: if u and v are words, then uv is also a word.
This operation is called the concatenation; especially
εu = uε = u. A word u is called a prefix of a word v
if there is a word x such that v = ux. The set of all
prefixes of a word u is denoted by pre(u); ε ∈ pre(u)
holds for every word u. Formal languages which describe
system behaviour have the characteristic that pre(u)⊂L
holds for every word u ∈ L. Such languages are called
prefix closed. System behaviour is thus described by
prefix closed formal languages. Different formal models
of the same system are partially ordered with respect to
different levels of abstraction. Formally, abstractions are
described by alphabetic language homomorphisms. These
are mappings h∗ : Σ∗ −→ Σ′∗ with h∗(xy) = h∗(x)h∗(y),
h∗(ε) = ε and h∗(Σ) ⊂ Σ′ ∪{ε}. So, they are uniquely
defined by corresponding mappings h : Σ−→ Σ′∪{ε}. In
the following, we denote both the mapping h and the
homomorphism h∗ by h. We consider a lot of alphabetic
language homomorphisms. So, for simplicity we tacitly
assume that a mapping between free monoids is an
alphabetic language homomorphism if nothing contrary
is stated. We now introduce a guiding example.

Example 1. A server answers requests of a family of
clients. The actions of the server are considered in the
following. We assume with respect to each client that a
request will be answered before a new request from this
client is accepted. If the family of clients consists of only
one client, then the automaton in Fig. 1(a) describes the
system behaviour S ⊂ Σ∗, where Σ = {a,b}, the label a
depicts the request, and b depicts the response.

1 2

a

b

(a) Actions at a server with
respect to a client

0

1

2

3

a1

b1

a2

b2

a2

b2

a1

b1

(b) Two clients served concurrently
by one server

Figure 1. Scalable client-server system

Example 2. Fig. 1(b) now describes the system behaviour
S{1,2} ⊂ Σ∗{1,2} for two clients 1 and 2, under the
assumption that the server handles the requests of different
clients non-restricted concurrently.

For a parameter set I and i∈ I let Σ{i} denote pairwise
disjoint copies of Σ. The elements of Σ{i} are denoted
by ai and ΣI :=

⋃
i∈I

Σ{i}, where Σj ∩Σk = ∅ for j 6= k.

The index i describes the bijection a↔ ai for a ∈ Σ and
ai ∈ Σ{i}.

Example 3. For ∅ 6= I ⊂N with finite I, let now SI ⊂Σ∗I
denote the system behaviour with respect to the client set
I. For each i∈N S{i} is isomorphic to S, and SI consists
of the non-restricted concurrent run of all S{i} with i ∈ I.
It holds SI′ ⊂ SI for I ′ ⊂ I.
Let I1 denote the set of all finite non-empty subsets

of N (the set of all possible clients). Then, the family
(SI)I∈I1 is an example of a monotonic parameterised
system.

If the example is extended to consider several servers,
which are depicted by natural numbers, then, e.g.,

I2 := {I̊× Î ⊂N×N|I̊ 6= ∅ 6= Î, with I̊ , Î finite}

is a suitable parameter structure.
I2 used in the example above shows how the component

structure of a system can be expressed by a parameter
structure using Cartesian products of individual compo-
nent sets. The following Definition 1 abstracts from the
intuition of a component structure.

Definition 1 (parameter structure). Let N be a count-
able (infinite) set and ∅ 6= I ⊂P(N)\{∅}. I is called a
parameter structure based on N .

33Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

For scalable systems it is obvious to assume that
enlarging the individual component sets does not reduce
the corresponding system behaviour. More precisely: let
I and K be two arbitrary admissible choices of individual
component sets, where each individual component set in
I is a subset of the corresponding individual component
set in K. If SI and SK are the corresponding systems’
behaviours, then SI is a subset of SK . Families of systems
with this property we call monotonic parameterised
systems. The following definition formalises monotonic
parameterised systems.

Definition 2 (monotonic parameterised system). Let I
be a parameter structure. For each I ∈ I let LI ⊂ Σ∗I be
a prefix closed language. If LI′ ⊂ LI for each I,I ′ ∈ I
with I ′ ⊂ I, then (LI)I∈I is a monotonic parameterised
system.

As we assume that individual components of the
same type behave in the same manner, SI and SK are
isomorphic (equal up to the names of the individual
components), if I and K have the same cardinality. This
property we call uniform parameterisation. With these
notions we define scalable systems as uniformly monotonic
parameterised systems. Monotonic parameterised systems
in which isomorphic subsets of parameter values describe
isomorphic subsystems we call uniformly monotonic
parameterised systems.

Definition 3 (isomorphism structure). Let I be a
parameter structure, I,K ∈ I, and ι : I →K a bijection,
then let ιIK : Σ∗I → Σ∗K the isomorphism defined by

ιIK(ai) := aι(i) for ai ∈ ΣI . (1)

For each I,K ∈ I let B(I,K) ⊂ KI a set (possibly
empty) of bijections. BI = (B(I,K))(I,K)∈I×I is called
an isomorphism structure for I.

Definition 4 (scalable system). Let (LI)I∈I a mono-
tonic parameterised system and BI = (B(I,K))(I,K)∈I×I
an isomorphism structure for I.
(LI)I∈I is called uniformly monotonic parameterised
with respect to BI iff

LK = ιIK(LI) for each I,K ∈ I and each ι ∈ B(I,K).

Uniformly monotonic parameterised systems for short
are called scalable systems.

Example 4. Let I = I2.

B2(I̊× Î ,K̊× K̂) := {ι ∈ (K̊× K̂)(I̊×Î) |it exist bijections
ι̊ : I̊ → K̊ and ι̂ : Î → K̂ with ι((r,s)) = (̊ι(r), ι̂(s))
for each (r,s) ∈ (I̊× Î)}

for I̊× Î ∈ I2 and K̊× K̂ ∈ I2 defines an isomorphism
structure B2

I2
.

III. Well-behaved Scalable Systems
To motivate our formalisation of well-behaved, we

consider a typical security requirement of a scalable client-
server system: Whenever two different clients cooperate
with the same server then certain critical sections of the
cooperation of one client with the server must not overlap
with critical sections of the cooperation of the other client
with the same server. If for example both clients want
to use the same resource of the server for confidential
purposes, then the allocation of the resource to one of the
clients has to be completely separated from the allocation
of this resource to the other client. More generally, the
concurrent cooperation of one server with several clients
has to be restricted by certain synchronisation conditions
to prevent, for example, undesired race conditions.
According to this example, we focus on properties

which rely on specific component types and a specific
number of individual components for these component
types but not on the specific individuality of the indi-
vidual components. Now, we want to achieve that a well
behaved scalable system fulfils such a kind of property if
already one prototype system (depending on the property)
fulfils that property. In our example, a prototype system
consists of two specific clients and one specific server.

To formalise this desire, we consider arbitrary I and K
as in the definition of monotonic parameterised system.
Then we look at SK from an abstracting point of
view, where only actions corresponding to the individual
components of I are considered. If the smaller subsystem
SI behaves like the abstracted view of SK , then we
call this property self-similarity or more precisely self-
similarity of scalable systems, to distinguish our notion
from geometric oriented notions [21] and organisational
aspects [22] of self-similarity. In [5], it is shown that
self-similar uniformly monotonic parameterised systems
have the above desired property. Therefore, we define
well-behaved scalable systems as self-similar uniformly
monotonic parameterised systems. We now formally look
at LI from an abstracting point of view concerning
a subset I ′ ⊂ I. The corresponding abstractions are
formalised by the homomorphisms ΠII′ : Σ∗I → Σ∗I′ .

Definition 5 (self-similar monotonic parameterised sys-
tem). For I ′ ⊂ I let ΠII′ : Σ∗I → Σ∗I′ with

ΠII′(ai) =
{
ai | ai ∈ ΣI′
ε | ai ∈ ΣI \ΣI′ .

A monotonic parameterised system (LI)I∈I is called self-
similar iff ΠII′(LI) = LI′ for each I,I ′ ∈ I with I ′ ⊂ I.

Definition 6 (well-behaved scalable system). Self-
similar scalable systems for short are called well-behaved
scalable systems.

A fundamental construction principle for systems

34Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

satisfying several constraints is intersection of system
behaviours. This emphasises the importance of the
following theorem.

Theorem 1 (intersection theorem). Let I be a parameter
structure, BI an isomorphism structure for I, and T 6= ∅.

i) Let (LtI)I∈I for each t ∈ T be a monotonic param-
eterised system, then (

⋂
t∈T
LtI)I∈I is a monotonic

parameterised system.
ii) Let (LtI)I∈I for each t∈ T be a scalable system with

respect to BI , then (
⋂
t∈T
LtI)I∈I is a scalable system

with respect to BI .
iii) Let (LtI)I∈I for each t ∈ T be a self-similar mono-

tonic parameterised system, then (
⋂
t∈T
LtI)I∈I is a

self-similar monotonic parameterised system.

Weak additional assumptions for well-behaved scalable
systems imply that such systems are characterised by
parametrisation of one well-defined minimal prototype
system. More precisely:

Definition 7 (minimal prototype system). Let I be a
parameter structure based on N . For I ∈ I and n ∈N let
τ In : Σ∗I → Σ∗ the homomorphisms given by

τ In(ai) =
{
a | ai ∈ ΣI∩{n}
ε | ai ∈ ΣI\{n}

.

For a singleton index set {n}, τ{n}n : Σ∗{n}→ Σ∗ is an
isomorphism and for each n ∈ I ∈ I holds

ΠI{n} = (τ{n}n)−1 ◦ τ In. (2)

If now (LI)I∈I is a well-behaved scalable system with
respect to (B(I,K))(I,K)∈I×I with {n} ∈ I for n ∈ I ∈ I
and B(I,K) 6= ∅ for all singleton I and K, then because
of (2) holds

LI ⊂
⋂
n∈I

(τ In)−1(L) for each I ∈ I,

where L= τ
{n}
n (L{n}) for each n ∈

⋃
I∈I

I.

L is called the minimal prototype system of (LI)I∈I .

Definition 8 (behaviour-family (L̇(L)I)I∈I generated
by the minimal prototype system L and the parameter
structure I). Let ∅ 6= L ⊂ Σ∗ be prefix closed, I a
parameter structure, and

L̇(L)I :=
⋂
i∈I

(τ Ii)−1(L) for I ∈ I.

The systems L̇(L)I consist of the “non-restricted con-
current run” of all systems (τ{i}i)−1(L)⊂Σ∗{i} with i ∈ I.
Because τ{i}i : Σ∗{i}→ Σ∗ are isomorphisms, (τ{i}i)−1(L)
are pairwise disjoint copies of L.

Theorem 2 (simplest well-behaved scalable systems).
(L̇(L)I)I∈I is a well-behaved scalable system with respect
to each isomorphism structure for I based on N and

L̇(L)I =
⋂
i∈N

(τ Ii)−1(L) for each I ∈ I.

IV. Construction of Well-behaved Systems by
Restriction of Concurrency

Now, we show how to construct well-behaved systems
by restricting concurrency in the behaviour-family L̇.
In Example 3, holds SI = L̇(S)I for I ∈ I1. If, in the
given example, the server needs specific resources for the
processing of a request, then - on account of restricted
resources - an non-restricted concurrent processing of
requests is not possible. Thus, restrictions of concurrency
in terms of synchronisation conditions are necessary. One
possible but very strong restriction is the requirement
that the server handles the requests of different clients in
the same way as it handles the requests of a single client,
namely, on the request follows the response and vice
versa. This synchronisation condition can be formalised
with the help of S and the homomorphisms ΘI as shown
in the following example.

Example 5. Restriction of concurrency on account
of restricted resources: one “task” after another. All
behaviours with respect to i ∈ I influence each other. Let

S̄I := SI ∩ (ΘI)−1(S) =
⋂
i∈I

(τ Ii)−1(S)∩ (ΘI)−1(S)

for I ∈ I1, where generally, for each index set I, ΘI :
Σ∗I → Σ∗ is defined by ΘI(ai) := a, for i ∈ I and a ∈ Σ.

From the automaton in Fig. 1(b), it is evident that
S̄{1,2} will be accepted by the automaton in Fig. 2(a).

0 12

a1

b1

a2

b2

(a) Automaton accepting S̄{1,2}

0 i

ai

bi

(b) Automaton accepting S̄I

Figure 2. Automata accepting S̄{1,2} and S̄I

Given an arbitrary I ∈ I1, then S̄I is accepted by an
automaton with state set {0}∪ I and state transition
relation given by Fig. 2(b) for each i ∈ I.
From this automaton, it is evident that (S̄I)I∈I1 is

a well-behaved scalable system, with respect to each
isomorphism structure BI1 for I1.

Example 6. A restriction of concurrency in the extended
example where a family of servers is involved is more
complicated than in the case of (S̄I)I∈I1 . The reason
for that is that in the simple example the restriction of

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

concurrency can be formalised by a restricting influence
of the actions with respect to all parameter values (i.e.,
the entire ΣI). When considering the restriction of
concurrency in the extended example, the actions influence
each other only with respect to the parameter values, which
are bound to the same server.
Let the first component of the elements from N×N in

the parameter structure I2 denote the server, then the
actions from Σ{r}×Î influence each other for given r ∈ I̊
with I̊× Î ∈ I and thus restrict the concurrency.

For the formalisation of this restriction of concurrency,
we now consider the general case of monotonic param-
eterised systems (L̇(L)I)I∈I . As already observed in
(2), for each well-behaved scalable system (LI)I∈I there
exists (under weak preconditions) a system (L̇(L)I)I∈I
with LI ⊂ L̇(L)I for each I ∈ I, where L = τ

{n}
n (L{n})

for each n ∈ I ∈ I. Moreover, in context of Definition 8
it was observed that L̇(L)I consists of the non-restricted
concurrent run of pairwise disjoint copies of L.

In conjunction, this shows that an adequate restriction
of concurrency in (L̇(L)I)I∈I can lead to the construction
of well-behaved scalable systems. Therefore, the restrict-
ing influence of actions with respect to specific parameter
values described above shall now be formalised.

Definition 9 (influence structure). Let T 6= ∅ and I a
parameter structure. For each I ∈ I and t ∈ T a sphere
of influence is specified by E(t,I)⊂ I. The family

EI = (E(t,I))(t,I)∈T×I

is called influence structure for I indexed by T .

The non-restricted concurrent run of the pairwise
disjoint copies of L will now be restricted in the following
way: For each t∈ T the runs of all copies k with k ∈E(t,I)
influence each other independently of the specific values
of k ∈ E(t,I). With respect to our extended example
(several servers) with I2, the spheres of influence E(t,I)
are generalisations of the sets {r}× Î, where I = I̊× Î
and t= (r,s) ∈ I̊× Î.
Generally, for each t ∈ T the intersection

L̇(L)I ∩ (τ IE(t,I))
−1(V) (3)

formalises the restriction of the non-restricted concurrent
run of the copies of L within L̇(L)I by the mutual
influence of each element of E(t,I).

Definition 10 (behaviour of influence and influence
homomorphisms). In (3), the behaviour of influence V
is a prefix closed language V ⊂ Σ∗, and for I,I ′ ⊂N the
homomorphism τ II′ : Σ∗I → Σ∗ is defined by:

τ II′(ai) =
{
a | ai ∈ ΣI∩I′
ε | ai ∈ ΣI\I′

. (4)

The homomorphisms τ IE(t,I) are called the influence
homomorphisms of EI .

Definition 11 (behaviour-family (L(L,EI ,V)I)I∈I gen-
erated by the minimal prototype system L, the influence
structure EI , and the behaviour of influence V). Because
the restriction (3) shall hold for all t ∈ T , the restricted
systems L(L,EI ,V)I are defined by the prefix closed
languages

L(L,EI ,V)I := L̇(L)I ∩
⋂
t∈T

(τ IE(t,I))
−1(V) for I ∈ I.

Definition 11 shows how synchronisation requirements
for the systems L̇(L)I can be formalised by influence
structures and behaviour of influence in a very general
manner. Since, similar to the well-behaved scalable
systems (L̇(L)I)I∈I , in the systems (L(L,EI ,V)I)I∈I
each L(L,EI ,V){i} shall be isomorphic to L for each
{i} ∈ I, V ⊃ L has to be assumed. Therefore, in general
we assume for systems (L(L,EI ,V)I)I∈I that V ⊃ L 6= ∅.
Note that τ II′ are generalisations of τ In and ΘI , because

τ In = τ I{n} and ΘI = τ II = τ IN (5)

for each I ⊂N and n ∈N .
Further requirements, which assure that

(L(L,EI ,V)I)I∈I are well-behaved scalable systems, will
now be given with respect to EI , BI , L and V . Assuming
T =N and ε ∈ V the scalability property is assured by
the following technical requirements for EI and BI :

Theorem 3 (construction condition for scalable sys-
tems). Let I be a parameter structure based on N ,
EI = (E(n,I))(n,I)∈N×I be an influence structure for
I, and let BI = (B(I,I ′))(I,I′)∈I×I be an isomorphism
structure for I. Let ε ∈ V ⊂ Σ∗, for each I ∈ I and n ∈
N let E(n,I) = ∅, or it exists an in ∈ I with E(n,I) =
E(in, I), and for each (I,I ′) ∈ I ×I, ι ∈ B(I,I ′) and i ∈
I holds

ι(E(i,I)) = E(ι(i), I ′).

Let E(t,I ′) = E(t,I) ∩ I ′ for each t ∈ T and I,I ′ ∈
I, I ′ ⊂ I. Then (L(L,EI ,V)I)I∈I is a scalable system
with respect to BI and

L(L,EI ,V)I = L̇(L)I ∩
⋂
n∈I

(τ IE(n,I))
−1(V)).

Example 7. Let I be a parameter structure based on N ,
and for I ∈ I let Ē(i,I) := I for i ∈N .

ĒI := (Ē(i,I))(i,I)∈N×I satisfies the assumptions
of Theorem 3 for each isomorphism structure BI . (6)

It holds (ΘI)−1(V) = (τ I
Ē(i,I))

−1(V) for each i ∈
N,I ∈ I, and V ⊂ Σ∗.
Therefore, L(L, ĒI ,V)I = L̇(L)I ∩ (ΘI)−1(V) for I ∈ I.
Especially, S̄I = L(S, ĒI1 ,S)I for each I ∈ I1.

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

Example 8. For the parameter structure I2, and for
I̊× Î ∈ I2 let

E2((̊n, n̂), I̊× Î) :=
{
{n̊}× Î | n̊ ∈ I̊

∅ | n̊ ∈N\ I̊
.

E2
I2 := (E2((̊n, n̂), I̊× Î))((̊n,n̂),I̊×Î)∈(N×N)×I2

(7)

satisfies the assumptions of Theorem 3 for the isomor-
phism structure B2

I2
.

(L(S,E2
I2
,S)I)I∈I2 is the formalisation of the extended

example (several servers) with restricted concurrency.

In order to extend Theorem 3 with respect to self-
similarity, an additional assumption is necessary. This is
demonstrated by the following counter-example.

Example 9. Let G ⊂ {gr,gi,gs}∗ the prefix closed lan-
guage, which is accepted by the automaton Fig. 3(a).
Let H ⊂ {gr,gi,gs}∗ the prefix closed language, which is
accepted by the automaton in Fig. 3(b). It holds ∅ 6=G⊂H
but (L(G, ĒI1 ,H)I)I∈I1 is not self-similar, e.g.,

Π{1,2,3}{2,3} (L(G, ĒI1 ,H){1,2,3}) 6= (L(G, ĒI1 ,H){2,3}

because gr1gi1gr2gr3 ∈ L(G, ĒI1 ,H){1,2,3}, and hence
gr2gr3 ∈ Π{1,2,3}{2,3} (L(G, ĒI1 ,H){1,2,3}), but gr2gr3 /∈
(L(G, ĒI1 ,H){2,3}.

1

2 3

gr

gi

gs

(a) Automaton accepting G

1

2 3

4 5 6

7

9 8gr

gi

gs

grgs

gr gi

gi

gs

gsgs

(b) Automaton accepting H

Figure 3. Counterexample

Definition 12 (closed under shuffle projection). Let
L,V ⊂Σ∗. V is closed under shuffle projection with respect
to L, iff

ΠNK [(
⋂
n∈N

(τNn)−1(L))∩ (ΘN)−1(V)]⊂ (ΘN)−1(V) (8)

for each subset ∅ 6= K ⊂ N. We abbreviate this by
SP(L,V).

Remark 1. It can be shown that in SP(L,V) N can be
replaced by each countable infinite set.

Remark 2. If L and V are prefix closed with ∅ 6= L⊂ V ,
then it is easy to show that SP(L,V) follows from self-
similarity of (L(L, ĒI1 ,V)I)I∈I1 .

With Definition 12 we are now able to formulate
our main result for constructing well-behaved scalable
systems defined by a single synchronisation condition.

Theorem 4 (construction condition for well-behaved
scalable systems). By the assumptions of Theorem 3
together with SP(L,V)

(L(L,EI ,V)I)I∈I

is a well-behaved scalable system.

Example 10. For k ∈N let the prefix closed language
Fk ⊂ {a,b}∗ be defined by the automaton in Fig. 4(a).

0 1 k-1 k

a

b

a

b

(a) Automaton for Fk ⊂ {a,b}∗

0
1

2
3

ac as

bsbc

(b) One client, one server

Figure 4. Automata at different abstraction levels

With respect to Example 1, F1 = S holds. It can
be shown that SP(S,Fk) holds for each k ∈ N. With
Theorem 4 now, by (6) and (7) especially, the sys-
tems (L(L, ĒI1 ,Fk)I)I∈I1 and (L(L,E2

I2
,Fk)I)I∈I2 are

uniformly monotonic parameterised and self-similar.
These are the two cases of the guiding example where the
concurrency of the execution of requests is bounded by k.

Theorem 4 is the main result for constructing well-
behaved scalable systems defined by a single synchronisa-
tion condition. The following section shows how this result
together with the Intersection Theorem can be used for
constructing more complex well-behaved scalable systems
defined by the combination of several synchronisation
conditions, as for example well-behaved scalable systems
consisting of several component types.

V. Well-behaved Scalable Systems Generated
by a Family of Influence Structures

Up to now, the examples were considered at an
abstraction level, which takes into account only the
actions of the server (or the servers, depending on the
choice of the parameter structure).

Example 11. For a finer abstraction level, which addi-
tionally takes into account the actions of the clients, a
finer alphabet, e.g., Σ̌ = {ac, bc,as, bs} and a prefix closed
language Š ⊂ Σ̌∗ is needed, which, e.g., is defined by the
automaton in Fig. 4(b).

In general, a finer relation for system specifications at
different abstraction levels can be defined by alphabetic
language homomorphisms.

Definition 13 (abstractions). In general, let Ľ⊂ Σ̌∗ and
L⊂ Σ∗ be prefix closed languages. We call Ľ finer than
L or L coarser than Ľ iff an alphabetic homomorphism
ν : Σ̌∗→ Σ∗ exists with ν(Ľ) = L.

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

For each parameter structure I and I ∈ I ν defines
an homomorphism νI : Σ̌∗I → Σ∗I by νI(ai) := (ν(a))i for
a ∈ Σ̌ and i ∈ I, where (ε)i := ε.
Let now EI be an influence structure for I indexed

by N which is the base of I, and let ∅ 6= L⊂ V ⊂ Σ∗ be
prefix closed. (L(L,EI ,V)I)I∈I induces a restriction of
the concurrency in (L̇(Ľ)I)I by the intersections

L̇(Ľ)I ∩ (νI)−1[
⋂
t∈N

(τ IE(t,I))
−1(V)] for each I ∈ I. (9)

If τ̌ II′ : Σ̌∗I → Σ̌∗ is defined analogously to τ II′ for I,I
′ ⊂

N by

τ̌ II′(ai) =
{
a | a ∈ Σ̌ and i ∈ I ∩ I ′
ε | a ∈ Σ̌ and i ∈ I \ I ′

,

then holds τ II′ ◦ν
I = ν ◦ τ̌ II′ . From this it follows that

(νI)−1[
⋂
t∈N

(τ IE(t,I))
−1(V)] =

⋂
t∈N

(τ̌ IE(t,I))
−1(ν−1(V))

and therewith

L̇(Ľ)I ∩ (νI)−1[
⋂
t∈N

(τ IE(t,I))
−1(V)] = L(Ľ,EI ,ν−1(V))I

(10)
for each I ∈ I. Notice that ∅ 6= Ľ⊂ ν−1(V)⊂ Σ̌∗ is prefix
closed. So if (L(L,EI ,V)I)I∈I fulfils the assumptions of
Theorem 3, then this holds for (L(Ľ,EI ,ν−1(V))I)I∈I
as well and the system

(L̇(Ľ)I ∩ (νI)−1[
⋂
t∈N

(τ IE(t,I))
−1(V)])I∈I , (11)

which is defined by the intersections (9), is a scalable
system. The following general theorem can be used to
prove self-similarity of such systems.

Theorem 5 (inverse abstraction theorem). Let ϕ : Σ∗→
Φ∗ be an alphabetic homomorphism and W,X ⊂ Φ∗, then

SP(W,X) implies SP(ϕ−1(W),ϕ−1(X)).

Generally, by (8), SP(ν−1(L),ν−1(V)) implies
SP(X,ν−1(V)) for each X ⊂ ν−1(L). Especially
SP(Ľ,ν−1(V)) is implied by SP(L,V) on account of
Theorem 5. So, by Theorem 5, if (L(L,EI ,V)I)I∈I fulfils
the assumptions of Theorem 4, then

(L(Ľ,EI ,ν−1(V))I)I∈I
= (L̇(Ľ)I ∩ (νI)−1[

⋂
t∈N

(τ IE(t,I))
−1(V)])I∈I (12)

is a well-behaved scalable system.
The intersections in (9) formalise restriction of con-

currency in (L̇(Ľ)I)I∈I under one specific aspect (one
specific synchronisation condition), which is given by
ν, EI , and V . Restriction of concurrency under several

aspects (several synchronisation conditions) is formalised
by the intersections

L̇(Ľ)I ∩
⋂
r∈R

(νIr)−1[
⋂
t∈N

(τ IEr(t,I))
−1(Vr)]

for each I ∈ I based on N , R 6= ∅ is the index set of the
aspects. The family of aspects restricting concurrency is
given by
• a family (νr)r∈R of alphabetic homomorphisms νr :

Σ̌∗→ Σ(r)∗ for r ∈R,
• a family (ErI)r∈R of influence structures ErI =

(Er(t,I))(t,I)∈N×I indexed by N for r ∈R, and
• a family (Vr)r∈R of influence behaviours Vr ⊂ Σ(r)∗

for r ∈R.
From (10) it follows now

L̇(Ľ)I ∩
⋂
r∈R

(νIr)−1[
⋂
t∈N

(τ IEr(t,I))
−1(Vr)]

=
⋂
r∈R
L(Ľ,ErI ,ν−1

r (Vr))I

for each I ∈ I. Because of the intersection theorem, the
uniform monotonic parameterisation and self-similarity
of the system

(L̇(Ľ)I ∩
⋂
r∈R

(νIr)−1[
⋂
t∈N

(τ IEr(t,I))
−1(Vr)])I∈I (13)

can be inferred from respective properties of the systems

(L(Ľ,ErI ,ν−1
r (Vr))I)I∈I for each r ∈R.

Using (11) and (12), this requires the verification of
the assumptions of Theorem 4 for

(L(νr(Ľ),ErI ,Vr)I)I∈I

for each r ∈ R. If I is based on N =×
k∈K

Nk, where K

is a finite set and each Nk is countable, then along the
lines of I2, a parameter structure IK can be defined
for this domain. Such IK fit for systems consisting of
finitely many component types. Each subset K′ ⊂ K
with ∅ 6= K′ 6= K defines a bijection between N and
(×
k∈K′

Nk)× (×
k∈K\K′

Nk). By this bijection, for each of

these K′ an influence structure EK′IK
is defined like E2

I2
that satisfies the assumptions of Theorem 3 with respect
to an isomorphism structure BKIK

defined like E2
I2
.

VI. Conclusions and Further Work
This paper presented a formal framework to construct

well-behaved scalable systems. The basic parts of that
framework are formalisations of parameter structures,
influence structures and isomorphisms structures. To-
gether with so-called prototype systems and behaviours
of influence these structures formally define scalable sys-
tems, if certain conditions are fulfilled. Scalable systems

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

are called well-behaved, iff their behaviour is self-similar.
A sufficient condition for such self-similarity is given in
terms of prototype systems and behaviours of influence.
A deeper analysis of this condition is subject of a
forthcoming paper of the authors. One of our motivations
for the formal definition of well-behaved scalable systems
was the verification of behaviour properties. Usually,
behaviour properties of systems are divided into two
classes: safety and liveness properties [23]. Intuitively,
a safety property stipulates that “something bad does
not happen” and a liveness property stipulates that
“something good eventually happens”. In [5], it is shown,
that for well-behaved scalable systems a wide class of
safety properties can be verified by finite state methods.
To extend this verification approach to reliability or
general liveness properties, additional assumptions for
well-behaved scalable systems have to be established. In
[24], such assumptions have been developed for uniformly
parametrised two-sided cooperations. To generalise these
ideas to a wider class of well-behaved scalable systems is
subject of further work.

Acknowledgement

Roland Rieke developed the work presented here in
the context of the projects MASSIF (ID 257475) being
co-funded by the European Commission within FP7 and
the project ACCEPT (ID 01BY1206D) being funded by
the German Federal Ministry of Education and Research.

References

[1] A. B. Bondi, “Characteristics of scalability and their
impact on performance,” in Workshop on Software and
Performance, 2000, pp. 195–203.

[2] S. Bullock and D. Cliff, “Complexity and emergent
behaviour in ICT systems,” Hewlett-Packard Labs, Tech.
Rep. HP-2004-187, 2004.

[3] J. Weinman, “Axiomatic Cloud Theory,”
http://www.joeweinman.com/Resources/Joe_
Weinman_Axiomatic_Cloud_Theory.pdf, July
2011, [retrieved: Dec, 2013].

[4] P. Zegzhda, D. Zegzhda, and A. Nikolskiy, “Using graph
theory for cloud system security modeling,” in Computer
Network Security, ser. LNCS, I. Kotenko and V. Skormin,
Eds. Springer, 2012, vol. 7531, pp. 309–318.

[5] P. Ochsenschläger and R. Rieke, “Security properties
of self-similar uniformly parameterised systems of coop-
erations,” in Parallel, Distributed and Network-Based
Processing (PDP), 2011 19th Euromicro International
Conference on, 2011, pp. 640–645.

[6] S. Schneider, “Security Properties and CSP,” in IEEE
Symposium on Security and Privacy. IEEE Computer
Society, 1996, pp. 174–187.

[7] A. Avizienis, J.-C. Laprie, B. Randell, and C. E.
Landwehr, “Basic concepts and taxonomy of dependable
and secure computing,” IEEE Trans. Dependable Sec.
Comput., vol. 1, no. 1, 2004, pp. 11–33.

[8] C. N. Ip and D. L. Dill, “Verifying Systems with Repli-
cated Components in Murϕ,” Formal Methods in System
Design, vol. 14, no. 3, 1999, pp. 273–310.

[9] F. Derepas and P. Gastin, “Model checking systems of
replicated processes with SPIN,” in Proceedings of the
8th International SPIN Workshop on Model Checking
Software (SPIN’01), ser. LNCS, M. B. Dwyer, Ed., vol.
2057. Toronto, Canada: Springer, 2001, pp. 235–251.

[10] Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre,
“Incremental verification by abstraction,” in TACAS, ser.
Lecture Notes in Computer Science, T. Margaria and
W. Yi, Eds., vol. 2031. Springer, 2001, pp. 98–112.

[11] S. Basu and C. R. Ramakrishnan, “Compositional anal-
ysis for verification of parameterized systems,” Theor.
Comput. Sci., vol. 354, no. 2, 2006, pp. 211–229.

[12] R. Milner, Communication and Concurrency, ser. Inter-
national Series in Computer Science. NY: Prentice Hall,
1989.

[13] J. C. Bradfield, “Introduction to modal and temporal
mu-calculi (abstract),” in CONCUR, ser. Lecture Notes
in Computer Science, L. Brim, P. Jancar, M. Kretínský,
and A. Kucera, Eds., vol. 2421. Springer, 2002, p. 98.

[14] T. E. Uribe, “Combinations of Model Checking and
Theorem Proving,” in FroCoS ’00: Proceedings of the
Third International Workshop on Frontiers of Combining
Systems. London, UK: Springer, 2000, pp. 151–170.

[15] E. M. Clarke, M. Talupur, and H. Veith, “Environment
abstraction for parameterized verification,” in VMCAI,
ser. Lecture Notes in Computer Science, E. A. Emerson
and K. S. Namjoshi, Eds., vol. 3855. Springer, 2006, pp.
126–141.

[16] M. Talupur, “Abstraction techniques for parameterized
verification,” Ph.D. dissertation, Computer Science De-
partment, Carnegie Mellon University, 2006, CMU-CS-
06-169.

[17] K. R. Apt and D. C. Kozen, “Limits for automatic veri-
fication of finite-state concurrent systems,” Inf. Process.
Lett., vol. 22, no. 6, May 1986, pp. 307–309.

[18] I. Suzuki, “Proving properties of a ring of finite-state
machines,” Inf. Process. Lett., vol. 28, no. 4, Jul. 1988,
pp. 213–214.

[19] P. Ochsenschläger and R. Rieke, “Proofs for:
Construction Principles for Well-behaved Scalable
Systems,” http://private.sit.fraunhofer.de/~rol/
Proofs-Well-behaved-Scalable-Systems.pdf, 2013,
[retrieved: Dec, 2013].

[20] J. Sakarovitch, Elements of Automata Theory. Cam-
bridge University Press, 2009.

[21] K. Falconer, Fractal Geometry: Mathematical Founda-
tions and Applications. Wiley, 2003.

[22] N. Agoulmine, Autonomic Network Management Princi-
ples: From Concepts to Applications. Elsevier Science,
2010.

[23] B. Alpern and F. B. Schneider, “Defining liveness,”
Information Processing Letters, vol. 21, no. 4, October
1985, pp. 181–185.

[24] P. Ochsenschläger and R. Rieke, “Reliability Aspects
of Uniformly Parameterised Cooperations,” in ICONS
2012, The Seventh International Conference on Systems,
Reunion Island. IARIA, 2012, pp. 25–34.

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-319-3

ICONS 2014 : The Ninth International Conference on Systems

