
Requirements Engineering for Software vs. Systems in General

Hermann Kaindl

Institute of Computer Technology

Vienna University of Technology

Vienna, Austria

kaindl@ict.tuwien.ac.at

Marko Jäntti

School of Computing

University of Eastern Finland

Kuopio, Finland

marko.jantti@uef.fi

Herwig Mannaert
Normalized Systems Institute

University of Antwerp

Antwerp,

Belgiumherwig.mannaert@ua.ac.be

Kazumi Nakamatsu
School of Human Science and

Environment

University of Hyogo

Himeji, Japan

Roland Rieke
Fraunhofer Institute for Secure

Information Technology

Darmstadt, Germany

roland.rieke@sit.fraunhofer.de

nakamatsu@shse.u-hyogo.ac.jp

Abstract—Are there fundamental technical differences between

requirements engineering for software vs. systems in general?

It seems as though even functional requirements can mean

something more general for a system including mechanical

parts than for software alone. Quality requirements on safety

deal with humans and their relationship with some real

artifacts in their environment, so they cannot be dealt with by

software alone. However, reliability of underlying software will

be important in this context. While the internal structure of

software will not normally be specified in its requirements,

structure of a more general system may well be. These are just

examples of what should be discussed.

With regard to intelligent enterprises, there exist defined

methodologies for enterprise modeling. Much as any other

complex system, an enterprise may be better understood

through modeling. Once an enterprise is better understood, it

may be easier to make it intelligent. Whatever technical system

is to be developed in an enterprise, it needs to fit into. By

connecting enterprise modeling and requirements engineering,

the likelihood of such a fit is increased. For software

development, such connections have been worked out and are

part of defined methodologies, some of them based on object-

oriented modeling. Are they applicable to the development of

general systems?

Keywords-requirements engineering; software; systems;

enterprises

I. INTRODUCTION

The panel discusses whether there are fundamental
technical differences between requirements engineering for
software as opposed to requirements engineering for systems
in general. Each panelist has his own position as stated
below.

II. PANELISTS AND THEIR POSITIONS

A. Marko Jäntti

In order to identify differences between requirements
engineering of software and requirements engineering of
systems one should start by clarifying the relationships
between the concepts 'software' and 'system'. We can use a
term information system to define the system. Besides
software, an information system covers the hardware,
infrastructure and people that use the system. Thus, system
requirements engineering can be seen as a broader concept
than software requirements engineering. Unified Modeling
Language that is a widely used modeling notation can be
used for modeling software structure and behavior [1]. UML
can also be used to describe the physical nodes of a system
(deployment diagram).

Unfortunately, software and system requirements
engineering do not fully satisfy the needs of today's IT world
that is becoming more and more service-oriented. Thus, the
third aspect of requirements engineering is service
requirements engineering. Service requirements typically
include most of the functional and non-functional
requirements of software products but also address some
service-specific requirements such as service availability and
quality of IT service support [2].

B. Herwig Mannaert

Though an information system is a much broader concept
than software, the software on itself can be seen as a system
as well. What software systems and various types of systems
in general, including systems with mechanical parts and even
enterprises [3], have in common, is that they can be regarded
as modular structures. While no single generally accepted
definition is known, the concept is most commonly
associated with the process of subdividing a system into
several subsystems, which is said to result in a certain degree
of complexity reduction and facilitate change by allowing

190Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

modifications at the level of a single subsystem instead of the
whole system [6, 7]. In software systems, one should strive
to pay as much attention to the modular structure as
mechanical systems currently do.

When considering systems in general — software
systems, organizational systems, etc. — both a functional
and constructional perspective should be taken into account
[6]. The functional perspective focuses on describing what a
particular system or unit does or what its function is. The
structural perspective on the other hand, concentrates on the
composition and structure of the system, i.e. which
subsystems are part of the system and their relations.
Equivalently, one could regard the functional system view as
a blackbox representation, and the constructional system
view as a whitebox representation. By blackbox we mean
that only the input and output of a system is revealed by
means of an interface, describing the way how the system
interacts with its environment. As such, the user of the
system does not need to know any details about the content
or the inner way of working of the system. The main issue
with respect to this approach in software systems, is that
modules often exhibit hidden coupling that is not explicitly
defined in the interfaces. The evolution towards service-
oriented computing is, amongst other things, addressing this
issue.

What also distinguishes software systems and software
requirements from their mechanical counterparts, is that they
are subject to change. Requirements evolve during the
development of software systems, and both the requirements
and the actual system will continue to evolve during the
system lifecycle. It has been shown in [4, 5] that it is all but
trivial for software systems to cope with these evolving
requirements, and that this leads to structure degradation.
This would also be the case for mechanical systems, but they
are not required to evolve during their lifecycle.

C. Kazumi Nakamatsu

If we formalize logical structures of systems whatever
they are software or human like systems, requirements for
the system could be easily treated and implemented,
especially for functional ones. However, if a system includes
human factors, it would be much more complicated to model
such systems than just mechanical systems. In order to
model any kinds of systems, whatever human factors are
included or not, we have developed a paraconsistent logic
program called Extended Vector Annotated Logic Program
with Strong Negation (abbr. EVALPSN)[8], which can deal
with not only inconsistency but also human like reasoning
such as plausible reasoning and some modalities such as
obligation. Moreover we have used it for modeling man-
machine systems such as the safety verification system for
railway interlocking in order to avoid train accidents caused
by human error.

As a conclusion, generally speaking, the EVALPSN
based modeling is fitter for modeling systems including a lot
of human factors than just software.

D. Roland Rieke

Architecting novel dependable systems or systems of
systems poses new challenges to the system design process
[9]. Dependability and security analysis is growing in
complexity with the increase in functionality, connectivity,
and dynamics of the systems. The application of models is
becoming standard practice, in order to tackle this
complexity and get the dependability and security
requirements right, as early as possible in the system design
process. A modeling framework for the specification of
security and reliability requirements has to consider not only
the structure and functional dependencies of a system but
also the possible behavior. Actions in a model can represent
software, hardware or human behavior. One way to specify
requirements is, to define specific constraints regarding
sequences of actions, which should occur or must not occur
in a system's behavior. Actions in the model represent an
abstract view on actions of the real system, therefore it has to
be ensured, that the abstraction does not hide critical
behavior. The requirements analysis should also consider the
behavior of an attacker, which can be different in comparison
to, e.g., the Byzantine fault model. An attack to physical
components, for instance, to cut a vehicle's brake has to be
done physically on site and so it can only attack one physical
unit at a time. However, a remote attack to the software of a
vehicular communication system could affect all vehicles at
once.

E. Hermann Kaindl

Are all types of requirements equally relevant for
software and systems in general? How can software achieve
its functions? Actually, it is “dead” unless run on some
hardware, mostly some general-purpose electronic computer.
Only the calculations or symbol manipulations of such a
computer as programmed by a piece of software may lead
through myriads of state changes, i.e., some (internal)
behavior. The results of the calculations or symbol
manipulations to a given input are the functions of the
software.

Contrast this with a chair, a very simply mechanical
system. It achieves its function to support someone when
sitting on it without any state change but only through its
physical structure (and certain constraints on it). So, a
general system including mechanical parts may have
different ways of achieving functions than a software system
alone.

So, an important difference to me between requirements
engineering for software vs. systems in general is that
mechanical parts may achieve functions by their structure
and may, therefore, give rise to important structural
requirements.

REFERENCES

[1] M. Jäntti, T. Toroi, “UML-Based Testing,” Proc. of the 2nd

Nordic Workshop on the Unified Modeling Language
(NWUML 2004), Aug. 2004, pp. 33-44.

191Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

[2] Office of Government Commerce, The Official Introduction
to the ITIL Service Lifecycle. The Stationary Office, UK,
2007.

[3] D. Campagnolo and A. Camuffo, “The concept of modularity
within the management studies: a literature review”,
International Journal of Management Reviews, vol. 12, no. 3,
pp. 259-283, 2009.

[4] Mannaert Herwig, Verelst Jan, Ven Kris.- Towards evolvable
software architectures based on systems theoretic stability,
Software practice and experience - ISSN 0038-0644 -
42(2012), p. 89-116.

[5] Mannaert Herwig, Verelst Jan, Ven Kris.- The transformation
of requirements into software primitives : studying
evolvability based on systems theoretic stability, Science of

computer programming - ISSN 0167-6423 - 76:12(2011), p.
1210-1222.

[6] G. M. Weinberg, An Introduction to General Systems
Thinking. Wiley-Interscience, 1975.

[7] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of
Modularity. Cambridge, MA, USA: MIT Press, 2000.

[8] K. Nakamatsu, and Jair M. Abe, “The Development of
Paraconsistent Annotated Logic Programs”, Int. J. Reasoning-
based Intelligent Systems, vol. 1, pp. 92–102, June 2009.

[9] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr,
"Basic concepts and taxonomy of dependable and secure
computing," IEEE Trans. Dependable Sec. Comput., vol. 1,
no. 1, pp. 1133, 2004.

192Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

