
Reliability Aspects of Uniformly Parameterised Cooperations

Peter Ochsenschläger and Roland Rieke
Fraunhofer Institute for Secure Information Technology, SIT

Darmstadt, Germany
Email: peter-ochsenschlaeger@t-online.de, roland.rieke@sit.fraunhofer.de

Abstract—In this paper, we examine reliability aspects of
systems, which are characterised by the composition of a
set of identical components. These components interact in a
uniform manner, described by the schedules of the partners.
Such kind of interaction is typical for scalable complex systems
with cloud or grid structure. We call these systems “uniformly
parameterised cooperations”. We consider reliability of such
systems in a possibilistic sense. This is formalised by always-
eventually properties, a special class of liveness properties using
a modified satisfaction relation, which expresses possibilities.
As a main result, a finite state verification framework for
uniformly parameterised reliability properties is given. The
keys to this framework are structuring cooperations into
phases and defining closed behaviours of systems. In order to
verify reliability properties of such uniformly parameterised
cooperations, we use finite state semi-algorithms that are
independent of the concrete parameter setting.

Keywords-reliability aspects of scalable complex systems; live-
ness properties; uniformly parameterised reliability properties;
finite state verification; possibilistic reliability.

I. INTRODUCTION

The transition from systems composed of many isolated,
small-scale elements to large-scale, distributed and mas-
sively interconnected systems is a key challenge of modern
information and communications technologies. These sys-
tems need to be dependable, which means they need to
remain secure, robust and efficient [1]. Examples for highly
scalable systems comprise (i) grid computing architectures;
and (ii) cloud computing platforms. In grid computing, large
scale allocation issues relying on centralised controls present
challenges that threaten to overwhelm existing centralised
management approaches [1]. Cloud computing introduced
the concept, to make software available as a service. This
concept can only be successful, if certain obstacles such
as reliability issues are solved [2]. In order to be able to
model functional requirements of dependable systems best
satisfying both fault-tolerance and security attributes, three
distinct classes of (system specification) properties need
to be considered, namely safety, liveness, and information
flow [3]. Concrete reliability problems related to liveness
properties range from replica selection to consistency of
cloud storage (which allows multiple clients to access stored
data concurrently in a consistent fashion) [4]. Most existing
replica selection schemes rely on either central coordination
(which has reliability, security, and scalability limitations)

or distributed heuristics (which may lead to instability) [4].
Another important issue is, that clients of cloud services do
not operate continuously, so clients should not depend on
other clients for liveness of their operations [5].

In this paper, we consider systems that interact in a way
that is typical for scalable complex systems. These systems,
which we call uniformly parameterised cooperations, are
characterised by (i) the composition of a set of identical
components (copies of a two-sided cooperation); and (ii)
the fact that these components interact in a uniform manner
(described by the schedules of the partners). As an example
of such uniformly parameterised systems of cooperations, e-
commerce protocols can be considered. In these protocols,
the two cooperation partners have to perform a certain kind
of financial transactions. Such a protocol should work for
several partners in the same manner, and the mechanism
(schedule) to determine how one partner may be involved
in several cooperations is the same for each partner. So,
the cooperation is parameterised by the partners and the
parameterisation should be uniform with respect to the
partners.

Reliability is an important concept related to depend-
ability, which ensures continuity of correct service [6]. In
this paper, we consider reliability in a possibilistic sense,
which means that correct services can be provided according
to a certain pattern of behaviour again and again. These
possibilities of providing correct services are expressed by
a special class of liveness properties using a modified satis-
faction relation. We call these properties always-eventually
properties.

As a main result of the work presented, a finite state
verification framework for uniformly parameterised relia-
bility properties is given. The keys to this framework are
structuring cooperations into phases and defining closed
behaviours of systems. In this framework, completion of
phases strategies and corresponding success conditions can
be formalised [7], which produce finite state semi-algorithms
that are independent of the concrete parameter setting. These
algorithms are used to verify reliability properties of uni-
formly parameterised cooperations under certain regularity
restrictions.

The paper is structured as follows. Section II gives an
overview of the related work. In Section III, uniform pa-
rameterisations of two-sided cooperations in terms of formal
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language theory is formalised. Section IV introduces the
concept of uniformly parameterised reliability properties.
The concept of structuring cooperations into phases given in
Section V enables completion of phases strategies, which are
described in Section VI. Consistent with this, corresponding
success conditions can be formalised [2], which produce
finite state semi-algorithms to verify reliability properties
of uniformly parameterised cooperations. Finally, the paper
ends with conclusions and an outlook in Section VII.

II. RELATED WORK

System properties: A formal definition of safety and
liveness properties is proposed in [8]. In [9], we defined a
satisfaction relation, called approximate satisfaction, which
expresses a possibilistic view on liveness and is equivalent
to the satisfaction relation in [8] for safety properties. In this
paper, we extended this concept (cf. Section IV) and defined
uniformly parameterised reliability properties, which fit to
the parameterised structure of the systems, which we con-
sider here. Besides these safety and liveness properties so
called “hyperproperties” [10] are of interest because they
give formalisations for non-interference and non-inference.

Verification approaches for parameterised systems:
An extension to the Murϕ verifier to verify systems with
replicated identical components through a new data type
called RepetitiveID is presented in [11]. A typical applica-
tion area of this tool are cache coherence protocols. The
aim of [12] is an abstraction method through symmetry,
which works also when using variables holding references
to other processes. This is not possible in Murϕ . In [13], a
methodology for constructing abstractions and refining them
by analysing counter-examples is presented. The method
combines abstraction, model-checking and deductive veri-
fication. However, this approach does not consider liveness
properties. In [14], a technique for automatic verification
of parameterised systems based on process algebra CCS
[15] and the logic modal mu-calculus [16] is presented.
This technique views processes as property transformers
and is based on computing the limit of a sequence of
mu-calculus formula generated by these transformers. The
above-mentioned approaches demonstrate, that finite state
methods combined with deductive methods can be applied
to analyse parameterised systems. The approaches differ
in varying amounts of user intervention and their range
of application. A survey of approaches to combine model
checking and theorem proving methods is given in [17].

Iterated shuffle products: In [18], it is shown that
our definition of uniformly parameterised cooperations is
strongly related to iterated shuffle products [19], if the
cooperations are “structured into phases”. The main concept
for such a condition are shuffle automata [20] (multicounter
automata [21]) whose computations, if they are determin-
istic, unambiguously describe how a cooperation partner is
involved in several phases.

In [22], we have shown in particular that for self-similar
parameterised systems LIK the parameterised problem of
verifying a uniformly parameterised safety property can be
reduced to finite many fixed finite state problems.

Complementary to this, in the present paper, we define
a uniformly parameterised reliability property based on this
concept. The main result is a finite state verification frame-
work for such uniformly parameterised reliability properties.

III. PARAMETERISED COOPERATIONS

The behaviour L of a discrete system can be formally
described by the set of its possible sequences of actions.
Therefore L ⊂ Σ∗ holds where Σ is the set of all actions
of the system, and Σ∗ (free monoid over Σ) is the set of
all finite sequences of elements of Σ (words), including the
empty sequence denoted by ε . Σ+ := Σ∗ \{ε}. Subsets of Σ∗

are called formal languages [23]. Words can be composed:
if u and v are words, then uv is also a word. This oper-
ation is called the concatenation; especially εu = uε = u.
Concatenation of formal languages U,V ⊂ Σ∗ are defined
by UV := {uv ∈ Σ∗|u ∈U and v ∈ V}. A word u is called
a prefix of a word v if there is a word x such that v = ux.
The set of all prefixes of a word u is denoted by pre(u);
ε ∈ pre(u) holds for every word u. The set of possible
continuations of a word u ∈ L is formalised by the left
quotient u−1(L) := {x ∈ Σ∗|ux ∈ L}.

Infinite words over Σ are called ω-words [24]. The set
of all infinite words over Σ is denoted Σω . An ω-language
L over Σ is a subset of Σω . For u ∈ Σ∗ and v ∈ Σω the
left concatenation uv ∈ Σω is defined. It is also defined for
U ⊂ Σ∗ and V ⊂ Σω by UV := {uv ∈ Σω |u ∈U and v ∈V}.

For an ω-word w the prefix set is given by the formal
language pre(w), which contains every finite prefix of w.
The prefix set of an ω-language L ⊂ Σω is accordingly
given by pre(L) = {u∈ Σ∗| it exist v∈ Σω with uv∈ L}. For
M ⊂ Σ∗ the ω-power Mω ⊂ Σω is the set of all “infinite
concatenations” of arbitrary elements of M. More formal
definitions of theses ω-notions are given in the appendix.

Formal languages, which describe system behaviour, have
the characteristic that pre(u)⊂ L holds for every word u∈ L.
Such languages are called prefix closed. System behaviour
is thus described by prefix closed formal languages.

Different formal models of the same system are partially
ordered with respect to different levels of abstraction. For-
mally, abstractions are described by so called alphabetic lan-
guage homomorphisms. These are mappings h∗ : Σ∗ −→ Σ′∗

with h∗(xy) = h∗(x)h∗(y) , h∗(ε) = ε and h∗(Σ)⊂ Σ′∪{ε}.
So, they are uniquely defined by corresponding mappings
h : Σ −→ Σ′ ∪ {ε}. In the following, we denote both the
mapping h and the homomorphism h∗ by h. Inverse homo-
morphism are denoted by h−1. Let L be a language over
the alphabet Σ′. Then h−1(L) is the set of words w ∈ Σ∗

such that h(w) ∈ L. In this paper, we consider a lot of
alphabetic language homomorphisms. So, for simplicity, we
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tacitly assume that a mapping between free monoids is an
alphabetic language homomorphism if nothing contrary is
stated.

To describe a two-sided cooperation, let Σ = Φ ∪ Γ where
Φ is the set of actions of cooperation partner F and Γ is the
set of actions of cooperation partner G and Φ ∩ Γ = /0. Now
a prefix closed language L ⊂ (Φ ∪ Γ)∗ formally defines a
two-sided cooperation.

Example 1. Let Φ = {fs, fr} and Γ = {gr,gi,gs} and hence
Σ = {fs, fr,gr,gi,gs}. An example for a cooperation L ⊂ Σ∗

is now given by the automaton in Figure 1. It describes a
simple handshake between F (client) and G (server), where a
client may perform the actions fs (send a request), fr (receive
a result) and a server may perform the corresponding
actions gr (receive a request), gi (internal action to compute
the result) and gs (send the result).

In the following, we will denote initial states by a short
incoming arrow and final states by double circles. In this
automaton, all states are final states, since L is prefix closed.

fs
gr

gi

gs
fr

Figure 1. Automaton for 1-1-cooperation L

For parameter sets I, K and (i,k) ∈ I × K let Σik de-
note pairwise disjoint copies of Σ. The elements of Σik
are denoted by aik and ΣIK :=

⋃
(i,k)∈I×K

Σik. The index ik

describes the bijection a↔ aik for a ∈ Σ and aik ∈ Σik. Now
LIK ⊂ Σ∗IK (prefix-closed) describes a parameterised system.
To avoid pathological cases, we generally assume parameter
and index sets to be non empty.

For a cooperation between one partner of type F with two
partners of type G in Example 1 let

Φ{1}{1,2} = {fs11, fr11, fs12, fr12},
Γ{1}{1,2} = {gr11,gi11,gs11,gr12,gi12,gs12} and

Σ{1}{1,2} = Φ{1}{1,2} ∪ Γ{1}{1,2}.

fs12
gr12

gi12

gs12
fr12

fs11
gr11

gi11

gs11
fr11

Figure 2. Automaton for 1-2-cooperation L{1}{1,2}

A 1-2-cooperation, where each pair of partners coop-
erates restricted by L and each partner has to finish the

handshake it just is involved in before entering a new one,
is now given (by reachability analysis) by the automaton
in Figure 2 for L{1}{1,2}. It shows that one after another
client 1 runs a handshake either with server 1 or with
server 2. Figure 3 in contrast depicts an automaton for a
2-1-cooperation L{1,2}{1} with the same overall number of
partners involved but two of type F and one partner of
type G. Figure 3 is more complex than Figure 2 because
client 1 and client 2 may start a handshake independently of
each other, but server 1 handles these handshakes one after
another. A 5-3-cooperation with the same simple behaviour
of partners already requires 194.677 states and 1.031.835
state transitions (computed by the SH verification tool [25]).

fs11

fs21

fs21

gr11

fs11

gr21

gr11

gr21

gi11

fs21

gi21

fs11

gi11

gi21

fs21

gs11

fs11

gs21

gs11

gs21

fs21
fr11

fs11

fr21

gr21fr11

gr11

fr21

fr11

gi21

fr21

gi11

fr11

gs21

fr21

gs11

fr21

fr11

Figure 3. Automaton for the 2-1-cooperation L{1,2}{1}

For (i,k) ∈ I×K, let π IK
ik : Σ∗IK → Σ∗ with

π
IK
ik (ars) =

{
a | ars ∈ Σik
ε | ars ∈ ΣIK \Σik

.

For uniformly parameterised systems LIK we generally
want to have

LIK ⊂
⋂

(i,k)∈I×K

((π IK
ik )−1(L))

because from an abstraction point of view, where only the
actions of a specific Σik are considered, the complex system
LIK is restricted by L.

In addition to this inclusion, LIK is defined by local
schedules that determine how each “version of a partner”
can participate in different cooperations. More precisely,
let SF ⊂ Φ∗, SG ⊂ Γ∗ be prefix closed. For (i,k) ∈ I ×
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K, let ϕ IK
i : Σ∗IK →Φ∗ and γ IK

k : Σ∗IK → Γ∗ with

ϕ
IK
i (ars) =

{
a | ars ∈Φ{i}K
ε | ars ∈ ΣIK \Φ{i}K

and

γ
IK
k (ars) =

{
a | ars ∈ ΓI{k}
ε | ars ∈ ΣIK \ΓI{k}

,

where ΦIK and ΓIK are defined correspondingly to ΣIK .

Definition 1 (uniformly parameterised cooperation).
Let I, K be finite parameter sets, then

LIK :=
⋂

(i,k)∈I×K

(π IK
ik )−1(L)

∩
⋂
i∈I

(ϕ IK
i )−1(SF)∩

⋂
k∈K

(γ IK
k )−1(SG)

denotes a uniformly parameterised cooperation.

By this definition,

L{1}{1} = (π{1}{1}11 )−1(L)

∩ (ϕ{1}{1}1 )−1(SF)∩ (γ{1}{1}1 )−1(SG).

Because we want L{1}{1} being isomorphic to L by the
isomorphism π

{1}{1}
11 : Σ∗{1}{1}→ Σ∗, we additionally need

(π{1}{1}11 )−1(L)⊂ (ϕ{1}{1}1 )−1(SF) and

(π{1}{1}11 )−1(L)⊂ (γ{1}{1}1 )−1(SG).

This is equivalent to πΦ(L) ⊂ SF and πΓ(L) ⊂ SG, where
πΦ : Σ∗→Φ∗ and πΓ : Σ∗→ Γ∗ are defined by

πΦ(a) =
{

a | a ∈Φ

ε | a ∈ Γ
and πΓ(a) =

{
a | a ∈ Γ

ε | a ∈Φ
.

So, we complete Def. 1 by the additional conditions

πΦ(L)⊂ SF and πΓ(L)⊂ SG.

Schedules SF and SG that fit to the cooperations given
in Example 1 are depicted in Figs. 4(a) and 4(b). Here, we
have πΦ(L) = SF and πΓ(L) = SG.

fs

fr

(a) Schedule SF

gr

gi

gs

(b) Schedule SG

Figure 4. Automata SF and SG for the schedules SF and SG

The system LIK of cooperations is a typical example of a
complex system. It consists of several identical components
(copies of the two-sided cooperation L), which interact in a
uniform manner (described by the schedules SF and SG and
by the homomorphisms ϕ IK

i and γ IK
k ).

Remark 1. It is easy to see that LIK is isomorphic to LI′K′

if I is isomorphic to I′ and K is isomorphic to K′. More
precisely, let ι I

I′ : I→ I′ and ιK
K′ : K→ K′ be bijections and

let ι IK
I′K′ : Σ∗IK → Σ∗I′K′ be defined by

ι
IK
I′K′(aik) := a

ι I
I′ (i)ι

K
K′ (k)

for aik ∈ ΣIK .

Hence, ι IK
I′K′ is a isomorphism and ι IK

I′K′(LIK) = LI′K′ . The
set of all these isomorphisms ι IK

I′K′ defined by corresponding
bijections ι I

I′ and ιK
K′ is denoted by I IK

I′K′ .

To illustrate the concepts of this paper, we consider the
following example.

Example 2. We consider a system of servers, each of them
managing a resource, and clients, which want to use these
resources. We assume that as a means to enforce a given
privacy policy a server has to manage its resource in such
a way that no client may access this resource while it is
in use by another client (privacy requirement). This may be
required to ensure anonymity in such a way that clients and
their actions on a resource cannot be linked by an observer.

We formalise this system at an abstract level, where
a client may perform the actions fx (send a request), fy
(receive a permission) and fz (send a free-message), and
a server may perform the corresponding actions gx (receive
a request), gy (send a permission) and gz (receive a free-
message). The possible sequences of actions of a client resp.
of a server are given by the automaton SF resp. SG. The
automaton L describes the 1-1-cooperation of one client and
one server (see Figure 5). These automata define the client-
server system LIK .

1

2

6

3

5

47

8

fx

gx

gy

fy
fz

fxgz

gx
gz

gz

(a) 1-1-cooperation L

1 2

3

fx

fyfz

(b) Schedule SF

1 2

3 4

gx

gy
gz

gx

gz

(c) Schedule SG

Figure 5. Automata L, SF and SG for Example 2

IV. A CLASS OF LIVENESS PROPERTIES

Usually, behaviour properties of systems are divided into
two classes: safety and liveness properties [8]. Intuitively
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a safety property stipulates that “something bad does not
happen” and a liveness property stipulates that “something
good eventually happens”. In [8], both classes, as well as
system behaviour, are formalised in terms of ω-languages,
because especially for liveness properties infinite sequences
of actions have to be considered.

Definition 2 (linear satisfaction). According to [8], a prop-
erty E of a system is a subset of Σω . If S⊂ Σω represents the
behaviour of a system, then S linearly satisfies E iff S⊂ E.

In [8], it is furthermore shown that each property E is the
intersection of a safety and a liveness property.

Safety properties Es ⊂ Σω are of the form Es = Σω \FΣω

with F ⊂ Σ∗, where F is the set of “bad things”.
Liveness properties El ⊂ Σω are characterised by

pre(El) = Σ∗. A typical example of a liveness property is

El = (Σ∗M)ω with /0 6= M ⊂ Σ
+. (1)

This El formalises that “always eventually a finite action
sequence m ∈M happens”.

We describe system behaviour by prefix closed languages
B⊂ Σ∗. So, in order to apply the framework of [8], we have
to transform B into an ω-language. This can be done by the
limit lim(B) [24]. For prefix closed languages B⊂ Σ∗, their
limit is defined by

lim(B) := {w ∈ Σ
ω |pre(w)⊂ B}.

If B contains maximal words u (deadlocks), then these u
are not captured by lim(B). Formally the set max(B) of all
maximal words of B is defined by

max(B) := {u ∈ B| if v ∈ B with u ∈ pre(v), then v = u}.

Now, using a dummy action #, B can be unambiguously
described by

B̂ := B∪max(B)#∗ ⊂ Σ̂
∗,

where # /∈ Σ and Σ̂ := Σ∪{#}. By this definition, in B̂ the
maximal words of B are continued by arbitrary many #’s.
So, B̂ does not contain maximal words.

a

b
c

(a) Automaton for B

a

b
c

#

(b) Automaton for B̂

Figure 6. Automata for B and B̂

Let for example B be given by the automaton in Fig-
ure 6(a), then B̂ is given by the automaton in Figure 6(b).

By this construction, we now can assume that system
behaviour is formalised by prefix closed languages B̂ ⊂
Σ∗#∗ ⊂ Σ̂∗ without maximal words, and the corresponding
infinite system behaviour S⊂ Σω is given by S := lim(B̂).

For such an S and safety properties E = Σ̂ω \FΣ̂ω with
F ⊂ Σ̂∗ it holds

S⊂ E iff S∩FΣ̂
ω = /0 iff pre(S)∩F = /0 iff B̂∩F = /0.

If F ⊂ Σ∗, then B̂∩F = /0 iff B∩F = /0. Therefore,

S⊂ E iff B∩F = /0 for F ⊂ Σ
∗. (2)

So, by (2) our approach in [22] is equivalent to the ω-
notation of safety properties described by F ⊂ Σ∗.

Linear satisfaction (cf. Def. 2) is too strong for systems
in our focus with respect to liveness properties, because S =
lim(B̂) can contain “unfair” infinite behaviours, which are
not elements of E.

Let for example I ⊃ {1,2} and K ⊃ {1}, then lim(L̂IK)∩
Σω

{1}{1} 6= /0, which means that infinite action sequences
exist, where only the partners with index 1 cooperate. So,
if a property specification involves actions of a partner
with index 2, as for instance E = Σ∗IKΣ{2}{1}Σ

ω
IK , then this

property is not linearly satisfied because lim(L̂IK) 6⊂ E.
Instead of neglecting such unfair infinite behaviours, we

use a weaker satisfaction relation, called approximate satis-
faction, which implicitly expresses some kind of fairness.

Definition 3 (approximate satisfaction). A system S ⊂ Σ̂ω

approximately satisfies a property E ⊂ Σ̂ω iff each finite
behaviour (finite prefix of an element of S) can be continued
to an infinite behaviour, which belongs to E. More formally,
pre(S)⊂ pre(S∩E).

In [9], it is shown, that for safety properties linear
satisfaction and approximate satisfaction are equivalent.

With respect to approximate satisfaction, liveness proper-
ties stipulate that “something good” eventually is possible.

Many practical liveness properties are of the form (1). Let
us consider a prefix closed language B ⊂ Σ∗ and a formal
language /0 6= M⊂ Σ+. By definition 3 lim(B̂) approximately
satisfies (Σ̂∗M)ω iff each u ∈ B is prefix of some v ∈ B with

v−1(B)∩M 6= /0. (3)

If B and M are regular sets, then (3) can be checked by
usual automata algorithms [23] without referring to lim(B̂)∩
(Σ̂∗M)ω .

Let us now consider the prefix closed language L⊂ Σ∗ of
example 2 and the “phase” P⊂ Σ+ given by the automaton
P in Figure 7.

I II III IV V VI VII
fx gx gy fy fz gz

Figure 7. Automaton P

lim(L̂) approximately satisfies the liveness property

(Σ̂∗P)ω ⊂ Σ̂
∗, because the automaton L in Figure 5(a)

is strongly connected and P⊂ L. (4)
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(4) states that in the 1-1-cooperation lim(L̂) always even-
tually a “complete run through the phase P” is possible. This
is a typical reliability property.

Properties of the form (Σ̂∗M)ω with /0 6= M ⊂ Σ+ we call
always-eventually properties.

Let now /0 6= M̊ ⊂ Σ
+
I̊K̊

with fixed finite index sets I̊ and
K̊. Then

(Σ̂∗IKM̊)ω

is an always-eventually property for each finite index sets
I ⊃ I̊ and K ⊃ K̊. Using bijections on I̊ and K̊ this can easily
be generalised to each finite index sets I and K with |I| ≥ |I̊|
and |K| ≥ |K̊|, where |I| denotes the cardinality of the set
I. More precisely, let I I̊K̊

I′K′ be the set of all isomorphisms
ι I̊K̊
I′K′ : Σ∗

I̊K̊
→ Σ∗I′K′ generated by bijections ι I̊

I′ : I̊ → I′ and

ι K̊
K′ : K̊→ K′ in such a way that

ι
I̊K̊
I′K′(aik) := a

ι I̊
I′ (i)ι

K̊
K′ (k)

for aik ∈ ΣI̊K̊ . Then

(Σ̂∗IKι
I̊K̊
I′K′(M̊))ω

is an always-eventually property for each I ⊃ I′, K ⊃K′ and
ι I̊K̊
I′K′ ∈I I̊K̊

I′K′ . For finite index sets I̊, I, K̊ and K let

I [(I̊, K̊),(I,K)] :=
⋃

I′⊂I,K′⊂K

I I̊K̊
I′K′ .

Note that I [(I̊, K̊),(I,K)] = /0 if |I̊|> |I| or |K̊|> |K|.

Definition 4 (uniformly parameterised reliability property).
Let I̊, I, K̊ and K be finite index sets with |I̊| ≤ |I| and
|K̊| ≤ |K|. If /0 6= M̊ ⊂ Σ

+
I̊K̊

, then the family

A M̊
IK := [(Σ̂∗IKι

I̊K̊
I′K′(M̊))ω ]

ι I̊K̊
I′K′∈I [(I̊,K̊),(I,K)]

.

is a strong uniformly parameterised always-eventually prop-
erty (uniformly parameterised reliability property).

We say that lim(L̂IK) approximately satisfies such a
family A M̊

IK iff lim(L̂IK) approximately satisfies each of the
properties (Σ̂∗IKι I̊K̊

I′K′(M̊))ω for ι I̊K̊
I′K′ ∈I [(I̊, K̊),(I,K)].

Remark 2. We use the adjective strong, because in [7]
uniform parameterisations of general properties are defined,
which, in case of always-eventually properties, are weaker
than definition 4.

Let us return to example 2 and let

P̊ := (π{1}{1}11 )−1P⊂ Σ
+
{1}{1} and

E̊ := (Σ̂{1}{1}
∗
P̊)ω ⊂ Σ̂{1}{1}

ω

. (5)

Because π
{1}{1}
11 : Σ∗{1}{1} → Σ∗ is an isomorphism, by (4)

lim(L̂{1}{1}) approximately satisfies E̊.
Now by definition 4 lim(L̂IK) approximately satisfies A P̊

IK
iff in lim(L̂IK) for each pair of clients and servers always
eventually a complete run through a phase P is possible.

V. COOPERATIONS BASED ON PHASES

The schedule SG of example 2 shows that a server
may cooperate with two clients partly in an interleaving
manner. To formally capture such behaviour, cooperations
are structured into phases [18]. This formalism is based on
iterated shuffle products and leads to sufficient conditions
for liveness properties (cf. Section VI).

Shuffling two words means arbitrarily inserting one word
into the other word, like shuffling two decks of cards. In
[21], this is formalised as follows:

A word w∈Σ∗ is called a shuffle of words w1, . . . ,wm ∈Σ∗

if the positions of w can be coloured using m colors so that
the positions with color i ∈ {1, . . . ,m}, when read from left
to right, form the word wi. Shuffle of a set P ⊂ Σ∗, is {w :
w is a shuffle of some w1, . . . ,wm ∈ P, for some m ∈N}.

However, we now provide an alternative formalisation,
which is more adequate to the considerations in this paper.

Definition 5 (iterated shuffle product). Let t ∈ N, and for
each t let Σt be a copy of Σ. Let all Σt be pairwise disjoint.
The index t describes the bijection a↔ at for a ∈ Σ and
at ∈ Σt (which is equivalent to a colouring with color t in
the formalism of [21]). Let

ΣN :=
⋃

t∈N
Σt , and for each t ∈N

let the homomorphisms τNt and ΘN be defined by

τ
N
t : Σ

∗
N→ Σ

∗ with τ
N
t (as) =

{
a | as ∈ Σt
ε | as ∈ ΣN \Σt

and

Θ
N : Σ

∗
N→ Σ

∗ with Θ
N(at) := a for at ∈ Σt and t ∈N.

The iterated shuffle product P� of P is now defined by

P� := Θ
N[
⋂

t∈N
(τNt )−1(P∪{ε})] for P⊂ Σ

∗.

It is easy to see that this is equivalent to the definition
from [21] above. Let for example P = {ab}. Now, according
to [21], the word w = aabb is a shuffle of two words
w1, w2 ∈ P because two colors, namely 1 and 2, can be
used to colour the word aabb so that w1 = w2 = ab ∈ P.
According to definition 5, aabb ∈ P� because aabb =
ΘN(a1a2b2b1) and τN1 (a1a2b2b1) = τN2 (a1a2b2b1) = ab ∈ P
and τNt (a1a2b2b1) = ε for t ∈N\{1,2}.

Following the ideas in [18], we structure cooperations into
phases.

Definition 6 (based on a phase). A prefix closed language
B⊂ Σ∗ is based on a phase P⊂ Σ∗, iff B = pre(P�∩B).

If B is based on P, then B⊂ pre(P�) = (pre(P))� and
B = pre(P)�∩B.

Let for example P = {ab} be given by the Automaton
P in Figure 8(a) and B be given by the automaton B in
Figure 8(b). Then P� ∩B = {ab}∗. This implies that B is
based on P.
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I II III
a b

(a) Automaton P for P= {ab}

a

b

(b) Automaton B for B

Figure 8. Automata P and B

Generally, each B is based on infinitely many phases. If B
is based on P, then B is based on P′ for each P′ ⊃ P. Each
B⊂ Σ∗ is based on Σ because Σ� = Σ∗. Figure 9 shows how
we use phases to structure cooperations. The appropriate
phases for our purposes as well as closed behaviours (words,
in which all phases are completed) will be discussed in
Section VI.

time

interleaving
complexity

1

2

3

closed behaviour segment

closed behaviour

closed
behaviour

phase in
cooperation (i′′,k′)

�

A records
open phases

all phases
are closed

(i,k). . .

(i′,k)

(i′′,k′) . . .

. . .

. . .

shuffle describes
interleaving

strategy to
close all
open phases

Figure 9. Phases and closed behaviours

We will now provide an automaton representation
�

A for
P�, which will illustrate “how a language B is based on
a phase P”. Let P ⊂ Σ∗ and A = (Σ,Q,∆,q0,F) with ∆ ⊂
Q×Σ×Q, q0 ∈ Q and F ⊂ Q be an (not necessarily finite)
automaton that accepts P. To exclude pathological cases we
assume ε /∈ P 6= /0. A consequence of this is in particular
that q0 /∈ F . Let NQ

0 denote the set of all functions from Q

in N0. For the construction of
�

A the set NQ
0 plays a central

role. In NQ
0 we distinguish the following functions:

0 ∈NQ
0 with 0(x) = 0 for each x ∈ Q,

and for q ∈ Q the function

1q ∈NQ
0 with 1q(x) =

{
1 | x = q
0 | x ∈ Q\{q} .

As usual for numerical functions, a partial order as well
as addition and partial subtraction are defined.

For f ,g ∈ NQ
0 let f > g iff f (x) > g(x) for each x ∈ Q,

f + g ∈NQ
0 with ( f + g)(x) := f (x)+ g(x) for each x ∈ Q,

and for f > g, f −g∈NQ
0 with ( f −g)(x) := f (x)−g(x) for

each x ∈ Q.

The key idea of
�

A is, to record in the functions of NQ
0 how

many open phases are in each state q ∈ Q respectively. Its
state transition relation

�

∆ is composed of four subsets whose
elements describe (a) the entry into a new phase, (b) the
transition within an open phase, (c) the completion of an
open phase, (d) the entry into a new phase with simultaneous
completion of this phase. With these definitions we now
define the shuffle automaton

�

A.

Definition 7 (shuffle automaton).
The shuffle automaton

�

A = (Σ,NQ
0 ,

�

∆,0,{0}) w.r.t. A is an
automaton with infinite state setNQ

0 , the initial state 0, which
is the only final state and
�

∆ :={( f ,a, f +1p) ∈NQ
0 ×Σ×NQ

0 |
(q0,a, p) ∈ ∆ and it exists (p,x,y) ∈ ∆} ∪

{( f ,a, f +1p−1q) ∈NQ
0 ×Σ×NQ

0 |
f > 1q,(q,a, p) ∈ ∆ and it exists (p,x,y) ∈ ∆} ∪

{( f ,a, f −1q) ∈NQ
0 ×Σ×NQ

0 |
f > 1q,(q,a, p) ∈ ∆ and p ∈ F} ∪

{( f ,a, f ) ∈NQ
0 ×Σ×NQ

0 | (q0,a, p) ∈ ∆ and p ∈ F}.

Accepting of a word w ∈ Σ∗ is defined as usual [23].

Generally
�

A is a non-deterministic automaton with an
infinite state set. In the literature, such automata are called
multicounter automata [21] and it is known that they accept
the iterated shuffle products [26]. For our purposes, deter-
ministic computations of these automata are very important.
To analyse these aspects more deeply we use our own
notation and proof of the main theorems. In [18], it is shown
that

�

A accepts P�.
Let for example P = {ab} (cf. Figure 8(a)). Then the states

f : Q→N0 of the automaton
�

P are described by the sets
{(q,n) ∈ Q×N0| f (q) = n 6= 0}.

/0 a−→ {(II,1)} a−→ {(II,2)} b−→ {(II,1)} b−→ /0

is the only computation of aabb∈P� in
�

P; it is an accepting
computation.

Example 3. Let L be defined by the automaton L in
Figure 5(a) and P ⊂ Σ+ be defined by the automaton P in
Figure 7, then L∩P� is accepted by the product automaton
of L and

�

P that is given in Figure 10.
This automaton is strongly connected and isomorphic to

L (without considering final states), which proves that L
is based on phase P. The states (7,{(VI,1),(II,1)}) and
(8,{(VI,1),(III,1)}) show that L is “in this states involved
in two phases”.

Note that this product automaton, as well as the product
automaton in Figure 11(b) and 12(b), is finite and determin-
istic.
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(1, /0) (2,{(II,1)})

(6,{(VI,1)})

(3,{(III,1)})

(5,{(V,1)})

(4,{(IV,1)})(7,{(VI,1),(II,1)})

(8,{(VI,1),(III,1)})

fx gx

gy

fy

fz

fx

gz gx

gz

gz

Figure 10. Product automaton of L and
�

P

VI. SUFFICIENT CONDITIONS FOR A CLASS OF
LIVENESS PROPERTIES

The following definition is the key to sufficient condi-
tions for strong uniformly parameterised always-eventually
properties.

Definition 8 (set of closed behaviours). Let B,M ⊂ Σ∗. M
is a set of closed behaviours of B, iff x−1(B) = B for each
x ∈ B∩M.

In Figure 10, the initial state (1, /0) is the only final state
of that strongly connected product automaton, so P� is a
set of closed behaviours of L.

Now, we get a sufficient condition for uniformly param-
eterised always-eventually properties.

Theorem 1. Let I, K, I̊ and K̊ be finite index sets with
|I̊| ≤ |I| and |K̊| ≤ |K|. Let LIK be a uniformly parameterised
system of cooperations and let CIK ⊂ Σ∗IK be a set of closed
behaviours of LIK , such that LIK = pre(LIK ∩CIK).

If lim(L̂I̊K̊) approximately satisfies (Σ̂I̊K̊
∗
M̊)ω , with M̊ ⊂

Σ
+
I̊K̊

, then

lim(L̂IK) approximately satisfies A M̊
IK .

For the proof of Theorem 1 see the appendix. The
following theorem gives a set of closed behaviours of LIK .

Theorem 2. Let P� be a set of closed behaviours of L and
let πΦ(P�) resp. πΓ(P�) be a set of closed behaviours of
SF resp. SG, then

CIK :=
⋂

(i,k)∈I×K

(π IK
ik )−1(P�)

is a set of closed behaviours of LIK .

Theorem 2 is proven in [7]. We now show that πΦ(P�)
is a set of closed behaviours of SF, which is given in
Figure 5(b). The automaton PF in Figure 11(a) is the
minimal automaton of πΦ(P)⊂Φ+.

By Theorem 3, which is given in the appendix

SF∩πΦ(P�) = SF∩ (πΦ(P))�.

I

II III

IV

fx
fy

fz

(a) Automaton PF

(1, /0) (2,{(II,1)})

(3,{(III,1)})

fx

fyfz

(b) Product automaton of SF and
�

PF

Figure 11. Automaton PF and product automaton of SF and
�

PF

So, SF∩πΦ(P�) is accepted by the product automaton of
SF and

�

PF that is depicted in Figure 11(b). By the same
argument as for the product automaton of L and

�

P SF is
based on πΦ(P), and πΦ(P�) is a set of closed behaviours
of SF.

Likewise, the automaton PG in Figure 12(a) is the mini-
mal automaton of πΓ(P)⊂ Γ+, SG∩πΓ(P�) is accepted by
the product automaton of SG and

�

PG in Figure 12(b), SG is
based on πΓ(P), and πΓ(P�) is a set of closed behaviours
of SG.

I

II III

IV

gx
gy

gz

(a) Automaton PG

(1, /0) (2,{(II,1)})

(3,{(III,1)}) (4,{(III,1),(II,1)})

gx

gy
gz

gx

gz

(b) Product automaton of SG and
�

PG

Figure 12. Automaton PG and product automaton of SG and
�

PG

So, by Figure 10, 11(b) and 12(b) all assumptions of
Theorem 2 are fulfilled. (6)

Now to apply Theorem 1 together with Theorem 2 it remains
to find conditions such that each u ∈LIK is prefix of some
v ∈LIK ∩CIK . This set of closed behaviours CIK consists
of all words w ∈ Σ∗IK , in which all phases are completed.

Considering example 2, we have shown that each phase
is initiated by an F-action (Figure 7), each F-partner is
involved in at most one phase (Figure 11(b)), and, each G-
partner is involved in at most two phases (Figure 12(b)).

Now to construct for each u ∈LIK a v ∈LIK ∩CIK with
u∈ pre(v) one may imagine that the following strategy could
work.

1) For each G-partner involved in two phases, complete
one of this phases.

2) For each G-partner involved in one phases, complete
this phase.

3) Complete the phases, where only an F-partner is in-
volved in.
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If L is based on P, SF based on πΦ(P) and SG based on
πΓ(P), then by Theorem 3 the assumptions of Theorem 2
imply L = pre(L∩P�), SF = pre(SF∩πΦ(P�)) and SG =
pre(SG∩πΓ(P�)).

This is in [7] the starting point of a more general form
of such a “completion (of phases) strategy”, where also
“success conditions” for that strategy are given. It is shown,
that under certain regularity restrictions these conditions can
be verified by semi-algorithms based on finite state methods.
These restrictions are:

The product automata as in Figure 10, 11(b) and
12(b) must be finite and deterministic. (7)

We only get semi-algorithms but no algorithms, because
the product automata are constructed step by step and this
procedure does not terminate if the corresponding product
automaton is not finite.

Using (7), (3) and the Theorems 1 and 2, the approximate
satisfaction of uniformly parameterised always-eventually
properties can be verified by semi-algorithms based on finite
state methods. This verification method only depends on L,
SF, SG, P and M̊ and doesn’t refer to the general index sets
I and K.

In [7], it is shown that the success conditions are fulfilled
in example 2. So, by (4), Theorem 1, Theorem 2 and (6) in
example 2 lim(L̂IK) approximately satisfies A P̊

IK for each
finite index sets I and K, where P̊ is defined in (5).

VII. CONCLUSIONS AND FUTURE WORK

The main result of this paper is a finite state verification
framework for uniformly parameterised reliability proper-
ties. The uniformly parameterisation of reliability properties
exactly fits to the scalability and reliability issues of complex
systems and systems of systems, which are characterised by
the composition of a set of identical components, interacting
in a uniform manner described by the schedules of the
partners.

In this framework, the concept of structuring cooperations
into phases enables completion of phases strategies. Con-
sistent with this, corresponding success conditions can be
formalised [7], which produce finite state semi-algorithms
(independent of the concrete parameter setting) to verify re-
liability properties of uniformly parameterised cooperations.
The next step should be to integrate these semi-algorithms
in our SH verification tool [25].

Furthermore, we plan a generalisation of the presented
approach to systems whose global behaviour is composed of
behavioural patterns. The aim is, to eventually derive a set of
construction principles for reliable parameterised systems.

Another future work perspective is the application of the
approach presented in this paper to the Security Modeling
Framework (SeMF) [27]. In SeMF, beside system behaviour,
also local views of agents and agents knowledge about
system behaviour are considered.
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APPENDIX

A. Basic Notations

The set of all infinite words over Σ is defined by

Σ
ω = {(ai)i∈N|ai ∈ Σ for each i ∈N},

where N denotes the set of natural numbers. On Σω a
left concatenation with words from Σ∗ is defined. Let
u = b1 . . .bk ∈ Σ∗ with k ≥ 0 and b j ∈ Σ for 1 ≤ j ≤ k
and w = (ai)i∈N ∈ Σω with ai ∈ Σ for all i ∈ N, then
uw = (x j) j∈N ∈ Σω with x j = b j for 1≤ j≤ k and x j = a j−k
for k < j. For w∈Σω the prefix set pre(w)⊂Σ∗ is defined by
pre(w) = {u∈ Σ∗| it exists v∈ Σω with uv = w}. For L⊂ Σ∗

the ω-language Lω ⊂ Σω is defined by Lω = {(ai)i∈N ∈
Σω | it exists a strict monotonically increasing function f :
N → N with a1 . . .a f (1) ∈ L and a f (i)+1 . . .a f (i+1) ∈
L for each i∈N} . f :N→N is called strict monotonically
increasing if f (i) < f (i+1) for each i ∈N.

B. Proof of Theorem 1

To prove Theorem 1 the following lemma is needed.

Lemma 1.

LIK ⊃LI′K′ for I′×K′ ⊂ I×K.

For the proof of Lemma 1 see [18] (proof of Theorem 1).
Proof: Proof of Theorem 1.

If lim(L̂I̊K̊) approximately satisfies (Σ̂I̊K̊
∗
M̊)ω , then by (3)

(with u = ε) there exists v ∈LI̊K̊ with v−1(LI̊K̊)∩ M̊ 6= /0.
As ι I̊K̊

I′K′ is an isomorphism

ι
I̊K̊
I′K′(LI̊K̊) = LI′K′ and

(ι I̊K̊
I′K′(v))

−1(LI′K′)∩ ι
I̊K̊
I′K′(M̊) 6= /0. (8)

As CIK is a set of closed behaviours of LIK and each
u ∈LIK is prefix of some v ∈LIK ∩CIK , there exists x ∈
u−1(LIK) with (ux)−1(LIK) = LIK .

By Lemma 1 LIK ⊃LI′K′ for each I′ ⊂ I and K′ ⊂ K, so
(ux)−1(LIK)⊃LI′K′ .

Now (8) implies

(ι I̊K̊
I′K′(v))

−1((ux)−1(LIK))∩ ι
I̊K̊
I′K′(M̊) 6= /0. (9)

As (ι I̊K̊
I′K′(v))

−1((ux)−1(LIK)) = (uxι I̊K̊
I′K′(v))

−1(LIK), (9)
and (3) complete the proof of Theorem 1.

C. Homomorphism Theorem for P�

Theorem 3 (homomorphism theorem for P�).
Let µ : Σ∗→Σ′∗ be an alphabetic homomorphism, then holds

µ(P�) = (µ(P))�.

For the proof of Theorem 3 see [7] (proof of Theorem 6).
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