

SDA

 SCL 1-7 8 9

9

S

P

1-7 8 9

9

ADD W/R ACK DATA

Implementation of MCU Invariant I2C Slave Driver Using Bit Banging

Arindam Halder, Ranjan Dasgupta

Innovation Lab, TATA Consultancy Services, Ltd.

Kolkata, India

arindam.halder@tcs.com,ranjan.dasgupta@tcs.com

Jayakar Chepada, Nrusingh Prasad Dash

Innovation Lab, TATA Consultancy Services, Ltd.

Kolkata, India

jayakar.ch@tcs.com,nrusingh.dash@tcs.com

Abstract—The paper gives an overview of programming I2C

slave device using bit banging method implemented in C

programming language. In Microcontroller Unit (MCU) based

tiny embedded system, with no built in universal serial

communication (e.g., I2C, SPI, etc.) hardware engine support,

bit banging method is the most efficient technique for handling

any such communication. Finally, the paper states and

demonstrates a solution of I2C communication between two
devices as a case study.

 Keywords- I2C; Bit Banging; SPI; MCU; EEPROM.

I. INTRODUCTION

Philips Semiconductors had developed the I2C protocol

over 20 years ago and has an extensive collection of specific
usage across several general purpose devices. The I2C-bus

supports two wires, serial data (SDA) and serial clock

(SCL), it carries the information between the devices

connected to the bus. Each device is recognized by a unique

7-bit address and can operate as either a transmitter or a

receiver, depending on the function of the device [2], [6].

Sometimes, processors do not have built in hardware

support for the universal serial communication. In such

case, design your own code to implement serial

communication, which is known as bit banging. For

example, the MSP430F1232 MCU does not have any kind
of built in hardware serial communication support.

Therefore, to add any I2C serial device in a project based on

this MCU, you have to create code to handle the

communication. So, the challenge is to write bit banging

I2C slave driver using C programming language. The Slave

will be synchronized by the master clock, and the data

portion will be driven by either the master or the slave. The

synchronization part is taken care by the port pin interrupts

of SCL and SDA. This implementation is briefly given in

the case study and in the code implementation (Appendix).

The advantage to design your own code is that, you can add

the I2C serial communication to any microcontroller. The
data transfer between any two microcontrollers can be

achieved by using this code. A microcontroller can also use

this code to communicate with any other devices, which are

on the same single board (e.g., EEPROM, etc.).

II. PROTOCOL SPECIFICATION

In I2C protocol, a master is the device which initiates a
data transfer on the bus and generates the clock signals to

permit that transfer. At that time, any device address is

considered as a slave. During the I2C communication,

unique situations arise, which are defined as START and

STOP conditions (Figure 1). A HIGH to LOW transition on

the SDA line, while SCL is HIGH, is one such unique case.

This situation indicates a START condition. A LOW to

HIGH transition on the SDA line, while SCL is HIGH,

defines a STOP condition.

Figure 1. Data transfer on I2C bus

Every byte put on the SDA line must be 8-bit long. Each

byte has to be followed by an acknowledgement bit. The data
is transferred with the most significant bit (MSB) first. The
transmitter releases the SDA line (HIGH) during the
acknowledge clock pulse. The receiver must pull down the
SDA line during the acknowledge clock pulse, so that, it
remains stable LOW during the HIGH period of this clock
pulse (Figure 1).

After START condition, a slave address is sent. In 7 bit

long, followed by an eighth bit, which is a data direction bit

(R/W) - a ‘zero’ indicates a transmission (WRITE), a ‘one’

indicates a request for data (READ) (Figures 2 and 3). After
the address byte, the data to be read or write according to

the data direction bit, are sent. This way, data transmission

happens until a stop condition occurs.

1

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

 From master to Slave S: Start bit P: Stop bit

 From slave to master A: Acknowledgement

Figure 2. A master – transmitter addressing a slave receiver with
7 bit address

Figure 3. A master reads a slave immediately after the first byte

III. CASE STUDY

In our implementation, TI Davinci (DM6446) processor

acts as an I2C master and MSP430 as an I2C slave device.

The MCU I/O port pin P1.1 is configured as SCL and P2.1

as SDA. Both the pins are interrupt enabled. The master

uses standard-mode of I2C communication, with its data

transfer rate of up to 100 kbps and 7-bit addressing mode.

To maintain the same bit rate in the slave side, we use Timer

A of MSP430. Timer A has interrupt capabilities and it may
be generated from the counter on overflow conditions.

Figure 4. I2C bit banging implementation between Davinci

processor and MSP430

IV. CODE IMPLEMENTATION

We have written the source code using C programming
language. Most of the time, the assembly language code is

more difficult to be understand, where as in C programming

language it is much easier. But the most challenging thing is

the performance. It should perform like the microcontroller

has inbuilt hardware I2C engine. In source code, we call

function init_i2c(i2c_read_byte). This function initializes

the port pin for i2c slave and registers a callback function

i2c_read_byte, which will process the data after receiving or

before transmitting (see Appendix).

MSP430_SWI2CSV_init() calls a function named

resetSWI2C. resetSWI2C function is used several times in

the code to reset the I2C slave. The purpose of this function
is to reinitialize the SCL and SDA pins. Here both the SCL

and SDA are configured as input pin, where SCL will report

an interruption on the transition from low to high, and SDA

will report from high to low transition. This condition will

be treated as a start condition of the I2C communication.

The rest of the code will execute on the interrupt context.
As per the I2C specification, the master has the bus

control over I2C bus and it is a synchronous protocol, so the
clock (SCL) will be controlled by the master only, and the

dataline (SDA) will be controlled by the master or the slave
as per the requirement. Here SCL will be captured by the
__interrupt void Port_1(void) interrupt function and SDA
will be taken care by the __interrupt void Port_2(void)
interrupt function (see Appendix).

SDA interrupt is used for detecting start and stop
conditions of the I2C communication. This also detects

repeated start condition.

There are 4 states considered for the slave device

1. SLAVE_ADDRESS_RECEIVE

2. SLAVE_NOTMY_ADDRESS

3. SLAVE_DATA_RECEIVE

4. SLAVE_DATA_TRANSMIT

Here, both the high to low transition and low to high

transition on the SCL line are taken care. The initial state is

SLAVE_ADDRESS_RECEIVE. Two counters, rising edge

counter and falling edge counter are used to call specific

function after specific number of bits received or
transmitted. In low to high transition of the SCL line, PORT

2 (SDA) values are captured, enabling SDA interrupt to

capture repeated start or stop condition from the master, and

the SCL line are configured for high to low transition. In

high to low transition of the SCL line, captured value is

processed and the SDA interrupt is disabled.

IAR Embedded workbench IDE (Integrated Development

Environment) is used to develop and compiles the code.

MSP430 USB-Debug-Interface is used for porting the

source code to the microcontroller.

V. CONCLUSION

The paper analyzes the simplicity concerns of writing I2C

slave driver using bit banging method. An optimal and

robust solution is implemented with a trade-off between

speed and reliability. This generic approach can easily be

adapted to any embedded device. Apart from

MSP430F1232, other microcontrollers, like PIC16F5x or

AT89C2051, also do not have universal serial

communication interface [7], [8]. This generic code can also

be used to achieve serial I2C communication just by

changing the timer of specific MCU, to maintain the bit rate

and interrupt driven PORT pins of the SCL and the SDA.

REFERENCES

[1] http://www.dwhoffman.com/bit_banging [retrieved: December 2010]

[2] http://www.nxp.com/acrobat_download2/literature/9398/39340011.p

df [retrieved: December 2010]

[3] http://focus.ti.com/mcu/docs/mcuprodtechdoc.tsp?sectionId=95&tabI
d=1204&familyId=911&techDoc=6&docCategoryId=6&viewType=

mostrecent [retrieved: December 2010]

[4] http://processors.wiki.ti.com/index.php/TMS320DM6446 [retrieved:
November 2010]

[5] http://focus.ti.com/lit/wp/spry136/spry136.pdf [retrieved: November

2010]

[6] http://ics.nxp.com/support/documents/interface/pdf/an10216.pdf
[retrieved: December 2010]

[7] http://ww1.microchip.com/downloads/en/devicedoc/41213C.pdf
[retrieved: December 2010]

Davinci
(DM6446)

MSP430

SCL

SDA

IR Reception

S

A

 SLAVE ADDRESS R/W A DATA A P

S SLAVE ADDRESS R/W A DATA A P

2

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

[8] http://www.atmel.com/dyn/resources/prod_documents/doc0368.pdf

[retrieved: December 2010]

 APPENDIX

#define init_i2c(callback) \

do { \

 MSP430_SWI2CSV_init(); \

 regI2CCallBack(callback); \

} while(0)

void resetSWI2C(){

 set_scl_output_low();
 set_sda_output_low();

 set_sda_input();

 set_scl_input();

 set_scl_rising_intr();

 set_sda_falling_intr();

 clear_scl_intr();

 enable_scl_intr();

 clear_sda_intr();

 enable_sda_intr();

 i2c_data=0;
}

#pragma vector=PORT1_VECTOR

__interrupt void Port_1(void) // SCL

{

 if(P1IN&BIT0) // Low to High (Rising Edge)

 {

 rising_edge_counter++;
 switch(i2c_flag)

 {

 case SLAVE_ADDRESS_RECEIVE:

 case SLAVE_NOTMY_ADDRESS:

 case SLAVE_DATA_RECEIVE:

 address_low_high1to9();

 break;

 default: // SLAVE_DATA_TRANSMIT

 if(rising_edge_counter<= BYTE_LENGTH)

 transmit_low_high1to8();

 else

 address_low_high1to9 ();
 }

 if(rising_edge_counter==9)

 rising_edge_counter=0;

 }

 else

 { // High to Low (Falling Edge)

 falling_edge_counter++;

 switch(i2c_flag)

 {

 case SLAVE_ADDRESS_RECEIVE:

 if(falling_edge_counter<=SEVENTH_BIT)
 address_high_low1to7();

 else if(falling_edge_counter==BYTE_LENGTH)

 address_high_low8();

 else

 address_high_low9();

 break;

 case SLAVE_NOTMY_ADDRESS:
 if(falling_edge_counter<= BYTE_LENGTH)

 notmyaddress_high_low1to8();

 else

 notmyaddress_high_low9();

 break;

case SLAVE_DATA_RECEIVE:

 if(falling_edge_counter<= SEVENTH_BIT)

 receive_high_low1to7();

 else if(falling_edge_counter==BYTE_LENGTH)

 receive_high_low8();

 else

 receive_high_low9();
 break;

 default: // SLAVE_DATA_TRANSMIT

 if(falling_edge_counter<=SEVENTH_BIT)

 transmit_high_low1to7();

 else if(falling_edge_counter==BYTE_LENGHT)

 transmit_high_low8();

 else

 transmit_high_low9();

 }

 if(falling_edge_counter==NINTH_BIT)

 falling_edge_counter=0;
 }

}

#pragma vector=PORT2_VECTOR

__interrupt void Port_2(void) // SDA

{

 if(SCL pin is low) // SCL Low

 clear_sda_intr(); // Clear SDA interrupt flag

 else

 {

 if((P2IES&SDA)) // start

 {
 /*Initialize all counters*/

 /*Reload timers*/

 disable_sda_intr(); // Disable SDA interrupt

 if(i2c_flag==SLAVE_DATA_RECEIVE)

 {

 /*Set repeated start condition*/

 }

 i2c_flag=SLAVE_ADDRESS_RECEIVE;

 index=0;

 }

 else // Stop
 {

 set_scl_input(); // (set SCL as input)

 set_sda_input(); // (set SDA as input)

 set_sda_falling_intr(); // SCL for 1->0 interrupt edge

3

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

 clear_sda_intr(); // Clear SCL interrupt flag

 set_scl_rising_intr(); // SCL for 0->1 interrupt edge

 clear_scl_intr(); // Clear SCL interrupt flag

 /*Clear timer*/

 i2c_flag=SLAVE_ADDRESS_RECEIVE;

 }
 }

}

void address_low_high1to9(){

 P2IES=(P2IN&BIT0); // Set SDA interrupt edge

 set_scl_falling_intr(); // Set SCL for 1->0 interrupt edge

 clear_scl_intr(); // Clear SCL interrupt flag

 clear_sda_intr(); // Clear SDA interrupt flag

 enable_sda_intr(); // Enable SDA interrupt

 }

void address_high_low1to7(){
 set_scl_rising_intr();

 clear_scl_intr();

 if(repeat_start==1){

 /*all counters = 0, repeat_start =0*/

 }

 /*store the bit value*/

 /*Left shift carry bit into I2C val*/

 disable_sda_intr();

}

void notmyaddress_high_low9(){
 set_scl_output();

 set_sda_input();

 set_scl_rising_intr();

 clear_scl_intr();

 /*Set time out*/

 clear_scl_intr();

 i2c_flag=SLAVE_NOTMY_ADDRESS;

}

void notmyaddress_high_low1to8(){

 set_scl_rising_intr();

 clear_scl_intr();
 disable_sda_intr();
}

void address_high_low9(){

 set_scl_output();

 if(i2c_data&0x01) // Slave Transmit

 {

 i2c_flag=SLAVE_DATA_TRANSMIT;

 /*store the transmit data bitwise

 to SDA line*/

 /*Left shift transmit data*/

 }

 else{
 set_sda_input();

 i2c_flag= SLAVE_DATA_RECEIVE;

 }

 set_scl_rising_intr();

 clear_scl_intr();

 disable_sda_intr();

 set_scl_input();

}

void transmit_high_low9(){

 set_scl_output();

 if(No address match){

 i2c_flag = SLAVE_NOTMY_ADDRESS;

 set_scl_rising_intr();

 clear_scl_intr();
 disable_sda_intr();

 set_scl_input();

 }

 else{

 i2c_flag = SLAVE_DATA_TRANSMIT;

 if(transmit bit value is 1)

 set_sda_output_high();

 else

 set_sda_output_low();

 set_sda_output();

 /*Left shift i2c val*/

 set_scl_rising_intr();
 clear_scl_intr();

 /*Reload timer*/

 disable_sda_intr();

 set_scl_input();

 }

}

void receive_high_low1to7(){

 set_scl_rising_intr();

 clear_scl_intr();

 /*store the bit value*/

 /*Left shift carry bit into I2C val*/

 disable_sda_intr();

}

void receive_high_low8(){

 set_sda_output_low();

 set_sda_output();
 set_scl_rising_intr();

 clear_scl_intr();

 /*store the bit value*/

 disable_sda_intr();

 set_scl_input();

}

void receive_high_low9(){

 set_scl_output();

 set_sda_input();

 set_scl_rising_intr();

 clear_scl_intr();

 disable_sda_intr();

4

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

 i2c_flag=SLAVE_DATA_RECEIVE;

 /*Stop Timer*/

 /*Call callback function*/

 /*reset i2c data, and reload timer*/

 set_scl_input();

}

void transmit_low_high1to8(){

 /*Set SDA edge interrupt direction*/

 /*store SDA out data*/

 set_scl_falling_intr();

 clear_scl_intr();

 clear_sda_intr();

 enable_sda_intr();

}

void transmit_high_low8(){

 set_sda_input();
 set_scl_rising_intr();

 clear_scl_intr();

 disable_sda_intr();

}

void transmit_high_low1to7(){

 set_scl_rising_intr();

 clear_scl_intr();
 if(transmit bit value is 1)

 set_sda_output_high();

 else

 set_sda_output_low();

 set_sda_output();

 /*Left shift i2c val*/

 disable_sda_intr();

}

5

ICONS 2011 : The Sixth International Conference on Systems

Copyright (c) IARIA, 2011 ISBN:978-1-61208-114-4

