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Abstract—An appropriate assessment of end-to-end 

network performance presumes highly efficient time tracking 
and measurement with precise time control of the stopping and 
resuming of program operation. In this paper, a novel 
approach to solving the problems of highly efficient and 
precise time measurements on PC-platforms and on ARM-
architectures is proposed. A new unified High Performance 
Timer and a corresponding software library offer a unified 
interface to the known time counters and automatically 
identify the fastest and most reliable time source, available in 
the user space of a computing system. The research is focused 
on developing an approach of unified time acquisition from the 
PC hardware and accordingly substituting the common way of 
getting the time value through Linux system calls. The 
presented approach provides a much faster means of obtaining 
the time values with a nanosecond precision than by using 
conventional means. Moreover, it is capable of handling the 
sequential time value, precise sleep functions and process 
resuming. This ability means the reduction of wasting 
computer resources during the execution of a sleeping process 
from 100% (busy-wait) to 1-1.5%, whereas the benefits of very 
accurate process resuming times on long waits are maintained.  

  

Keywords-high-performance computing; network 

measurement; timestamp precision; time-keeping; wall clock. 

I.  INTRODUCTION  

Estimation of the achieved quality of the network 
performance requires high-resolution, low CPU-cost time 
interval measurements along with an efficient handling of 
process delays and sleeps [1][2]. The importance on 
controlling these parameters can be shown on the example 
of a transport layer protocol. Its implementation may need 
up to 10 time fetches and time operations per transmitted 
and received data packet. However, performing accurate 
time interval measurements, even on high-end computing 
systems, faces significant challenges.  

Even though Linux (and in general UNIX timing 
subsystems) uses auto-identification of the available 
hardware time source and provides nanosecond resolution, 
these interfaces are always accessed from user space 
applications through system calls. Thus it costs extra time in 
the range of up to a few microseconds – even on 
contemporary high-end PCs [3]. Therefore, direct 
interaction with the timing hardware from the user space can 
help to reduce time fetching overhead from the user space 
and to increase timing precision. The Linux kernel can use 
different hardware sources, whereby time acquisition 
capabilities depend on the actual hardware environment and 
kernel boot parameterization. While the time acquisition of 

some time sources costs up to 2 microseconds, others need 
about 20 nanoseconds. In the course of this work, a new 
High Performance Timer and a corresponding library 
HighPerTimer have been developed. They provide a unified 
user-space interface to time counters available in the system 
and automatically identify the fastest and the most reliable 
time source (e.g. Time Stamp Counter (TSC) [4][5] or High-
Performance Event Counter (HPET) [6][7]). In the context 
of this paper, the expression time source means one of the 
available time hardware or alternatively the native timer of 
the operating system, usually provided by the standard C 
library. 

Linux (as well as other UNIX operating systems) faces a 

significant problem of inaccurate sleep time, which is 

known for many years, especially in older kernel versions, 

when Linux has provided a process sleep time resolution of 

10 msec. This leads to a minimum sleep time of about 20 

msec [8]. Even nowadays, when Linux kernels usually 

reduce this resolution down to 1 msec, waking up from 

sleeps can take up to 1-2 msec. With kernel 2.6 the timer 

handling under Linux has been changed significantly. This 

change has reduced the wakeup misses of sleep calls to 51 

µsec on average and to 200-300 µs in peaks. However, for 

many soft-real-time and high-performance applications, this 

reduction is not sufficient. Presented High Performance 

Timer not only significantly improves the time fetching 

accuracy, but also addresses the problem of those imprecise 

wakeups from sleep calls under Linux. 

These precision issues lead to the fact that, for high-

precision timing within state machines and communication 

protocols, busy-waiting loops are currently commonly used 

for waits, preventing other threads from using the given 

CPU. The approach of the High Performance Timer library 

aims at reducing the CPU load down to an average of 1-

1.5% within the sleep calls of the library and at raising the 

wakeup precision to 70-160 nsec. Reaching these values 

enables users of this library to implement many protocols 

and state machines with soft real-time requirements in user 

space. 
The remainder of the paper is organized as follows. In 

Section II, related work is described. Section III shows the 
specific details of each time source within the suggested 
single unified High-Performance Timer class interface. In 
Section IV, we briefly describe the implemented library 
interface. Some experimental results of identifying 
appropriate timer source along with their performance 
characteristics are shown in Section V. In Section VI, 
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precise process sleeping aspects are shown. Finally, Section 
VII describes next steps and future work in our effort to 
develop a tool for highly efficient high-performance 
network measurements.  

II. RELATED WORK 

Since the problem of inefficient time keeping in Linux 

operating system implementation has become apparent, 

several research projects have suggested to access the 

timing hardware directly from user space [1][9][10]. 

However, most of this research considers handling of a 

single time hardware source only, predominantly the Time 

Stamp Counter [1][9][11]. Other solutions provide just 

wrappers around timer-related system calls and so inherit 

their disadvantages such as the high time overhead [12][13]. 

In other proposals, the entire time capturing process is 

integrated into dedicated hardware devices [14][15]. Most 

of this research focuses only on a subset of the problems, 

addressed in this work. Our work with the HighPerTimer 

library improves timing support by eliminating the system 

call overhead and also by application of more precise 

process sleep techniques. 

III. UNIFIED TIME SOURCE OF THE HIGHPERTIMER 

LIBRARY 

While most of the current software solutions on Linux 
and Unix use the timing interface by issuing clock_gettime() 
or gettimeofday() system calls, HighPerTimer tries to invoke 
the most reliable time source directly from the user space. 
Towards the user, the library provides a unified timing 
interface for time period computation methods along with 
sleep and wakeup interfaces, independently from the used 
underlying time hardware. So, the user sees a “unified time 
source” that accesses the best possible on the underlying 
hardware, and that generally avoids system call overheads. 
The HighPerTimer interface supports access the mostly used 
time counters: TSC, HPET and, as the last alternative, the 
native timer of the operating system, through one of the said 
Unix system calls. The latter time source we call the OS 
Timer. 

Using the Time Stamp Counter is the fastest way of 
getting CPU time. It has the lowest CPU overhead and 
provides the highest possible time resolution, available for 
the particular processor. Therefore, in the context of our 
library, the TSC is the most preferable time source. In newer 
PC systems, the TSC may support an enhancement, referred 
to as an Invariant TSC feature. Invariant TSC is not tightly 
bound to a particular processor core and has, in contrary to 
many older processor families, a guaranteed constant 
frequency [16]. The presence of the Invariant TSC feature in 
the system can be tested by the Invariant TSC flag, indicated 
by the cpuid processor instruction. For most cases, the 
presence of this Invariant TSC flag is essential in order to 
accept it as a HighPerTimer source.  

Formerly referred by Intel as a Multimedia Timer [7], 
the High Precision Event Timer is another hardware timer 
used in personal computers. The HPET circuit is integrated 
into the south bridge chip and consists of a 64-bit or 32-bit 

main counter register counting at a given constant frequency 
between 10 MHz and 25 MHz. Difficulties are faced when 
the HPET main counter register is running in 32-bit mode 
because overflows of the main counter arise at least every 
7.16 minutes. With a frequency of 25 MHz, register 
overflows would occur even within less than 3 minutes. So, 
time periods longer than 3 minutes can’t reliably measured 
in 32 bit mode. So, in the HighPerTimer library, we decided 
to generally avoid using the HPET time source in case of a 
32-bit main counter. 

For systems, on which neither TSC nor HPET are 
accessible or TSC is unreliable, an alternative option of 
using the OS Timer is envisaged. This alternative is a 
wrapper issuing the system call clock_gettime(). This source 
is safely accessible on any platform. However, it has the 
lowest priority because it issues system calls, with their time 
costs of up to 2 microseconds in worst case 
[17][18].Depending on the particular computer architecture 
and used OS, these costs can be less due to the support of 
the so-called virtual system calls. These calls provide faster 
access to time hardware and avoid expensive context 
switches between user and kernel modes [19]. Nevertheless, 
invocation of clock_gettime() through a virtual system call 
is still slower than the acquisition time value from current 
time hardware directly. The difference between getting the 
time value using virtual system calls and getting the time 
values directly from the hardware is about 3 to 17 nsec, as 
measurement results, discussed in Section V, show.  

IV. THE HIGHPERTIMER INTERFACE  

The common guidelines on designing any interfaces 
cover efficiency, encapsulation, maintainability and 
extensibility. Accordingly, the implementation of the 
HighPerTimer library pays particular attention to these 
aspects. Using the new C++11 programming language 
standard [20], the library achieves high efficiency and easy 
code maintainability. Furthermore, regarding the platform-
specific aspects, HighPerTimer runs on different 64-bit and 
32-bit processors of Intel, AMD, VIA and ARM, and 
considers their general features along with specialties of 
time keeping. 

However, some attention must be paid to obtaining a 
clean encapsulation of hardware access when using C++. 
For this encapsulation, the HighPerTimer library comprises 
two header files and two implementation files called 
HighPerTimer and TimeHardware. Each of them contains 
three classes. HighPerTimer files contain HighPerTimer, 
HPTimerInitAndClear and AccessTimeHardware classes, as 
described below. In TimeHardware files, the classes 
TSCTimer, HPETTimer and OSTimer corresponding to the 
respective time sources TSC, HPET and the OS source have 
been implemented. Through an assembly code within the 
C++ methods, they provide direct access to the timer 
hardware, initialize the respective timer source, retrieve 
their time value and are at only HighPerTimer class’s 
disposal. Dependencies between the classes are presented in 
Fig. 1. 
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-InitHPTimeSource()
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HPTimerInitAndClean
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<<friend>>

OSTimer

<<friend>>

 
Figure 1.  Simplified class diagram of HighPerTimer library 

TSCTimer, HPETTimer and OSTimer classes have a 
“friend” relationship with the HighPerTimer class, which 
means that HighPerTimer places their private and 
protected methods and members at friend classes’ disposal. 
For safety and security reasons, we protect the hardware 
access from use by application users directly and permit 
access only from special classes. An AccessTimeHardware 
class provides a limited read-only access to some 
information on CPU and specific time hardware features, 
obtained in a protected interface. For example, some 
advanced users can find out failure reasons of the 
initialization routine of the HPET device and get a 
corresponding error message: 

 
std::cout << AccessTimeHardware::HpetFailReason();  

 
However, all the routines of time handling along with 

access to the actual timer attributes such as clock frequency 
are accessed by the library users via the HighPerTimer 
class. For interfacing with other time formats, 
HighPerTimer class provides a set of constructors that sets 
its object to the given time provided in seconds, 
nanoseconds or in the native clock ticks of the used time 
source. Via specific constructor, a time value in a Unix-
specific time format [21] can also be assigned to a 
HighPerTimer object. The current time value is retrieved 
using the following piece of code: 

 
// declare HighPerTimer objects 

HighPerTimer timer1, timer2; 
HighPerTimer::Now (timer1); 

// measured operation    

HighPerTimer::Now (timer2); 

 
Comparison operators allow effective comparison to be 

performed using the main counter values. Some of these 
methods are declared as follows: 
 

bool operator>= (const HighPerTimer& timer) const; 

bool operator<= (const HighPerTimer& timer) const; 

bool operator!= (const HighPerTimer& timer) const; 

 

The user can also set the value of a timer object explicitly to 
zero and add or subtract the time values in terms of timer 
objects, tics, nanoseconds or seconds. Since the main “time” 
capability of a timer object is kept in the main counter only, 
the comparison operations between timer objects, as well as 
arithmetical operations on them, are nearly as fast as 
comparisons and elementary arithmetical operations on two 
int64 variables. Recalculations between tics, seconds, 
microseconds and nanoseconds are only done in the “late 
initialization” fashion when string representations of the 
timer object or seconds, microseconds or nanoseconds of the 
object are explicitly requested via the class interface: 
 

// subtract from timer object 

HighPerTimer & SecSub (const uint64_t Seconds); 

HighPerTimer & USecSub (const uint64_t USeconds); 

HighPerTimer & NSecSub (const uint64_t NSeconds); 

HighPerTimer & TicSub (const uint64_t Tics); 

 

// add to timer object 

HighPerTimer & SecAdd (const uint64_t Seconds); 

HighPerTimer & USecAdd (const uint64_t USeconds); 

HighPerTimer & NSecAdd (const uint64_t NSeconds); 

HighPerTimer & TicAdd (const uint64_t Tics); 

 

Assignment operators allow a HighPerTimer object to 
be set from the Unix-format of time values - timeval or 
timespec structs [21]. Both of these structures represent 
time, elapsed since 00:00:00 UTC on 01.01.1970. They 
consist of two elements: the number of seconds and the rest 
of the elapsed time represented either in microseconds (in 
case of timeval) or in nanoseconds (in case of timespec): 

 
struct timeval { 

long tv_sec;  /* seconds */ 

long tv_usec; /* microseconds */ 

} 

 
struct timespec { 

long tv_sec;  /* seconds */ 

long tv_nsec; /* nanoseconds */ 

}; 

 

Assignment to these structures is also possible with 
HighPerTimer objects through copying or moving: 
 

const HighPerTimer & operator= (const struct 

timeval & TV); 

const HighPerTimer & operator= (const struct 

timespec & TS); 

const HighPerTimer & operator= (const HighPerTimer 

& Timer); 

HighPerTimer & operator= (HighPerTimer && Timer); 

 
This way, the HighPerTimer library provides a fast and 

efficient way to handle time values by operating main 
counter value and seconds and nanoseconds values only on 
demand. It also relieves users from the manual handling of 
specific two-value structures such as timeval or timespec.  

However, for the whole routine of handling time values, 
some central parameterization of the library must be 
performed at the initialization time of the library. Primarily, 
this is the initialization of the HighPerTimer source, which 
is accomplished on the basis of the appropriate method calls 
from the TimeHardware file. Especially, 
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InitHPTimeSource() calls InitTSCTimer() and 
InitHPETTimer() methods, which attempt to initialize 
respective time hardware and return true on success or false 
on failure (see Fig. 1).  

Before using any timer object, the following global 
parameters must be measured and set: the frequency of the 
main counter as a double precision floating point value and 
as a number of ticks of the main counter within one 
microsecond, the value of the shift of the main timer counter 
against Unix Epoch, the maximum and minimum values of 
HighPerTimer for the given hardware-specific main counter 
frequency, and the specified HZ frequency of the kernel. 
The value of HZ is defined as the system timer interrupt rate 
and varies across kernel versions and hardware platforms. In 
the context of the library, the value of HZ is used for the 
implementation of an accurate sleep mechanism, see Section 
VI. The strict sequence of the initialization process is 
determined within an additional HPTimerInitAndClean 
service class (see Fig. 1) by invoking corresponding 
HighPerTimer initialization methods through their “friend” 
relationship. A strict order of initialization of the given 
global variables must be assured, which is somewhat tricky 
since all the variables must be declared static and must be 
initialized before entering the main routine of the 
application. 

 Despite the advantage of automatic detection of the 
appropriate time source, situations sometimes arise when an 
application programmer prefers to use a different time 
source than the one automatically chosen at library 
initialization time. To account for this, a special ability to 
change the default timer is provided. This change causes a 
recalculation process for most of the timer attributes: 

 
// create variable for a new value of time source   

TimeSource MySource; 

MySource = TimeSource::HPET;  

HighPerTimer::SetTimerSource ( MySource );     

 
However, since this change leads to invalidation of all the 
already existing timer objects within the executed program, 
this feature should be used with caution and only at the 
system initialization time, and definitely before instantiation 
of the first HighPerTimer object. 

V. TIME FETCHING PERFORMANCE RESULTS 

Table I shows the performance results when getting the 
time values using the HighPerTimer library as measured on 
different processor families. The mean and standard 
deviation values of the costs of setting a HighPerTimer 
object are shown. For this investigation, time was fetched in 
a loop of 100 million consecutive runs and set to a 
HighPerTimer object. Since we are interested here in 
measuring the time interval between two consecutive time 
fetches only, without any interruption in between, we filter 
out all outlying peaks. These peaks are most probably 
caused by process interruption by the scheduler or by an 
interrupt service routine. Thus, filtering out such outliers 
allows us to get rid of the bias caused by physical 
phenomena, which are outside the scope of this 
investigation. 

TABLE I.  COSTS OF SETTING TIMER ON DIFFERENT PROCESSORS 

Processor (CPU) 
Time 

source 

Mean, 

nsec 

St. deviation, 

nsec 

Intel ® Core ™ i7-2600, 

1600 MHz 
TSC 16.941 0.1231 

VIA Nano X2 U4025, 1067 

MHz 
TSC 38.203 0.3134 

Athlon ™ X2 Dual Core BE-

2350, 1000 MHz 
HPET 1063.3 207.92 

 
The following two examples demonstrate the behavior 

of HighPerTimer sources in more detail and allow a 
comparison of their reliability and costs depending on the 
particular processor conditions. Although Table I shows the 
results for all three processors, later investigations are 
shown only for less powerful systems. It makes sense to 
examine in more depth those systems, where for example, 
TSC is unstable or does not possess Invariant TSC flag (see 
Section III).  

In the first case, processor VIA Nano X2 has TSC as a 
current time source. Costs of time fetching here are about 
38 nsec. Since TSC source has the highest priority and has 
been initialized successfully, the HPET device check is not 
necessary and so omitted here. Moreover, on this processor, 
the Linux kernel is also using TSC as its time source and so, 
within the clock_gettime() call, the kernel is also fetching 
the TSC register of the CPU. Fig. 2 shows the relation 
between the TSC, OS and HPET timers on this processor. 
Similarity between TSC and OS costs are seen very clearly. 
As seen in Table 2, the difference between the mean value 
of time fetching between OS Timer and TSC Timer is 64 
nsec. Each system call with a context switch would last at 
least ten times longer, thus we can conclude that, on this 
system, a virtual system call is issued by clock_gettime() 
instead of a real system call with a context switch. HPET 
source for the library can be set by the static method 
HighPerTimer::SetTimerSrouce. However, we would expect 
here much slower time operations, as seen in Table 2.    

TABLE II. MEAN AND STANDARD DEVIATION VALUES OF HPET, TSC AND 

OS TIMER COSTS ON THE VIA NANO X2 PROCESSOR 

Timer source Mean, nsec Standard deviation, nsec 

TSC Timer 38.23 0.3134 

HPET Timer 598.72 76.015 

OS Timer 102.20 0.5253 

 

 
Figure 2. Measurements of TSC, HPET and OS Timer costs on the VIA 

Nano X2 processor 
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The next example illustrates another case of a 

dependence on the OS Timer from the current time source. 

For the processor AMD Athlon X2 Dual Core, the TSC 

initialization routine fails because TSC is unstable here. 

However, since the HPET device is accessible, there are two 

more options for the time source for HighPerTimer – HPET 

or OS Timers - and it is necessary to check the mean costs 

of getting the ticks of both timers. 

Although the mean value of time fetching for TSC can 

be significantly lower than for HPET, the HighPerTimer 

library considers the TSC to be a non-stable, unreliable time 

source since the Invariant TSC flag (see Section III above) 

is not available and the TSC constancy is not identified by 

additional library checks. So, it must be assumed that TSC 

frequency changes from time to time due to power saving or 

other techniques of the CPU manufacturers. In the next step, 

HPET and OS Timer characteristics must be considered. 

The difference between the mean values of HPET and OS 

Timer is about 54.1 nsec, which is not enough for a system 

call with a context switch. Thus we conclude that 

clock_gettime() also uses the HPET timer and passes it to 

the user via a virtual system call. However, to provide an 

appropriate level of reliability, we also evaluate numbers 

through their deviation values. For this evaluation, a 

threshold for the difference of mean values was chosen. 

When the difference of the mean values of HPET and OS 

Timer is no more than 25%, we also take into account 

standard deviation values of time fetching and so check the 

temporal stability of the considered time source. 

Consequently, when the mean time fetching value of the two 

time sources is similar, the HighPerTimer library would 

give precedence to the time source with a less standard 

deviation of the time fetching costs.  

TABLE III. MEAN AND STANDARD DEVIATION VALUES OF HPET, TSC AND 

OS TIMER COSTS ON THE AMD ATHLON PROCESSOR 

Timer source  Mean, µsec  Standard deviation, µsec 

 TSC Timer   0.0251  0.0015  

 HPET Timer  1.0633  0.2079 

 OS Timer  1.1174  0.3743 

 

 
Figure 3. Measurements of TSC, HPET and OS Timer costs on the AMD 

Athlon processor 

VI. PRECISE PROCESS SLEEPING ASPECTS 

For process sleeping or suspension, Linux provides the 
sleep function (implemented in the standard C library). 
Dependent on the sleep duration, the function either 
suspends from the CPU or waits in the busy-waiting mode 
(sometimes also called spinning wait). However, 
measurements performed in this work revealed that the 
sleep function of the standard C library misses the target 
wake-up time by more than 50 microseconds on average. 
Such an imprecision however is unacceptable for high-
accuracy program sleeps. By comparison, pure busy wait 
implementations within an application miss the target return 
time by about 100 nanoseconds, but keep the CPU busy 
throughout the wait time.  

Unlike the C library’s sleep call, the sleep of the 
HighPerTimer library combines these two ways of sleeping. 
It has very short miss times on waking up with a minimum 
CPU utilization at the same time. This improvement 
provides a big competitive advantage over the predecessor 
solutions. 

HighPerTimer provides a wide range of functions for 
making a process sleep. For example, the user can define the 
specific sleep time, given purely in seconds, in 
microseconds or nanoseconds. A process suspension with a 
nanosecond resolution can be done as follows: 

 
HighPerTimer timer1; 

uint32_t SleepTimeNs(14500); 

// sleep in nanoseconds 

timer1.NSecSleep(SleepTimeNs); 

 
Alternatively, the time value of a HighPerTimer object can 
be set to a specific time value at which the process shall 
wake up. On the call of SleepToThis(), the process will then 
be suspended till the system time has reached the value of 
that object :  

 
//declare timer object equaled to 10 sec, 500 nsec  

HighPerTimer timer2 (10, 500); 

timer2.SleepToThis(); 

 

Table IV shows the precision of sleeps and busy-waits 
using different methods. Miss values are here the respective 
differences between the targeted wakeup time and real times 
of wakeups measured in our tests. However, the miss values 
of sleep times heavily depend on the fact, whether target 
sleep interval was shorter or longer, than time between two 
timer interrupts. So, Table IV consists of two parts – one 
where sleep time is longer then 1/HZ, and one where it is 
less than 1/HZ. Thus, the left column shows results for waits 
lasting longer than a period of two kernel timer interrupts. 
The right column shows the results for the scenario, in 
which the sleep call lasts less than the interval between two 
kernel timer interrupts. These measurements have been 
performed on the Intel Core–i7 processor. Other than in 
measurements from Section V, in this case it makes sense to 
show results on a more stable and powerful system. 
Moreover, it was expected that the accuracy of sleeps would 
be higher on the newer Linux kernel versions where time 
handling has been changed significantly. However, as the 
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measurements below show, these kernel changes are still not 
sufficient. 

In this test scenario, we have issued the respective sleep 
method within a loop of 100000 sleeps with different sleep 
times between 0.25 sec and 1 µsec, and then the mean value 
of the sleep duration miss has been calculated.  

TABLE IV. THE COMPARISON OF MISS VALUES OF DIFFERENT METHODS OF 

SLEEPING, PERFORMED WITH TSC ON THE INTEL CORE –I7 PROCESSOR 

  
Sleep time >= 1/HZ Sleep time < 1/HZ 

Mean miss, µsec Mean miss, µsec 

System sleep 61.985 50.879 

Busy-waiting loop 0.160 0.070 

HighPerTimer sleep 0.258 0.095 

 
The above experiment took about 830 minutes, so the 

upper limit of the range for sleep time value was reduced to 
0.25 sec. The chart in Fig. 4 demonstrates more detailed 
results of this experiment and shows the dependency of miss 
against the target sleep time in dependence from sleep 
duration. To track this dependency more deeply, here the 
range of sleep time value was increased and is taken 
between 10 sec and 1 µsec. 

 

Figure 4. Dependency of miss on the target time from sleep time, 

performed with TSC on the Intel Core –i7 processor, HZ = 1000 

In the next step, we measured the CPU consumption of 

the respective sleep routine. In the busy-waiting loop, the 

total CPU consumption during the test achieves, as 

expected, almost 100%. For the sleep function of the 

standard C library, it tends to zero. In the case of sleeping 

using the HighPerTimer library, the overall CPU 

consumption during the test was 1.89%, which can be 

considered as a good tradeoff between precision of waking 

up time and CPU consumption during the sleep. 

VII. CONCLUSION AND FUTURE WORK 

In accordance with the requirements of advanced high-
speed data networks, we showed an approach for the unified 
high performance timer library that successfully solves two 
significant problems. Firstly, HighPerTimer allows 
identification of the most efficient and reliable way for time 

acquisition on a system and for avoiding system calls 
invocation on time acquisition. Secondly, it solves the 
problem of precise sleeping aspects and provides new 
advanced sleeping and resuming methods.  

The HighPerTimer library has the potential to become 
widely used in estimation network packet dynamics, 
particularly when conducting high-accuracy and high-
precision measurements of network performance. At this 
stage, the integration of the suggested solution into the 
appropriate tool for distributed network performance 
measurement [22] is in progress. Moreover, to the next 
steps, the better support of the ARM processor will be 
addressed. Since the ARM processor possesses neither 
HPET nor TSC, the only way to support ARM at this stage 
is to select OS Timer. Presumably, an invocation of the 
initial ARM system timer can afford to save several 
additional microseconds and improve the timer accuracy. 
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