

A High-precision Time Handling Library

Irina Fedotova

Faculty of Information science and Computer Engineering

Siberian State University of Telecommunication and

Information Sciences, Novosibirsk, Russia

i.fedotova@emw.hs-anhalt.de

Eduard Siemens, Hao Hu

Faculty of Electrical, Mechanical and Industrial Engineering

Anhalt University of Applied Sciences

Koethen, Germany

{e.siemens, h.hu}@emw.hs-anhalt.de

Abstract—An appropriate assessment of end-to-end

network performance presumes highly efficient time tracking
and measurement with precise time control of the stopping and
resuming of program operation. In this paper, a novel
approach to solving the problems of highly efficient and
precise time measurements on PC-platforms and on ARM-
architectures is proposed. A new unified High Performance
Timer and a corresponding software library offer a unified
interface to the known time counters and automatically
identify the fastest and most reliable time source, available in
the user space of a computing system. The research is focused
on developing an approach of unified time acquisition from the
PC hardware and accordingly substituting the common way of
getting the time value through Linux system calls. The
presented approach provides a much faster means of obtaining
the time values with a nanosecond precision than by using
conventional means. Moreover, it is capable of handling the
sequential time value, precise sleep functions and process
resuming. This ability means the reduction of wasting
computer resources during the execution of a sleeping process
from 100% (busy-wait) to 1-1.5%, whereas the benefits of very
accurate process resuming times on long waits are maintained.

Keywords-high-performance computing; network

measurement; timestamp precision; time-keeping; wall clock.

I. INTRODUCTION

Estimation of the achieved quality of the network
performance requires high-resolution, low CPU-cost time
interval measurements along with an efficient handling of
process delays and sleeps [1][2]. The importance on
controlling these parameters can be shown on the example
of a transport layer protocol. Its implementation may need
up to 10 time fetches and time operations per transmitted
and received data packet. However, performing accurate
time interval measurements, even on high-end computing
systems, faces significant challenges.

Even though Linux (and in general UNIX timing
subsystems) uses auto-identification of the available
hardware time source and provides nanosecond resolution,
these interfaces are always accessed from user space
applications through system calls. Thus it costs extra time in
the range of up to a few microseconds – even on
contemporary high-end PCs [3]. Therefore, direct
interaction with the timing hardware from the user space can
help to reduce time fetching overhead from the user space
and to increase timing precision. The Linux kernel can use
different hardware sources, whereby time acquisition
capabilities depend on the actual hardware environment and
kernel boot parameterization. While the time acquisition of

some time sources costs up to 2 microseconds, others need
about 20 nanoseconds. In the course of this work, a new
High Performance Timer and a corresponding library
HighPerTimer have been developed. They provide a unified
user-space interface to time counters available in the system
and automatically identify the fastest and the most reliable
time source (e.g. Time Stamp Counter (TSC) [4][5] or High-
Performance Event Counter (HPET) [6][7]). In the context
of this paper, the expression time source means one of the
available time hardware or alternatively the native timer of
the operating system, usually provided by the standard C
library.

Linux (as well as other UNIX operating systems) faces a

significant problem of inaccurate sleep time, which is

known for many years, especially in older kernel versions,

when Linux has provided a process sleep time resolution of

10 msec. This leads to a minimum sleep time of about 20

msec [8]. Even nowadays, when Linux kernels usually

reduce this resolution down to 1 msec, waking up from

sleeps can take up to 1-2 msec. With kernel 2.6 the timer

handling under Linux has been changed significantly. This

change has reduced the wakeup misses of sleep calls to 51

µsec on average and to 200-300 µs in peaks. However, for

many soft-real-time and high-performance applications, this

reduction is not sufficient. Presented High Performance

Timer not only significantly improves the time fetching

accuracy, but also addresses the problem of those imprecise

wakeups from sleep calls under Linux.

These precision issues lead to the fact that, for high-

precision timing within state machines and communication

protocols, busy-waiting loops are currently commonly used

for waits, preventing other threads from using the given

CPU. The approach of the High Performance Timer library

aims at reducing the CPU load down to an average of 1-

1.5% within the sleep calls of the library and at raising the

wakeup precision to 70-160 nsec. Reaching these values

enables users of this library to implement many protocols

and state machines with soft real-time requirements in user

space.
The remainder of the paper is organized as follows. In

Section II, related work is described. Section III shows the
specific details of each time source within the suggested
single unified High-Performance Timer class interface. In
Section IV, we briefly describe the implemented library
interface. Some experimental results of identifying
appropriate timer source along with their performance
characteristics are shown in Section V. In Section VI,

193Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

mailto:i.fedotova@emw.hs-anhalt.de

precise process sleeping aspects are shown. Finally, Section
VII describes next steps and future work in our effort to
develop a tool for highly efficient high-performance
network measurements.

II. RELATED WORK

Since the problem of inefficient time keeping in Linux

operating system implementation has become apparent,

several research projects have suggested to access the

timing hardware directly from user space [1][9][10].

However, most of this research considers handling of a

single time hardware source only, predominantly the Time

Stamp Counter [1][9][11]. Other solutions provide just

wrappers around timer-related system calls and so inherit

their disadvantages such as the high time overhead [12][13].

In other proposals, the entire time capturing process is

integrated into dedicated hardware devices [14][15]. Most

of this research focuses only on a subset of the problems,

addressed in this work. Our work with the HighPerTimer

library improves timing support by eliminating the system

call overhead and also by application of more precise

process sleep techniques.

III. UNIFIED TIME SOURCE OF THE HIGHPERTIMER

LIBRARY

While most of the current software solutions on Linux
and Unix use the timing interface by issuing clock_gettime()
or gettimeofday() system calls, HighPerTimer tries to invoke
the most reliable time source directly from the user space.
Towards the user, the library provides a unified timing
interface for time period computation methods along with
sleep and wakeup interfaces, independently from the used
underlying time hardware. So, the user sees a “unified time
source” that accesses the best possible on the underlying
hardware, and that generally avoids system call overheads.
The HighPerTimer interface supports access the mostly used
time counters: TSC, HPET and, as the last alternative, the
native timer of the operating system, through one of the said
Unix system calls. The latter time source we call the OS
Timer.

Using the Time Stamp Counter is the fastest way of
getting CPU time. It has the lowest CPU overhead and
provides the highest possible time resolution, available for
the particular processor. Therefore, in the context of our
library, the TSC is the most preferable time source. In newer
PC systems, the TSC may support an enhancement, referred
to as an Invariant TSC feature. Invariant TSC is not tightly
bound to a particular processor core and has, in contrary to
many older processor families, a guaranteed constant
frequency [16]. The presence of the Invariant TSC feature in
the system can be tested by the Invariant TSC flag, indicated
by the cpuid processor instruction. For most cases, the
presence of this Invariant TSC flag is essential in order to
accept it as a HighPerTimer source.

Formerly referred by Intel as a Multimedia Timer [7],
the High Precision Event Timer is another hardware timer
used in personal computers. The HPET circuit is integrated
into the south bridge chip and consists of a 64-bit or 32-bit

main counter register counting at a given constant frequency
between 10 MHz and 25 MHz. Difficulties are faced when
the HPET main counter register is running in 32-bit mode
because overflows of the main counter arise at least every
7.16 minutes. With a frequency of 25 MHz, register
overflows would occur even within less than 3 minutes. So,
time periods longer than 3 minutes can’t reliably measured
in 32 bit mode. So, in the HighPerTimer library, we decided
to generally avoid using the HPET time source in case of a
32-bit main counter.

For systems, on which neither TSC nor HPET are
accessible or TSC is unreliable, an alternative option of
using the OS Timer is envisaged. This alternative is a
wrapper issuing the system call clock_gettime(). This source
is safely accessible on any platform. However, it has the
lowest priority because it issues system calls, with their time
costs of up to 2 microseconds in worst case
[17][18].Depending on the particular computer architecture
and used OS, these costs can be less due to the support of
the so-called virtual system calls. These calls provide faster
access to time hardware and avoid expensive context
switches between user and kernel modes [19]. Nevertheless,
invocation of clock_gettime() through a virtual system call
is still slower than the acquisition time value from current
time hardware directly. The difference between getting the
time value using virtual system calls and getting the time
values directly from the hardware is about 3 to 17 nsec, as
measurement results, discussed in Section V, show.

IV. THE HIGHPERTIMER INTERFACE

The common guidelines on designing any interfaces
cover efficiency, encapsulation, maintainability and
extensibility. Accordingly, the implementation of the
HighPerTimer library pays particular attention to these
aspects. Using the new C++11 programming language
standard [20], the library achieves high efficiency and easy
code maintainability. Furthermore, regarding the platform-
specific aspects, HighPerTimer runs on different 64-bit and
32-bit processors of Intel, AMD, VIA and ARM, and
considers their general features along with specialties of
time keeping.

However, some attention must be paid to obtaining a
clean encapsulation of hardware access when using C++.
For this encapsulation, the HighPerTimer library comprises
two header files and two implementation files called
HighPerTimer and TimeHardware. Each of them contains
three classes. HighPerTimer files contain HighPerTimer,
HPTimerInitAndClear and AccessTimeHardware classes, as
described below. In TimeHardware files, the classes
TSCTimer, HPETTimer and OSTimer corresponding to the
respective time sources TSC, HPET and the OS source have
been implemented. Through an assembly code within the
C++ methods, they provide direct access to the timer
hardware, initialize the respective timer source, retrieve
their time value and are at only HighPerTimer class’s
disposal. Dependencies between the classes are presented in
Fig. 1.

194Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Personal_computers

-InitTSCTimer()

TSCTimer

-InitHPETTimer()

HPETTimer

AccessTimeHardware

-InitHPTimeSource()

HighPerTimer

HPTimerInitAndClean

<<friend>>

<<instantiate>>

<<friend>>

OSTimer

<<friend>>

Figure 1. Simplified class diagram of HighPerTimer library

TSCTimer, HPETTimer and OSTimer classes have a
“friend” relationship with the HighPerTimer class, which
means that HighPerTimer places their private and
protected methods and members at friend classes’ disposal.
For safety and security reasons, we protect the hardware
access from use by application users directly and permit
access only from special classes. An AccessTimeHardware
class provides a limited read-only access to some
information on CPU and specific time hardware features,
obtained in a protected interface. For example, some
advanced users can find out failure reasons of the
initialization routine of the HPET device and get a
corresponding error message:

std::cout << AccessTimeHardware::HpetFailReason();

However, all the routines of time handling along with

access to the actual timer attributes such as clock frequency
are accessed by the library users via the HighPerTimer
class. For interfacing with other time formats,
HighPerTimer class provides a set of constructors that sets
its object to the given time provided in seconds,
nanoseconds or in the native clock ticks of the used time
source. Via specific constructor, a time value in a Unix-
specific time format [21] can also be assigned to a
HighPerTimer object. The current time value is retrieved
using the following piece of code:

// declare HighPerTimer objects

HighPerTimer timer1, timer2;
HighPerTimer::Now (timer1);

// measured operation

HighPerTimer::Now (timer2);

Comparison operators allow effective comparison to be

performed using the main counter values. Some of these
methods are declared as follows:

bool operator>= (const HighPerTimer& timer) const;

bool operator<= (const HighPerTimer& timer) const;

bool operator!= (const HighPerTimer& timer) const;

The user can also set the value of a timer object explicitly to
zero and add or subtract the time values in terms of timer
objects, tics, nanoseconds or seconds. Since the main “time”
capability of a timer object is kept in the main counter only,
the comparison operations between timer objects, as well as
arithmetical operations on them, are nearly as fast as
comparisons and elementary arithmetical operations on two
int64 variables. Recalculations between tics, seconds,
microseconds and nanoseconds are only done in the “late
initialization” fashion when string representations of the
timer object or seconds, microseconds or nanoseconds of the
object are explicitly requested via the class interface:

// subtract from timer object

HighPerTimer & SecSub (const uint64_t Seconds);

HighPerTimer & USecSub (const uint64_t USeconds);

HighPerTimer & NSecSub (const uint64_t NSeconds);

HighPerTimer & TicSub (const uint64_t Tics);

// add to timer object

HighPerTimer & SecAdd (const uint64_t Seconds);

HighPerTimer & USecAdd (const uint64_t USeconds);

HighPerTimer & NSecAdd (const uint64_t NSeconds);

HighPerTimer & TicAdd (const uint64_t Tics);

Assignment operators allow a HighPerTimer object to
be set from the Unix-format of time values - timeval or
timespec structs [21]. Both of these structures represent
time, elapsed since 00:00:00 UTC on 01.01.1970. They
consist of two elements: the number of seconds and the rest
of the elapsed time represented either in microseconds (in
case of timeval) or in nanoseconds (in case of timespec):

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* microseconds */

}

struct timespec {

long tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

Assignment to these structures is also possible with
HighPerTimer objects through copying or moving:

const HighPerTimer & operator= (const struct

timeval & TV);

const HighPerTimer & operator= (const struct

timespec & TS);

const HighPerTimer & operator= (const HighPerTimer

& Timer);

HighPerTimer & operator= (HighPerTimer && Timer);

This way, the HighPerTimer library provides a fast and

efficient way to handle time values by operating main
counter value and seconds and nanoseconds values only on
demand. It also relieves users from the manual handling of
specific two-value structures such as timeval or timespec.

However, for the whole routine of handling time values,
some central parameterization of the library must be
performed at the initialization time of the library. Primarily,
this is the initialization of the HighPerTimer source, which
is accomplished on the basis of the appropriate method calls
from the TimeHardware file. Especially,

195Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

InitHPTimeSource() calls InitTSCTimer() and
InitHPETTimer() methods, which attempt to initialize
respective time hardware and return true on success or false
on failure (see Fig. 1).

Before using any timer object, the following global
parameters must be measured and set: the frequency of the
main counter as a double precision floating point value and
as a number of ticks of the main counter within one
microsecond, the value of the shift of the main timer counter
against Unix Epoch, the maximum and minimum values of
HighPerTimer for the given hardware-specific main counter
frequency, and the specified HZ frequency of the kernel.
The value of HZ is defined as the system timer interrupt rate
and varies across kernel versions and hardware platforms. In
the context of the library, the value of HZ is used for the
implementation of an accurate sleep mechanism, see Section
VI. The strict sequence of the initialization process is
determined within an additional HPTimerInitAndClean
service class (see Fig. 1) by invoking corresponding
HighPerTimer initialization methods through their “friend”
relationship. A strict order of initialization of the given
global variables must be assured, which is somewhat tricky
since all the variables must be declared static and must be
initialized before entering the main routine of the
application.

 Despite the advantage of automatic detection of the
appropriate time source, situations sometimes arise when an
application programmer prefers to use a different time
source than the one automatically chosen at library
initialization time. To account for this, a special ability to
change the default timer is provided. This change causes a
recalculation process for most of the timer attributes:

// create variable for a new value of time source

TimeSource MySource;

MySource = TimeSource::HPET;

HighPerTimer::SetTimerSource (MySource);

However, since this change leads to invalidation of all the
already existing timer objects within the executed program,
this feature should be used with caution and only at the
system initialization time, and definitely before instantiation
of the first HighPerTimer object.

V. TIME FETCHING PERFORMANCE RESULTS

Table I shows the performance results when getting the
time values using the HighPerTimer library as measured on
different processor families. The mean and standard
deviation values of the costs of setting a HighPerTimer
object are shown. For this investigation, time was fetched in
a loop of 100 million consecutive runs and set to a
HighPerTimer object. Since we are interested here in
measuring the time interval between two consecutive time
fetches only, without any interruption in between, we filter
out all outlying peaks. These peaks are most probably
caused by process interruption by the scheduler or by an
interrupt service routine. Thus, filtering out such outliers
allows us to get rid of the bias caused by physical
phenomena, which are outside the scope of this
investigation.

TABLE I. COSTS OF SETTING TIMER ON DIFFERENT PROCESSORS

Processor (CPU)
Time

source

Mean,

nsec

St. deviation,

nsec

Intel ® Core ™ i7-2600,

1600 MHz
TSC 16.941 0.1231

VIA Nano X2 U4025, 1067

MHz
TSC 38.203 0.3134

Athlon ™ X2 Dual Core BE-

2350, 1000 MHz
HPET 1063.3 207.92

The following two examples demonstrate the behavior

of HighPerTimer sources in more detail and allow a
comparison of their reliability and costs depending on the
particular processor conditions. Although Table I shows the
results for all three processors, later investigations are
shown only for less powerful systems. It makes sense to
examine in more depth those systems, where for example,
TSC is unstable or does not possess Invariant TSC flag (see
Section III).

In the first case, processor VIA Nano X2 has TSC as a
current time source. Costs of time fetching here are about
38 nsec. Since TSC source has the highest priority and has
been initialized successfully, the HPET device check is not
necessary and so omitted here. Moreover, on this processor,
the Linux kernel is also using TSC as its time source and so,
within the clock_gettime() call, the kernel is also fetching
the TSC register of the CPU. Fig. 2 shows the relation
between the TSC, OS and HPET timers on this processor.
Similarity between TSC and OS costs are seen very clearly.
As seen in Table 2, the difference between the mean value
of time fetching between OS Timer and TSC Timer is 64
nsec. Each system call with a context switch would last at
least ten times longer, thus we can conclude that, on this
system, a virtual system call is issued by clock_gettime()
instead of a real system call with a context switch. HPET
source for the library can be set by the static method
HighPerTimer::SetTimerSrouce. However, we would expect
here much slower time operations, as seen in Table 2.

TABLE II. MEAN AND STANDARD DEVIATION VALUES OF HPET, TSC AND

OS TIMER COSTS ON THE VIA NANO X2 PROCESSOR

Timer source Mean, nsec Standard deviation, nsec

TSC Timer 38.23 0.3134

HPET Timer 598.72 76.015

OS Timer 102.20 0.5253

Figure 2. Measurements of TSC, HPET and OS Timer costs on the VIA

Nano X2 processor

196Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

The next example illustrates another case of a

dependence on the OS Timer from the current time source.

For the processor AMD Athlon X2 Dual Core, the TSC

initialization routine fails because TSC is unstable here.

However, since the HPET device is accessible, there are two

more options for the time source for HighPerTimer – HPET

or OS Timers - and it is necessary to check the mean costs

of getting the ticks of both timers.

Although the mean value of time fetching for TSC can

be significantly lower than for HPET, the HighPerTimer

library considers the TSC to be a non-stable, unreliable time

source since the Invariant TSC flag (see Section III above)

is not available and the TSC constancy is not identified by

additional library checks. So, it must be assumed that TSC

frequency changes from time to time due to power saving or

other techniques of the CPU manufacturers. In the next step,

HPET and OS Timer characteristics must be considered.

The difference between the mean values of HPET and OS

Timer is about 54.1 nsec, which is not enough for a system

call with a context switch. Thus we conclude that

clock_gettime() also uses the HPET timer and passes it to

the user via a virtual system call. However, to provide an

appropriate level of reliability, we also evaluate numbers

through their deviation values. For this evaluation, a

threshold for the difference of mean values was chosen.

When the difference of the mean values of HPET and OS

Timer is no more than 25%, we also take into account

standard deviation values of time fetching and so check the

temporal stability of the considered time source.

Consequently, when the mean time fetching value of the two

time sources is similar, the HighPerTimer library would

give precedence to the time source with a less standard

deviation of the time fetching costs.

TABLE III. MEAN AND STANDARD DEVIATION VALUES OF HPET, TSC AND

OS TIMER COSTS ON THE AMD ATHLON PROCESSOR

Timer source Mean, µsec Standard deviation, µsec

 TSC Timer 0.0251 0.0015

 HPET Timer 1.0633 0.2079

 OS Timer 1.1174 0.3743

Figure 3. Measurements of TSC, HPET and OS Timer costs on the AMD

Athlon processor

VI. PRECISE PROCESS SLEEPING ASPECTS

For process sleeping or suspension, Linux provides the
sleep function (implemented in the standard C library).
Dependent on the sleep duration, the function either
suspends from the CPU or waits in the busy-waiting mode
(sometimes also called spinning wait). However,
measurements performed in this work revealed that the
sleep function of the standard C library misses the target
wake-up time by more than 50 microseconds on average.
Such an imprecision however is unacceptable for high-
accuracy program sleeps. By comparison, pure busy wait
implementations within an application miss the target return
time by about 100 nanoseconds, but keep the CPU busy
throughout the wait time.

Unlike the C library’s sleep call, the sleep of the
HighPerTimer library combines these two ways of sleeping.
It has very short miss times on waking up with a minimum
CPU utilization at the same time. This improvement
provides a big competitive advantage over the predecessor
solutions.

HighPerTimer provides a wide range of functions for
making a process sleep. For example, the user can define the
specific sleep time, given purely in seconds, in
microseconds or nanoseconds. A process suspension with a
nanosecond resolution can be done as follows:

HighPerTimer timer1;

uint32_t SleepTimeNs(14500);

// sleep in nanoseconds

timer1.NSecSleep(SleepTimeNs);

Alternatively, the time value of a HighPerTimer object can
be set to a specific time value at which the process shall
wake up. On the call of SleepToThis(), the process will then
be suspended till the system time has reached the value of
that object :

//declare timer object equaled to 10 sec, 500 nsec

HighPerTimer timer2 (10, 500);

timer2.SleepToThis();

Table IV shows the precision of sleeps and busy-waits
using different methods. Miss values are here the respective
differences between the targeted wakeup time and real times
of wakeups measured in our tests. However, the miss values
of sleep times heavily depend on the fact, whether target
sleep interval was shorter or longer, than time between two
timer interrupts. So, Table IV consists of two parts – one
where sleep time is longer then 1/HZ, and one where it is
less than 1/HZ. Thus, the left column shows results for waits
lasting longer than a period of two kernel timer interrupts.
The right column shows the results for the scenario, in
which the sleep call lasts less than the interval between two
kernel timer interrupts. These measurements have been
performed on the Intel Core–i7 processor. Other than in
measurements from Section V, in this case it makes sense to
show results on a more stable and powerful system.
Moreover, it was expected that the accuracy of sleeps would
be higher on the newer Linux kernel versions where time
handling has been changed significantly. However, as the

197Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

measurements below show, these kernel changes are still not
sufficient.

In this test scenario, we have issued the respective sleep
method within a loop of 100000 sleeps with different sleep
times between 0.25 sec and 1 µsec, and then the mean value
of the sleep duration miss has been calculated.

TABLE IV. THE COMPARISON OF MISS VALUES OF DIFFERENT METHODS OF

SLEEPING, PERFORMED WITH TSC ON THE INTEL CORE –I7 PROCESSOR

Sleep time >= 1/HZ Sleep time < 1/HZ

Mean miss, µsec Mean miss, µsec

System sleep 61.985 50.879

Busy-waiting loop 0.160 0.070

HighPerTimer sleep 0.258 0.095

The above experiment took about 830 minutes, so the

upper limit of the range for sleep time value was reduced to
0.25 sec. The chart in Fig. 4 demonstrates more detailed
results of this experiment and shows the dependency of miss
against the target sleep time in dependence from sleep
duration. To track this dependency more deeply, here the
range of sleep time value was increased and is taken
between 10 sec and 1 µsec.

Figure 4. Dependency of miss on the target time from sleep time,

performed with TSC on the Intel Core –i7 processor, HZ = 1000

In the next step, we measured the CPU consumption of

the respective sleep routine. In the busy-waiting loop, the

total CPU consumption during the test achieves, as

expected, almost 100%. For the sleep function of the

standard C library, it tends to zero. In the case of sleeping

using the HighPerTimer library, the overall CPU

consumption during the test was 1.89%, which can be

considered as a good tradeoff between precision of waking

up time and CPU consumption during the sleep.

VII. CONCLUSION AND FUTURE WORK

In accordance with the requirements of advanced high-
speed data networks, we showed an approach for the unified
high performance timer library that successfully solves two
significant problems. Firstly, HighPerTimer allows
identification of the most efficient and reliable way for time

acquisition on a system and for avoiding system calls
invocation on time acquisition. Secondly, it solves the
problem of precise sleeping aspects and provides new
advanced sleeping and resuming methods.

The HighPerTimer library has the potential to become
widely used in estimation network packet dynamics,
particularly when conducting high-accuracy and high-
precision measurements of network performance. At this
stage, the integration of the suggested solution into the
appropriate tool for distributed network performance
measurement [22] is in progress. Moreover, to the next
steps, the better support of the ARM processor will be
addressed. Since the ARM processor possesses neither
HPET nor TSC, the only way to support ARM at this stage
is to select OS Timer. Presumably, an invocation of the
initial ARM system timer can afford to save several
additional microseconds and improve the timer accuracy.

REFERENCES

[1] R. Takano, T. Kudoh, Y. Kodama, and F. Okazaki, “High-

resolution Timer-based Packet Pacing Mechanism on the

Linux Operating System,” IEICE Transactions on

Communication, Tokyo, vol. E94-B, no. 8, pp. 2199-2207,

Nov., 2011.

[2] J. Micheel, S. Donnelly, and I. Graham, “Precision time

stamping of network packets,” Proc. of the 1st ACM

SIGCOMM Workshop on Internet Measurement, San

Francisco, CA, USA, pp. 273-277, Nov., 2001.

[3] H. Hu, “Untersuchung und prototypische Implementierung

von Methoden zur hochperformanten Zeitmessung unter

Linux,” (German), Bachelor Thesis, Anhalt University of

Applied Sciences, Koethen, Germany, Nov., 2011.

[4] Performance monitoring with the RDTSC instruction. URL:

http://www.ccsl.carleton.ca/~jamuir/rdtscpm1.pdf, retrieved:

Jan., 2013.

[5] E. Corell, P. Saxholm, and D. Veitch, “A user friendly TSC

clock,” Proc. PAM, Adelaide, Australia, pp. 141-150, Mar.,

2006.

[6] S. Siddha, V. Pallipadi, and D. Ven, “Getting maximum

mileage out of tickles,” in Proc. of the 2007 Linux

Symposium, pp. 201-208, 2007.

[7] Intel IA-PC HPET (High Precision Event Timers)

Specification. URL: http://www.intel.com/content/dam/www/

public/us/en/documents/technical-specifications/software-

developers-hpet-spec-1-0a.pdf, retrieved: Jan., 2013.

[8] D. Kang, W. Lee, and C. Park, “Kernel Thread Scheduling in

Real-Time Linux for Wearable Computers,” ETRI Journal,

Daejeon, Korea, vol. 29, no. 3, June 2007, pp. 270-280, doi:

10.4218/etrij.07.0506.0019.

[9] P. Orosz and T.Skopko, “Performance Evaluation of a High

Precision Software-based Timestamping Solution,”

International Journal on Advances in Software, ISSN 1942-

2628, 2011, vol. 4, no. 1, pp.181-188.

[10] T. Gleixner and D. Niehaus, “Hrtimers and Beyond:

Transforming the Linux Time Subsystems,” The Linux

Symposium, Ottawa, Canada, 2006, vol. 1, pp. 333-346.

198Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

http://www.ccsl.carleton.ca/~jamuir/rdtscpm1.pdf
http://www.intel/

[11] D. Kachan, E.Siemens, and H.Hu, “Tools for the high-

accuracy time measurement in computer systems,” (Russian),

6th Industrial Scientific Conference “Information Society

Technologies”, Moscow, Russia, 2012, pp.22-25.

[12] Intel Trace Collector Reference Guide, p. 5.2.5. URL:

http://software.intel.com/sites/products/documentation/hpc/ics

/itac/81/ITC_Reference_Guide/ITC_Reference_Guide.pdf,

retrieved: Jan., 2013.

[13] D. Grove and P. Coddington, “Precise MPI Performance

Measurement Using MPIBench,” Proc. of HPC Asia, pp. 1-

14, Gold Coast, Australia, 2001.

[14] The Dag project. URL: http://www.endace.com, retrieved:

Jan., 2013.

[15] A. Pásztor and D. Veitch, “PC based precision timing without

GPS,” The 2002 ACM SIGMETRICS international

conference on Measurement and modeling of systems,

Marina Del Rey California, USA, vol. 30, no. 1, pp. 1-10,

June, 2002, doi: 10.1145/511334.511336.

[16] Intel 64 and IA-32 Architectures, Software Developer‘s

Manual, vol. 3B 17-36. URL: http://download.intel.com/

products/processor/manual/253669.pdf, retrieved: Jan., 2013.

[17] J. Dike, “A user-mode port of the Linux kernel,” USENIX

Association Berkeley, pp. 63-72, California, USA, 2000.

[18] K. Jain and R. Sekar, “User-Level Infrastructure for System

Call Interposition: A Platform for Intrusion Detection and

Confinement,” Proc. of the ISOC Symposium on Network

and Distributed System Security, pp.19-34, Feb., 2000.

[19] J. Corbet, “On vsyscalls and the vDSO. Kernel development

news,” Linux news site LWN. URL:

http://lwn.net/Articles/446125/, retrieved: Jan., 2013.

[20] Online C++11 standard library reference, URL:

cppreference.com, retrieved: Jan., 2013.

[21] GNU Operating System Manual, “Elapsed Time”. URL:

http://www.gnu.org/software/libc/manual/html_node/Elapsed-

Time.html, retrieved: Jan., 2013.

[22] E.Siemens, S.Piger, C. Grimm, and M. Fromme, “LTest – A

Tool for Distributed Network Performance Measurement,”

Consumer Communications and Networking Conference, Las

Vegas, NV, USA, 2004, pp. 234-244, doi:

10.1109/CCNC.2004.1286865.

199Copyright (c) IARIA, 2013. ISBN: 978-1-61208-256-1

ICNS 2013 : The Ninth International Conference on Networking and Services

http://software.intel.com/sites/products/documentation/hpc/ics/itac/81/ITC_Reference_Guide/ITC_Reference_Guide.pdf
http://software.intel.com/sites/products/documentation/hpc/ics/itac/81/ITC_Reference_Guide/ITC_Reference_Guide.pdf
http://dx.doi.org/10.1145%2f511334.511336
http://download.intel.com/
http://www.gnu.org/software/libc/manual/html_node/Elapsed-Time.html
http://www.gnu.org/software/libc/manual/html_node/Elapsed-Time.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9037
http://dx.doi.org/10.1109/CCNC.2004.1286865

