

From UML to SRN: A Performability Modeling Framework Considering Service
Components Deployment

 Razib Hayat Khan Fumio Machida Poul E. Heegaard Kishor S. Trivedi
Department of Telematics Service Platform Research Department of Telematics Department of ECE
 NTNU, Norway NEC, Japan NTNU, Norway Duke University, NC, USA
 rkhan@item.ntnu.no h-machida@ab.jp.nec.com poul.heegaard@item.ntnu.no kst@ee.duke.edu

Abstract-Conducting the performance modeling of distributed
system separately from the dependability modeling fails to asses
the anticipated system performance in the presence of system
components failure and recovery. System dynamics is affected
by any state changes of the system components due to failure
and recovery. This introduces the concept of performability
that considers the behavioral change of the system components
due to failures and also reveals how this behavioral change
affects the system performance. But, to design a composite
model for distributed system, perfect modeling of the overall
system behavior is crucial and sometimes very cumbersome.
Additionally evaluation of the required measures by solving the
composite model are also intricate and error prone. Bearing
this concept in mind, we delineate a performability modeling
framework for a distributed system that proposes an automated
transformation process from high level UML notation to SRN
model and solves the model to generate various numerical
results. To capture system dynamics through our proposed
framework, we outline a specification style that focuses on UML
collaboration and activity as reusable specification building
blocks, while deployment diagram identifies the physical
components of the system and the assignment of software
artifacts to the identified system components. Optimal
deployment mapping of software artifacts on the available
physical resources of the system is investigated by deriving the
cost function. State machine diagram is utilized to capture state
changes of system components such as failure and recovery.
Later on, model composition is achieved by assigning guard
function.

Keywords: UML, SRN, Performability, Deployment

I. INTRODUCTION

The analysis of the system behavior from the pure
performance viewpoint tends to be optimistic since it ignores
the failure and repair behavior of the system components. On
the other hand, pure dependability analysis tends to be too
conservative since performance considerations are not taken
into account [3]. When the service is deployed it might be
the case that something goes wrong in the system because of
performance or dependability bottlenecks of the resources
and that might adversely affects the service request
completion. This bottleneck is an impediment to assure the
effectiveness and efficiency requirements to achieve the
purpose of system to deliver services proficiently and in
timely manner [2]. Therefore, in real systems, availability,
reliability and performance are important QoS indices which
should be investigated in a combined manner that introduces

the concept performability. Performability considers the
effect of state changes because of failure and recovery of the
system components and their impact on the overall
performance of the system [1]. Bearing the above concept
we therefore introduce a performability modeling framework
for distributed system to allow modeling of the performance
and dependability related behaviors in a combined way not
only to model functional attributes of the service provided by
the system but also to investigate dependability attributes to
reflect how the changes in the dependability attributes affect
the system performance. For ease of understanding the
complexity behind the modeling of performability attributes
the proposed modeling framework works in two different
layers such as performance modeling layer and dependability
modeling layer. The proposed framework achieves its
objective by maintaining harmonization between
performance and dependability modeling layer with the
assist of model synchronization.

However in a distributed system, system behavior is
normally distributed among several objects. The overall
behavior of the system is composed of the partial behavior of
the distributed objects of the system. So it is obvious to
model the behavior of the distributed objects perfectly for
appropriate demonstration of the system dynamics. Hence
we adopt UML (Unified Modeling Language) collaboration,
state machine and activity oriented approach as UML is the
most widely used modeling language which models both the
system requirements and qualitative behaviors through
different notations [4]. Collaboration and activity diagram
are utilized in the performance modeling layer to
demonstrate the overall system behavior by defining both the
structure of the partial object behaviors as well as the
interaction between them. State machine is employed in the
dependability modeling layer to capture system component
behavior with respect to failure and repair events. Later the
UML specification styles are applied to generate the SRN
(Stochastic Reward Net) model automatically by our
proposed framework. SRN models generated in both
performance and dependability modeling layer are
synchronized by the model synchronization role by
designing guard functions (a special property of the SRN
model [5]) to properly model the system performance
behavior with respect to any state changes in the system due
to component failure [1]. The proposed modeling framework
considers system architecture to realize the deployment of
the service components. Abstract view of the system
architecture is captured by the UML deployment diagram,

118Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

which defines the execution architecture of the system by
identifying the system components and the assignment of
software artifacts to those identified system components [4].
Considering the system architecture to design the proposed
framework resolves the bottleneck of system performance by
finding a better allocation of service components to the
physical nodes. This needs for an efficient approach to
deploy the service components on the available hosts of
distributed environment to achieve preferably high
performance and low cost levels. Moreover, UML models
are annotated according to the UML profile for MARTE [7]
and UML profile for Modeling Quality of Service and Fault
Tolerance Characteristics & Mechanisms to include
quantitative system parameters [12].

Markov model, SPN (Stochastic Petri Nets) and SRN are
probably the best studied performability modeling
techniques [3]. Among all of them, we will focus on the SRN
model generated by our proposed framework due to its some
prominent and interesting properties such as priorities
assignment in transitions, presence of guard functions for
enabling transitions that can use entire state of the net rather
than a particular state, marking dependent arc multiplicity
that can change the structure of the net, marking-dependent
firing rates, and reward rates defined at the net level [5].

Several approaches have been followed to conduct the
performability analysis model from system design
specification [8] [9] [10] [11]. However, most existing
approaches do not highlight more on the issues that how to
optimally conduct the system modeling to capture system
dynamics and to conduct performability evaluation. The
framework presented here is the first known approach that
introduces a new specification style utilizing UML
behavioral diagrams as reusable specification building block
to characterize system dynamics. Building blocks describe
the local behavior of several components and the interaction
between them. This provides the advantage of reusability of
building blocks, since solution that requires the cooperation
of several components may be reused within one self-
contained, encapsulated building block. This reusability
provides the opportunity to design new system’s behavior
rapidly utilizing the existing building blocks according to the
specification rather than starting the design process from the
scratch. In addition the resulting deployment mapping
provided by our framework has greater impact with respect
to QoS provided by the system. Our aim here is to deal with

vector of QoS properties rather than restricting in one
dimension. Our presented deployment logic is surely able to
handle any properties of the service, as long as we can
provide a cost function for the specific property. The cost
function defined here is flexible enough to keep pace with
the changing size of search space of available hosts in the
execution environment to ensure an efficient deployment of
service components. Furthermore we aim to be able to aid
the deployment of several different services at the same time
using the same proposed framework. Moreover the
introduction of model synchronization activity relinquishes
the complexity and unwieldy affects in modeling and
evaluation task of large and multifaceted systems. Model
synchronization hides the intricacy behind demonstration of
composite model behavior by designing guard functions [5].
Guard functions take charge of the proper functioning of the
composite model by considering any changes either in the
performance model or in the dependability model.

The paper is organized as follows: Section II introduces
our proposed modeling framework, Section III depicts UML
based model description, Section IV explains service
component deployment issue, Section V clarifies model
annotation, Section VI delineates model translation rules,
Section VII introduces the model synchronization
mechanism, Section VIII describes the fault tree model,
Section IX demonstrates the application example to show the
applicability of our modeling framework and Section X
delineates the conclusion with future directions.

II. OVERVIEW OF PROPOSED FRAMEWORK

Our proposed performability framework is composed of
2 layers: performance modeling layer and dependability
modeling layer. The performance modeling layer mainly
focuses on capturing the system’s dynamics to deliver
certain services deployed on a distributed system. The
performance modeling layer is divided into 5 steps shown in
Fig.1 where the first 2 steps are the parts of Arctis tool suite
which is integrated as plug-ins into the eclipse IDE [14].
Arctis focuses on the abstract, reusable service specifications
that are composed form UML 2.2 collaborations and
activities [14]. It uses collaborative building blocks to create
comprehensive services through composition. To support the
construction of building block consisting of collaborations
and activities, Arctis offers special actions and wizards.

3

Figure 1. Proposed performability modeling framework

Dependability modeling layer Performance modeling layer

Arctis1 2

STM for Software
& Hardware

process failure &
recovery

Annotated
UML model

Model
Synchronization

Evaluate
model

Merged Model
after

synchronization

1 3
2 3 4

5
SRN model Annotated

UML model SRN model

UML Deployment diagram &
stating relation between system

component & collaboration

Library of
Collaborative building

block

Composition of
building block using

UML collaboration &
activity

119Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

In the first step of performance modeling layer, a
developer consults a library to check if an already existing
basic collaboration role block or collaboration between
several blocks solve a certain task. Missing blocks can also
be created from existing building blocks and stored in the
library for later reuse. The building blocks are expressed as
UML models. The structural aspect, for example the service
component and their multiplicity, is expressed by means of
UML 2.2 collaborations. For the detailed internal behavior,
UML 2.2 activities have been used. In the second step, the
building blocks are combined into more comprehensive
service by composition to specify the detailed behavior of
how the different events of collaborations are composed so
that the desired overall system behavior can be obtained. For
this composition, UML collaborations and activities are used
complementary to each other [14]. In the third step, the
deployment diagram of our proposed system is delineated
and the relationship between system component and
collaboration is outlined to describe how the service is
delivered by the joint behavior of the system components. In
the fourth step, performance information is incorporated into
the UML activity diagram and deployment diagram
according to UML profile for MARTE [7]. The next step is
devoted to automate generation of SRN model following the
transformation rules. The SRN model generated in this layer
is called performance SRN.

The dependability modeling layer is responsible for
capturing any state changes in the system because of failure
and recovery behaviors of system components. The
dependability modeling layer is composed of three steps
shown in Figure. 1. In the first step, UML state machine
diagram (STM) is used to describe the state transitions of
software and hardware components of the system to capture
the failure and recovery behaviors. In the next step,
dependability parameter is incorporated into the STM
diagram according to UML profile for Modeling Quality of
Service and Fault Tolerance Characteristics & Mechanisms
Specification [12]. The last step reflects the automated
generation of the SRN model from the STM diagram
following the defined transformation rules. The SRN model
generated in this layer is called dependability SRN.

The model synchronization is used as glue between
performance SRN and dependability SRN. The
synchronization task guides performance SRN to
synchronize with the dependability SRN by identifying the
transitions in the dependability SRN. The synchronization
between performance and dependability SRN is achieved by
defining the guard functions. Once the performance SRN
model synchronized with dependability SRN model a
merged SRN model will be obtained and various
performability measures can be evaluated from the merged
model using the software package such as SHARPE [15].

III. UML BASED SYSTEM DESCRIPTION

Construction of collaborative building blocks: The
proposed framework utilizes collaboration as main entity.
Collaboration is an illustration of the relationship and
interaction among software objects in the UML. Objects are
shown as rectangles with naming label inside. The

relationships between the objects are shown as line
connecting the rectangles [4]. The specifications for
collaborations here are given as coherent, self-contained
reusable building blocks. The structure of the building block
is described by UML 2.2 collaboration. The building block
declares the participants (as collaboration roles) and
connection between them. The internal behavior of building
block is described by UML activity. It is declared as the
classifier behavior of the collaboration and has one activity
partition for each collaboration role in the structural
description. For each collaboration, the activity declares a
corresponding call behavior action refereeing to the activities
of the employed building blocks. For example, the general
structure of the building block t is given in Fig. 2 where it
only declares the participants A and B as collaboration roles
and the connection between them is defined as collaboration
tx (x=1…nAB (number of collaborations between
collaboration roles A & B)). The internal behavior of the
same building block is shown in Fig. 3(b). The activity
transferij (where ij = AB) describes the behavior of the
corresponding collaboration. It has one activity partition for
each collaboration role: A and B. Activities base their
semantics on token flow [1]. The activity starts by
forwarding a token when there is a response (indicated by
the streaming pin res) to transfer from the participant A to B.
The token is then transferred by the participant A to
participant B represented by the call operation action
forward after completion of the processing by the
collaboration role A. After getting the response of the
participant A the participant B starts the processing of the
request (indicated by the streaming pin req).

Composition of building block using UML collaboration
& activity: To generate the performance model, the
structural information about how the collaborations are
composed is not sufficient. It is necessary to specify the
detailed behavior of how the different events of
collaborations are composed so that the desired overall
system behavior can be obtained. For the composition, UML
collaborations and activities are used complementary to each
other. UML collaborations focus on the role binding and
structural aspect, while UML activities complement this by
covering also the behavioral aspect for composition.
Therefore, the activity contains a separate call behavior
action for all collaboration of the system. Collaboration is
represented by connecting their input and output pins.
Arbitrary logic between pins may be used to synchronize the
building block events and transfer data between them.

Figure 2. Structure of the Building block

B A tx: transferAB

A B

tx: transferAB

120Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

By connecting the individual input and output pins of the call
behavior actions, the events occurring in different
collaborations can be coupled with each other. Semantics of
the different kinds of pins are given in more detailed in [14].
For example the detailed behavior and composition of the
collaboration is given in following Fig. 3(a). The initial node
() indicates the starting of the activity. The activity is started
from the participant A. After being activated, each
participant starts its processing of request which is
mentioned by call operation action Pri (Processingi, where i
= A, B & C). Completion of the processing by the
participants are mentioned by the call operation action Prdi
(Processing_donei, where i = A, B & C). After completion of
the processing, the response is delivered to the corresponding
participant. When the processing of the task by the
participant A completes, the response (indicated by
streaming pin res) is transferred to the participant B
mentioned by collaboration t: transferij (where ij = AB) and
participant B starts the processing of the request (indicated
by streaming pin req). After completion of processing
participant B transfers the response to the participant C
mentioned by collaboration t: transferij (where ij = BC).
Participant C starts the processing after getting the response
form B and activity is terminated after completion of the
processing which is mentioned by the terminating node ().

Modeling failure & repair behavior of software &
hardware component using STM: State transitions of a
system element are described using STM diagram. In an
STM, a state is depicted as a rounded rectangle and a
transition from one state to another is represented by an
arrow. Here STM is used to describe the failure and recovery
behavior of software and hardware component. The STM of
software process is shown in Fig. 4(a). The initial node ()
indicates the starting of the operation of software process.
Then the process enters Running state. Running is the only
available state in the STM. If the software process fails
during the operation, the process enters Failed state. When
the failure is detected by the external monitoring service the
software process enters Recovery state and the repair
operation will be started. When the failure of the process is
recovered the software process returns to Running state. The
STM of hardware node is shown in Fig. 4 (b). States of the
hardware node start from the Stop state. The hardware node
starts the operation when the on command is invoked and the
node enters Running state. Running is the only available
state here. If the node fails during the operation, the node
enters Failed state. When the failure is detected the repair

operation of the hardware node is started. When the failure
of the node is repaired the node returns to Running state. The
hardware node operation is terminated by the off operation
and enters Stop state.

IV. DEPLOYMENT DIAGRAM & STATING RELATION
BETWEEN SYSTEM & SERVICE COMPONENT

We model the system as collection of N interconnected
nodes. Our objective is to find a deployment mapping for
this execution environment for a set of service components C
available for deployment that comprises the service.
Deployment mapping can be defined as M: CN between
a numbers of service components instances C, onto nodes N.
We consider four types of requirements in the deployment
problem. (1) Components have execution costs, (2)
collaborations have communication costs and (3) costs for
running of background process known as overhead cost and
(4) some of the components can be restricted in the
deployment mapping to specific nodes which are called
bound components. We observe the processing cost that
nodes impose while host the components and also the target
balancing of cost among the nodes available in the network.
Communication costs are considered if collaboration
between two components happens remotely, i.e., it happens
between two nodes [6]. In other words, if two components
are placed onto the same node the communication cost
between them will not be considered. The cost for executing
the background process for conducting the communication
between the components is always considerable no matter
whether the components deploy on the same or different
nodes. Using the above specified input, the deployment logic
provides an optimal deployment architecture taking into
account the QoS requirements for the components providing
the specified service. We then define the objective of the
deployment logic as obtaining an efficient (low-cost, if
possible optimum) mapping of component onto the nodes

req res

t: transferAB

forward

Figure 3. (a) Detail behavior of the event of the collaboration using activity (b) internal behavior of the collaboration

A B

Recovery

Running Stop

Recovery

Running

Failed

Figure 4. (a) STM of Software Process (b) STM of Hardware component

(a) (b)

(a) (b)

Fail

Detect

Repair
Failed

Fail

Detect Repair

On

Off

121Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

that satisfies the requirements in reasonable time. The
deployment logic providing optimal deployment architecture
is guided by the cost function F (M). The cost function is
designed here to reflect the goal of balancing the execution
cost and minimizing the communications cost [6]. This is in
turn utilized to achieve reduced task turnaround time by
maximizing the utilization of resources while minimizing
any communication between processing node. That will offer
a high system throughput, taking into account the expected
execution and inter-node communication requirements of the
service components on the given hardware architectures
which is already highlighted in [13]. The evaluation of cost
function F (M) is mainly influenced by our way of service
definition. Service is defined in our approach as a
collaboration of total E components labeled as ci (where i =
1…. E) to be deployed and total K collaboration between
them labeled as kj, (where j = 1 … K). The execution cost of
each service component can be labeled as fci; the
communication cost between the service components is
labeled as fkj and the cost for executing the background
process for conducting the communication between the
service components is labeled as fBj. Accordingly we only

observe the total cost (l

, n = 1…N) of a given deployment
mapping at every node. We will strive for an optimal
solution of equally distributed cost among the processing
nodes and the lowest cost possible, while taking into account
the execution cost fci, i = 1….E, communication cost fkj, j =
1….K and cost for executing the background process fBj, j =
1….k. fci, fkj and fBj are derived from the service specification,

thus the offered execution cost can be calculated as

E

i 1

 .

This way, the logic can be aware of the target cost T [6]:

To cater for the communication cost fkj, of the collaboration
kj in the service, the function q0 (M, c) is defined first [16]:

This means that q0 (M, c) returns the node n that host
component in the list mapping M. Let collaboration kj = (c1,
c2). The communication cost of kj is 0 if components c1 and
c2 are collocated, i.e. q0 (M, c1) = q0 (M, c2), and the cost is fkj

if components are otherwise (i.e. the collaboration is remote).
Using an indicator function I(x), which is 1 if x is true and 0
otherwise, this expressed as I (q0 (M, c1) ≠ q0 (M, c2)) = 1, if
the collaboration is remote and 0 otherwise. To determine
which collaboration kj is remote, the set of mapping M is
used. Given the indicator function, the overall
communication cost of service, Fk (M), is the sum [16]

Given a mapping M = {mn} (where mn is the set of
components at node n & nN) the total cost can be obtained

as l

 = fci. Furthermore the overall cost function

F (M) becomes [16]:

V. ANNOTATION

To annotate the UML diagram the stereotype saStep,
computingResource, scheduler, QoSDimension and the tag
value execTime, deadline, mean-time-to-repair, mean-time-
between-failures and schedPolicy are used according to the
UML profile for MARTE and UML Profile for Modeling Quality
of Service & Fault Tolerance Characteristics [7],[12]. saStep is a
kind of step that begins and ends when decisions about the
allocation of system resources are made. The duration of the
execution time is mentioned by the tag value execTime
which is the average time in our case. deadline defines the
maximum time bound on the completion of the particular
execution segment that must be met. A ComputingResource
represents either virtual or physical processing devices
capable of storing and executing program code. Hence its
fundamental service is to compute. A Scheduler is defined as
a kind of ResourceBroker that brings access to its brokered
ProcessingResource or resources following a certain
scheduling policy tagged by schedPolicy. The
ResourceBroker is a kind of resource that is responsible for
allocation and de-allocation of a set of resource instances (or
their services) to clients according to a specific access
control policy [7]. QoSDimension provides support for the
quantification of QoS characteristics and attributes mean-
time-to-repair and mean-time-between-failures [12]. We also
introduce a new stereotype <<transition>> and three tag
values mean-time-to-stop, mean-time-to-start and mean-
time-to-failure-detect. <<transition>> induces a state
transition of a scenario. mean-time-to-stop defines the mean
time required to stop working of a hardware instance, mean-
time-to-start states the time required to start working of a
hardware instance, mean- time-to-failure-detect defines the
mean time required to detect failures in the system.

VI. MODEL TRANSLATION

This section highlights the rules for the model translation
from various UML models to SRN model. Since all the
models will be translated into SRN we will give a brief
introduction about SRN model. SRN is based on the
Generalized Stochastic Petri net (GSPN) [3] and extends
them further by introducing prominent extensions such as
guard function, reward function and marking dependent
firing rate [5]. A guard function is assigned to a transition. It
specifies the condition to enable or disable the transition and
can use the entire state of the net rather than just the number
of tokens in places [5]. Reward function defines the reward
rate for each tangible marking of Petri Net based on which
various quantitative measures can be done in the Net level.
Marking dependent firing rate allows using the number of
token in a chosen place multiplying the basic rate of the
transition. SRN model has the following elements: Finite set

q0 (M, c) = {n N (c → n) M}

n

n

cimn

Fk (M) =

k

j 1

I (q0 (M, Kj,1) ≠ q0 (M, Kj, 2)). fkj

fBj

n

N

 F (M) =

N

n 1

| l

 – T | + Fk (M) +

K

j 1
 (4)

T =

E

i 1
fci

fci

 (1)

 (2)

 (3)

122Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

of the places (drawn as circles), Finite set of the transitions
defined as either timed transition (drawn as thick transparent
bar) or immediate transition (drawn as thick black bar), set of
arcs connecting places and transition, multiplicity associated
with the arcs, marking that denotes the number of token in
each place.

Before introducing the translation rules different types of
collaboration roles as reusable basic building block are
demonstrated with the corresponding SRN model in Table I
that can be utilized to form the collaborative building blocks.

The rules are the following:
Rule1: The SRN model of a collaboration (Fig. 5), where
collaboration connects only two collaboration roles, is
formed by combining the basic building blocks type 2 and
type 3 from Table I. Transition t in the SRN model is only
realized by the overhead cost if service components A & B
deploy on the same physical node as in this case
communication cost = 0, otherwise t is realized by both the
communication & overhead cost.

In the same way, SRN model of the collaboration can be
demonstrated where the starting of the execution of the SRN
model of collaboration role A depends on the receiving token
from external source.

Rule 2: For a composite structure, when a collaboration role
A connects with n collaboration roles by n collaborations like
a star graph (where n=2, 3, 4, …..) where each collaboration
connects only two collaboration roles, the SRN model is
formed by the utilizing the basic building block of Table I
which is shown in Fig. 6.In the first diagram in Fig. 6, if
component A contains its own token equivalent SRN model
of the collaboration role A will be formed using basic
building block type 1 from Table I. The same applies to the
component B and C in the second diagram in Fig. 6.

STM can be translated into a SRN model by converting

each state into place and each transition into a timed
transition with input/output arcs which is reflected in the
transformation Rules 3.
Rule 3: Rule 3 demonstrates the equivalent SRN model of
the STM of hardware and software components which are
shown in the Fig. 7.

VII. MODEL SYNCHRONIZATION

The model synchronization is achieved hierarchically.
Performance SRN is dependent on the Dependability SRN.
Transitions in dependability SRN may change the behavior
of the performance SRN. Moreover transitions in the SRN
model for the software process also depend on the transitions
in the SRN model of the hardware component. These
dependencies in the SRN models are handled by the model
synchronization by incorporating the guard functions [5].

TABLE I. SPECIFICATION OF REUSABLE UNITES AND
EQUIVALENT SRN MODEL

Figure 5. Graphical representation of rule 1

Figure 6. Graphical representation of rule 2

Figure 7. (a) SRN of Software process (b) SRN of hardware component

(a) (b)

Psrec

Psrun

Psfail

Tsrec

Tsdet

Tsfail

Phrun

Poff

Ton

Toff

Prec

Pfail

Tdet

Trec

Tfail

Figure 8: Model synchronization hierarchy

123Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

The model synchronization is focused in details here:
Synchronization between the Dependability SRN

models in the dependability modeling layer: SRN model
for the software process (Fig. 7(a)) is expanded by
incorporating one additional place Phf, three immediate
transitions thf, thfl, thfr and one timed transition Trecv to
synchronize the transitions in the SRN model for the
software process with the SRN model for the hardware
component. The expanded SRN model (Fig. 9(a)) is

associated with four additional arcs such as (Psfail × thfl)
(thfl × Phf), (Psrec × thfr) (thfr × Phf), (Psrun × thf) (thf ×
Phf) and (Phf × Trecv) (Trecv × Psrun). The immediate
transitions thf, thfl, thfr will be enabled only when the hardware
node (in Fig. 9 (b)) fails as failure of hardware node will stop
the operation of software process. The timed transition Trecv

will be enabled only when the hardware node will again start
working after being recovered from failure. Four guard
functions g1, g2, g3, g4 allow the four additional transitions thf,
thfl, thfr and Trecv of software process to work consistently
with the change of states of the hardware node. The guard
functions definitions are given in the Table III.

Synchronization between the dependability SRN &
performance SRN: To synchronize the collaboration role
activity, performance SRN model is expanded by
incorporating one additional place Pfl and one immediate
transition fA shown in Fig. 10. After being deployed when
collaboration role “A” starts execution a checking will be
performed to examine whether both software and hardware
components are running or not. If both the components work
the timed transition doA will fire which represents the
continuation of the execution of the collaboration role “A”.
But if software resp. hardware components fail the
immediate transition fA will be fired which represents the

quitting of the operation of collaboration role “A”. Guard
function grA allows the immediate transition fA to work
consistently with the change of states of the software and
hardware components.

Performance SRN model of parallel execution of
collaboration roles are expanded by incorporating one
additional place Pfl and immediate transitions fBC, WBC shown
in Fig. 10. In our discussion, during the synchronization of
the parallel processes it needs to ensure that failure of one
process eventually stop providing service to the users. This
could be achieved by immediate transition fBC. If software
resp. hardware components (Fig. 9) fail immediate transition
fA will be fired which symbolizes the quitting of the
operation of both parallel processes “B” and “C” rather than
stopping either process “B” or “C”, thus postponing the
execution of the service. Stopping only either the process
“B” or “C” will result inconsistent execution of the whole
SRN and produce erroneous result. If both the software and
hardware components work fine the timed transition WBC
will fire to continue the execution of parallel processes “B”
and “C”. Guard functions grBC, grwBC allow the immediate
transition fBC, WBC to work consistently with the change of
the states of the software and hardware components. The
guard function definitions are shown in the Table III.

VIII. HIERARCHICAL MODEL FOR MTTF
CALCULATION

It is very demanding and not efficient with respect to
execution time to consider behavior of all the hardware
components during the SRN model generation. SRN model
becomes very cumbersome and inefficient to execute. To
solve the problem, we evaluate the MTTF (Mean time to
failure) of system using the hierarchical model in which a
fault tree is used to represent the MTTF of the system by
considering MTTF of every hardware component in the
system. Later we consider this MTTF of the system in our
dependability SRN model for hardware components (Fig.
7(b)) rather than considering failure behavior of all the
hardware components individually. The below Fig. 11
introduces one example scenario of capturing failure
behavior of the hardware components using fault tree where
system is composed of different hardware devices such as
one CPU, two memory interfaces, one storage device and
one cooler. The system will work when CPU, one of the
memory interfaces, storage device and cooler will run.
Failure of both memory interfaces or failure of either CPU or
storage device or cooler will result the system unavailability.

Figure 9. (a) Synchronized transition in the SRN model of the software process
with the (b) SRN model of the hardware component

Figure 10. Synchronize the performance SRN model with dependability SRN Figure 11. Fault tree model of System Failure

(a) (b)

Prec

Tdet

Pfail

Phrun

Trec

Tfail

Ton

Toff

Poff

Trecv
[g4]

thf
[g1]

Phf

Psrun

thfl [g2]

thfr

[g3]

Tsdet

Psrec

Psfail

Tsrec

Tsfail

124Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

IX. CASE STUDY

As a representative example, we consider the scenario
dealing with heuristically clustering of modules and
assignment of clusters to nodes [16]. This scenario is
sufficiently complex to show the applicability of our
proposed framework. The problem is defined in our
approach as collaboration of E = 10 service components or
collaboration role (labeled C1 . . . C10) to be deployed and K
= 14 collaborations between them depicted in Fig. 12. We
consider four types of requirements in this specification.
Besides the execution cost, communication costs and cost for
running background process, we have a restriction on
components C2, C7, C9 regarding their location. They must
be bound to nodes n2, n1, n3 respectively. In this scenario,
new service is generated by integrating and combining the
existing service components that will be delivered
conveniently by the system. For example, one new service is
composed by combining the service components C1, C7, C6,
C8, C9 shown in Fig. 12 as thick dashed line. The internal
behavior of the collaboration Ki is realized by the call
behavior actions through UML activity like structure already
demonstrated in Fig. 3(b). The composition of the
collaboration role Ci of the delivered service by the system is
demonstrated in Fig. 14. The initial node () indicates the
starting of the activity. After being activated, each
participant starts its processing of request which is
mentioned by call behavior action Pri (Processing of the ith
service component). Completions of the processing by the
participants are mentioned by the call behavior action Prdi

(Processing done of the ith service component). The activity
is started from the component C1 where the semantics of the
activity is realized by the token flow. After completion of the
processing of the component C1 the response is divided into
two flows which are shown by the fork node f1. The flows
are activated towards component C7 and C6. After getting the

response from the component C1, processing of the
components C7 and C6 will be started. The response and
request are mentioned by the streaming pin res and req. The
processing of the Component C8 will be started after getting
the responses from both component C7 and C6 which is
realized by the join node j8. After completion of the
processing of component C8 component C9 starts its
processing and later on activity is terminated which is
mentioned by the end node (). In this example, the target
environment consists of N = 3 identical, interconnected
nodes with no failure of network link, with a single provided
property, namely processing power, and with infinite
communication capacities depicted in Fig. 13. The optimal
deployment mapping can be observed in Table II. The lowest
possible deployment cost, according to equation (4) is: 17 +
100 + 70 = 187.

To annotate the UML diagrams in Fig. 13 & 15 we use
the stereotypes <<saStep>> <<computingResource>>,
<<scheduler>> and the tag values execTime, deadline and
schedPolicy which are already explained in section 5.
Collaboration Ki (Fig. 15) is associated with two instances of
deadline as collaborations in example scenario are associated
with two kinds of cost: communication cost & cost for
running background process (BP). To annotate the STM
UML diagram of software process (shown in Fig. 14) we use
the stereotype <<QoSDimension>>, <<transition>> and
attributes mean-time-between-failures, mean-time-to-failure
detect and mean-time-to-repair already mentioned in section
5. Annotation of the STM of hardware component can be
demonstrated in the same way as STM of software process.

By considering the deployment mapping and the
transformation rules the analogous SRN model of our
example service (in Fig. 15) is depicted in Fig. 16. In our
discussion, we consider M/M/1/n queuing system so that at
most n jobs can be in the system at a time [3]. For generating
the SRN model, firstly we will consider the starting node ().
According to rule 1, it is represented by timed transition

Recovery

Running

Failed

 mean-time-between-failure-detect = {4, ‘s’}
<<transition>>

Figure 12. Collaboration & Components in the example Scenario

Figure 13. The target network of hosts

<<QoSDimension>>

mean-time-between-failure=
{14, ‘hr’}

<<QoSDimension>>

mean-time-to-repair
= {200, ‘s’}

Figure 14. Annotated STM diagram of software component

<<computingResource>>

<<Scheduler>>
{schedPolicy = FIFO}

n3: Processor
Node

n2: Processor
Node

n1: Processor
Node

125Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

 (denoted as start) and the arc connected to place Pr1 (states
of component C1). When a token is deposited in place Pr1,
immediately a checking is done about the availability of both
software and hardware components by inspecting the
corresponding SRN models (Fig. 9). The availability of
software and hardware component allow the firing of timed
transition t1 mentioning the continuation of the further
execution. Otherwise immediate transition f1 will be fired
mentioning the ending of the further execution because of
software resp. hardware component failure. The enabling of
immediate transition f1 is realized by the guard function gr1.
After the completion of the state transition from Pr1 to Prd1
(states of component C1) the flow is divided into two
branches (denoted by the immediate transition It1) according
to rule 2. The token will be deposited to place Pr7 (states of
component C7) and Pr6 (states of component C6) after the
firing of transitions K7 and K11. The collaboration K7 is
realized both by the communication cost and cost for running
background process as C1 and C7 deploy on the two different
nodes n3 and n1. According to rule 1, collaboration K11 is
realized only by the cost for running background process as
C1 and C6 deploy on the same processor node n3. When a
token is deposited into place Pr7 and Pr6, immediately a
checking is done about the availability of both software and
hardware components by inspecting the corresponding
dependability SRN model (Fig. 9). The availability of
software and hardware components allow the firing of
immediate transition w76 which eventually enables the firing
of timed transition t7 and t6 mentioning the continuation of

the further execution. The enabling of immediate transition
w76 is realized by the guard function grw76. Otherwise
immediate transition f76 will be fired mentioning the ending
of the further execution because of failure of software resp.
hardware component. The enabling of immediate transition

f76 is realized by the guard function gr76. After the
completion of the state transition from Pr7 to Prd7 (states of
component C7) and from Pr6 to Prd6 (states of component
C6) component C8 starts processing. The merging of result is
realized by the immediate transition It2 after the firing of
transitions K9 and K10. Collaboration K9 is realized only by
the cost for running background process as C7 and C8 deploy
on the same processor node n1. K10 is translated by the timed
transition which is realized both by the communication cost
and cost for running background process as C6 and C8 deploy
on the two different nodes n3 and n1. When a token is
deposited in place Pr8, immediately a checking is done about
the availability of both software and hardware components
by inspecting the corresponding SRN model (Fig. 9). The
availability of software and hardware components allow the
firing of timed transition t8 mentioning the continuation of
the further execution. Otherwise immediate transition f8 will
be fired mentioning the ending of the further execution
because of software resp. hardware component failure. The
enabling of immediate transition f8 is realized by the guard
function gr8. After the completion of the state transition from
Pr8 to Prd8 (states of component C8) the token is passed to
place Pr9 by firing of timed transition K13. K13 is realized by
both communication cost and cost for running background
process as C8 and C9 deploy on the two different nodes n1
and n3. When a token is deposited in place Pr9, immediately
a checking is done about the availability of both software
and hardware components by inspecting the corresponding
SRN model (Fig. 9). The availability of software and
hardware component allow the firing of timed transition t9
mentioning the continuation of the further execution.
Otherwise immediate transition f9 will be fired mentioning
the ending of the further execution because of software resp.
hardware component failure and the ending of the execution
of the SRN model is realized by the timed transition Exit2.
The enabling of immediate transition f9 is realized by the
guard function gr9. After the completion of the state
transition from Pr9 to Prd9 (states of component C9) the
ending of the execution of the SRN model is realized by the
timed transition Exit1. The definition of guard functions are

shown in Table III (Phrun & Psrun are shown in Fig. 9).

We use SHARPE [15] to execute the obtained model and
calculate the system’s throughput. The throughput of
successful jobs can be computed by checking the throughput
of the transition Exit1 by SHARPE [15]. The throughput
result is summarized in Tab. IV and graph in Fig. 17 shows
throughput variation of the system against the change of
failure rate of both hardware and software components.

Function Definition

g1, g2, g3 if (# Phrun = = 0) 1 else 0

g4 if (# Phrun = = 1) 1 else 0

grA, grBC, gr1, gr76, gr8, gr9 if (# Psrun = = 0) 1 else 0

grwBC,grw76 if (# Psrun = = 1) 1 else 0

Node Components l

 | l

 – T |
Internal

collaborations

n1 c4, c7, c8 70 2 k8, k9
n2 c2, c3, c5 60 8 k3, k4

n3 c1, c6, c9, c10 75 7 k11, k12, k14
∑ cost 17 100

Figure 15. Service composition & Detail behavior of the event of
the Collaboration using activity

TABLE III. GUARD FUNTIONS DEFINITION

n n

TABLE II. OPTIMAL DEPLOYMENT MAPPING

126Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

X. CONCLUSION AND FUTURE WORK

We presented a novel approach for model based
performability evaluation of a distributed system which
spans from system’s dynamics demonstration and capturing
behavior of system components through UML diagram as
reusable building blocks to efficient deployment of service
components in a distributed manner by focusing the QoS
requirements. We put emphasis to establish some important
concerns relating specification and solution of performability
models emphasizing the analysis of the system’s dynamics.
We design the framework in a hierarchical and modular way
which has the advantage to introduce any modification or
adjustment at a specific layer in a particular submodel rather
than in the combined model according to any change in the
specification. Among the important issues that come up in
our development is flexibility of capturing the system’s
dynamics using our new reusable specification of building
blocks and ease of understanding the intricacy of combined

model generation and evaluation from that specification by
proposing transformation from UML diagram to
corresponding SRN elements like states, different
pseudostates and transitions. However, our eventual goal is
to develop support for runtime redeployment of components,
this way keeping the service within an allowed region of
parameters defined by the requirements. As a result, with our

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.000005 0.000009 0.00003 0.00007 0.0001 0.0005

Failure rate

T
h

ro
u

g
h

p
u

t

proposed framework we can show that our logic will be a
prominent candidate for a robust and adaptive service
execution platform. However, the size of the underlying
reachability set to generate SRN model is major limitation
for large and complex systems. Further work includes
tackling the state explosion problems of reachability marking
of large distributed systems.

REFERENCES
[1] F. A. Jawad and E. Johnsen, “Performability: the vital

evaluation method for degradable systems and its most
commonly used modeling method, Markov reward modeling”,
http://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol4/eaj2/rep
ort.html, <retrieved May 2011>

[2] E. de Souza e. Silva and H. R. Gali,”Performability analysis of
computer systems: from model specification to solution”,
Performance evaluation 14, pp. 157-196, 1992

[3] K. S. Trivedi, “Probability and Statistics with Reliability,
Queuing and Computer Science application”, Wiley-
Interscience publication, ISBN 0-471-33341-7, 2001

[4] OMG UML Superstructure, Version-2.2
[5] G. Ciardo, J. Muppala, and K. S. Trivedi, “Analyzing

concurrent and fault-tolerant software using stochastic reward
nets”, Journal of Parallel and Distributed Computing, Vol. 15,
1992

[6] M. Csorba, P. Heegaard, and P. Herrmann, “Cost-Efficient
Deployment of Collaborating Components”, DAIS, pp. 253–
268, Springer, 2008

[7] OMG 2009, “UML Profile for MARTE: Modeling & Analysis
of Real-Time Embedded Systems”, V – 1.0

[8] N. Sato and Trivedi, “Stochastic Modeling of Composite Web
Services for Closed-Form Analysis of Their Performance and
Reliability Bottlenecks”, ICSOC, pp. 107-118, Springer, 2007

[9] P. Bracchi, B. Cukic, and Cortellesa, “Performability modeling
of mobile software systems”, ISSRE, pp. 77-84, 2004

[10] N. D. Wet and P. Kritzinger, “Towards Model-Based
Communication Protocol Performability Analysis with UML
2.0”, http://pubs.cs.uct.ac.za/archive/00000150/01/No_10,
<retrieved May 2011>

[11] Gonczy, Deri, and Varro, “Model Driven Performability
Analysis of Service Configurations with Reliable Messaging”,
MDWE, 2008

[12] OMG 2009, “UML Profile for Modeling Quality of Service &
Fault Tolerance Characteristics Specification”, V-1.1

[13] R. H. Khan and P. Heegaard, “A Performance modeling
framework incorporating cost efficient deployment of multiple
collaborating components” ICSECS, pp. 31-45, Springer, 2011

[14] F. A. Kramer, “ARCTIS”, Department of Telematics, NTNU,
http://arctis.item.ntnu.no, <retrieved May 2011>

[15] K. S. Trivedi and R. Sahner, “Symbolic Hierarchical
Automated Reliability / Performance Evaluator (SHARPE)”,
Duke University, NC, 2002

[16] Mate J. Csorba, “Cost efficient deployment of distributed
software services”, PhD Thesis, NTNU, Norway, 2011

 Throughput

Performability model 0.0095
Pure performance model 0.01385

Figure 16. Equivalent SRN model of the example service

Figure 17. Numerical result of our example scenario

TABLE IV. THROUGHPUT CALCULATION

Start
Pr1 t1 Prd1

It1

x1

x11

K7

K11

Pr7

Pr6

f1
[gr1]

Pfl
Exit2

Exit1

f76
[gr76]

w76 [grw76]

x6

x7

t6

t7

Prd6

Prd7

K10

K9

x77

x66

It2

f8
[gr8]

Pr8
t8

Prd8

K13
Pr9

t9
Prd9

f9
[gr9]

127Copyright (c) IARIA, 2012. ISBN: 978-1-61208-186-1

ICNS 2012 : The Eighth International Conference on Networking and Services

